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Beyond lithium-ion batteries are needed for emerging energy
storage applications
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Ca metal batteries could provide higher energy densities at lower costs and fewer supply chain
limitations than Li-ion batteries
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Intensity (mA)

Development of practical calcium-ion electrolytes has been

limited

High temperature Ca plating and
stripping from carbonate electrolytes and stripping from Ca(BH,),/THF
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Ponrouch, A., et. al., Nat. Mater., 2016, 15, 169.
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Weakly Coordinating
Ca Salts
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Kisu, K., et. al., Sci. Reports., 2021, 11, 7563.
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Leon, N., et. al., J Phys. Chem. C., 2022, Article ASAP.
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Current density (mA/cm?)

A minority species is responsible for reversible Ca cycling in
Ca(BH,),/THF

Neutral Monomer

Hahn, N. T. et. al., J. Mater. Chem. A, 2020, 8, 7235-7244.
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Hahn, N. T. et. al., J. Phys. Chem. B, 2021, 125, 3644-3652.

Hypothesis 1: Increasing concentration of active species improves electrochemical performance
Hypothesis 2: Addition of weakly coordinating Ca salt to Ca(BH,),/THF increases active species concentration

Ca(TFSsI),

P e ca(TFsl), |

| 25 miis

o

Current density (mAfcm?)
o IS

(=]

0.5 ------+-0.0/ 1.0

o

25 milis
A

-1.2 -1.0 -l}l.l! -0.6 -I}I.d 0.2
Potential (V vs. Ca R.E.)

U.S. DEPARTMENT

(w)ENERGY

0.0” P00 02 04

Potential (V vs. Ca R.E.)
Gallant, B. M., et. al., J. Phys. Chem. C, 2022, 126, 892-902.

0.6

08 1.0 1.2

Cyclic Ether (THF)
X528
ﬁf‘f -

3
X <X

Multimer Complexes

4

Attempts to use Ca(TFSlI),
as weakly coordinating salt
prevent Ca stripping and
show complex speciation

Hahn, N. T., et. al., J. Phys. Chem. C, 2022, 126, 10335-10345.
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Ca(CB,,H,,), serves as a model weakly coordinating salt
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Reductive stability of CB,,H,,anion enables wider range of electrochemical experiments
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Large changes in apparent ionicity signal speciation change

500 mM Ca(BH,), + x mM Ca(CB,,H,,), in THF
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Conductivity comparison suggests possibility of SSIPs or free Ca?* in solution
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Added Ca(CB,,H,,), produces predominantly solvent coordinated Ca
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A large fraction of added Ca(CB,,H,,), exists as SSIPs

500 mM Ca(BH,), + x mM Ca(CB,H,,),in THF
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Magnitude of dielectric increment implies SSIP formation
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Ca(CB,,H,,)* SSIP yields a distinct mass transport limited response
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Reduction of Ca(CB,,H,,)* SSIP is kinetically more facile than
reduction of CaBH,* CIP

500 mM Ca(BH,), + 0 mM Ca(CB,H,),
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Lower BH,” coordination reduces thermodynamic potential for
deposition

Neutral Monomer
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Speciation Drives Electrochemical Performance

= Ca(CB,H,,), added to Ca(BH,),/THF produces Ca(CB,,H,,)* SSIPs as an alternate active species
= Ca?* reduction from Ca(CB,,H,,)* SSIP is more facile than CaBH,* CIP

= Hypothesis: SSIPs can deliver Ca more effectively than CIPs by better balancing charge screening and
desolvation penalties

= Altering solvation shell through co-salts or co-solvents enables electrolyte design
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Addition of Ca(CB,,H,,), to Ca(BH,),/THF leads to complex speciation

Ca(BH,), Equilibria
2Ca(BHy); © Cay(BHy),
Ca,(BH,)4< CaBH," + Ca(BH,)3
Ca(CB,;H,,), Equilibria
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Ca(CBy1Hq2),¢ Ca(cBllH12);‘-SIP+CBllH1_2
Interaction Between Ca(BH,), and Ca(CB,;H,,),
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Ca(BH,),+Ca(CBy1Hyp)isip CaBH,™ + (CaBH4)(CBy1Hyz)ssip

Ca(BH,), X Ca(BH,)3

As many as 7 Ca species in solution!
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Added Ca(CB,,H,,), alters local Ca coordination

Upfield shift with added Ca(CB,,H,,),
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Computational NMR validates SSIPs without BH," as critical
component of speciation

Ca,(BH,)s(THF), Ca(BH,),(THF),  Ca(THF), (Carborane)*  Ca(THF)g*

Ca(BH,)(Carborane)(THF), Ca(BH,)(THF)s*

BH4' Dominated ﬁ
Coordination CaBH4+
formation as a
CIP or SSIP
leads to a
downfield shift

Ca species without BH,
coordination leads to upfield shift

Solvent Dominated Coordination
Hahn, N. T., et. al., Phys. Chem. Chem.
Phys., 2022, 24, 674-686.
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« Downfield shift in 43Ca peak position suggests increasing average BH, CN

« Broadening of peak suggests wider range of coordination environments
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Low Temperature NMR

=265 K
=255 K
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No obvious splitting at low temperature - exchange must be very fast
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Ca(BH,), concentration dictates change in (CalB] (mICR(CE: ol (mth)
speciation with added Ca(CB,,H,,),
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Addition of Ca(CB,,H,,), to Ca(BH,),/THF leads to significant
population of Ca(CB,,H,,)* SSIP

= \We hypothesized enhanced CaBH,* with non-
interacting CB,,H,, but found Ca(CB,,H,,)* SSIP

» Refined speciation description underway

= \We have two Ca delivery species: CaBH,* and
Ca(CB;1H1z)ssp’

a 120 -
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Connell, J. G., et. al., ACS Appl. Mater. Interfaces, 2020, 12, 36137.
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Relieving kinetic constraints enables cycling at
higher current densities

Au Substrate

500 mM Ca(BH,), + x mM Ca(CB,,H,,),in THF
~1380 ppm by mass Na:Ca
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Presence of Ca(CB,,H,,)* CIP reduces Coulombic  5omicaem, «xmucaca,.nme

~1380 ppm by mass Na:Ca
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Lower BH,” coordination reduces thermodynamic potential for
deposition

Ca(BH,),(THF), + & < Ca(BH,),(THF); + THF Ca(THF)g(CB4H4,)* + & «> Ca(THF)s(CB4H4,) + THF
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red red
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Au Substrate

Changes in speciation affect SEl heterogeneity and wiciei. «ymicacs m.n e

~1380 ppm by mass Na:Ca
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