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Well integrity monitoring with electric fields
by using hierarchical geo-electric models

Summary Hierarchical Finite Element Method (Hi-FEM)

Failure of wellbore integrity is one of the key concerns in operating oil The electric field E = Y throughout a 3D conducting media subject to a given steady electric current density J gis
. . . . ‘ racturing mode
and gas fields as well as abandoned mature fields that are typically governed by the Poisson equation, I
. . . | S
considered for long-term CO, storage, and may cause dramatic negative V- (0‘ : V’u) =V - J, )
environmental impacts. Here, we present a numerical study on the well . _ _ , o , b
. . o : : where U is the electrical scalar potential and Jis the electrical conductivity function. -
integrity monitoring by using electric (E) field measurements. The survey i
setting includes a steel-cased well whose condition is unknown (i.e., intact The Hi-FEM recognizes not only the contribution of volumetrically-defined geologic structures but also the i
.C., ) ) ] . . . .. 31
or damaged) and a surface profile along where the E field is measured local contrl.bu.tlons of ID linear- and 2D planar-like geologic features to the ov.erall electrical 'conductlwty.of 4
a model within an unstructured tetrahedral mesh, and hereby allow us to simulate geologic models with b o

once the casing is energized at the well head (i.e., the top-casing method;
Wilt, 2016; MacLennan et al,, 2018). The changes in the surface E field can
be used to detect and constrain the location of well damage.

important details at multiple scales of length in a computationally cost-effective way.
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Here, we obtain the E field responses of the steel-cased wells from the
simulated electrical potentials in the DC limit by utilizing the hierarchical
finite element method (Hi-FEM; Weiss, 2017). The method allows us to
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represent the electrical conductivity not only on volume elements but oediag(1,1,1), s,diag(0,1,1), t,diag(1,0,0), (1 ifxcedge e aperture HI-FEM
also on lower dimensional elements such as facets (2D) and edges (ID) in UL (x) = diag(1,0,0), _ . (h)
. : . LO otherwise
the unstructured finite element mesh. Since the well casing is represented Nv Np NEg
by a subset of connected edges within the 3D tetrahedral finite element o(x) = E o WY (x) + g s WL (x) + E te Wl (x)  (Weiss, 2017)
mesh, the surface E field data can be simulated without the need of e=1 e=1 e—1 conductivity (o) C(Z’;d%m”ce(se)
support the findings of the previous studies that well breakage results in
. . . . Nv Nr Ng Area )
an anomalous increase in the amplitude of the surface E field inversely K — Z K% 4 Z K3 4 Zt K2 (4) (=1
proportional to the length of the path from the wellhead. Moreover, our o Tetre Sebhe €Te i
analysis of surface E field data obtained from an energized, damaged well e=1 e=1 e=1
also shows that regardless of the amount, type, and location of well The global form of the linear system of equations is solved iteratively by using a Jacobi-preconditioned
. AR conjugate gradient (J-PCCG) solver (Weiss, 2001):
damage, surface E field measurements can identify the presence of jHeate 8 { ) ( ) — N '
. . . . Ku — b conductivity (o) conductivity - cross-sectional area (t,)
damage and provide a reasonable estimate for the compromised portion (Ao - A)
of the well. In this study, we present various model scenarios to
investigate the feasibility of an automated well integrity monitoring with ’nvers,’on of E ﬁe’ds by using h,’erarchica’ COﬂdUCtiVities
the surface EM data.
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E’ECtriC responses Of WE" dam age associated with the state of the well integrity.

Levenberg-Malquart least squares inversion
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