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The Push Toward High Voltage Mg Batteries

Electrochemical Potential vs. Mg/Mg2+- +

High Voltage CathodesMg Anode
Electrolyte 

Stability

0 V 3 - 4 V

• 400 Wh/L potential

• Potential improvements in safety/cost 
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The Push Toward High Voltage Mg Batteries

Electrochemical Potential vs. Mg/Mg2+- +

High Voltage CathodesMg Anode
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Designer WCAs

Oxidatively Stable Solvents

Nucleophile Limit
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Electrolyte Stability Design Rules
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1. Mg-Coordinating solvent determines reductive stability limit

2. Free solvent determines oxidative stability limit

Coordination Increases Glyme Stability

Pt electrode

Watanabe et al. J Phys Chem C 2016
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Electrolyte Stability Design Rules
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1. Mg-Coordinating solvent determines reductive stability limit
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Strategy: Glyme Solvates in Co-Solvent
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Electrolyte Stability Design Rules
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1. Mg-Coordinating solvent determines reductive stability limit

2. Free solvent determines oxidative stability limit

Mg2+

Coordinating Glymes Non-Coordinating (?) Co-Solvents

Managing Coordination Selectivity
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Proof-of-Concept System

BTFETTE

Non-Coordinating Co-Solvent

Hydrofluoroether (HFE)

• High oxidative stability

• Weak solvating power

n = 3 n = 2

Monoglyme (G1) Diglyme (G2)

= 6 Oglyme per Mg2+

Electrolyte Composition

Salt: 0.5M Mg(TFSI)2

Glyme: 1M G2 or 1.5M G1
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Mg(TFSI)2/G2

G22Mg(TFSI)2/TTE

G2:Mg2+

Free G2

Selective Glyme Coordination in HFE

G1:Mg2+

Mg(TFSI)2/G1

G13Mg(TFSI)2/TTE

Free G1

▪ Elimination of free G2

▪ Consistent G2 solvation of Mg2+

▪ Elimination of free G1

▪ Perturbed G1 solvation of Mg2+

▪ G2 more effective than G1 at fully solvating Mg2+ in HFE
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Primary Competition is Between Glyme and TFSI-

▪ Glyme structure influences TFSI- coordination

▪ HFE structure doesn’t influence TFSI- coordination

TFSI- Coordination Behavior Coordination Statistics
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Impact of Coordination on Oxidative Stabilization

Pt WE

Mg CE

Ag/Ag+ RE (calibrated using Fc/Fc+)

LSV @ 1 mV/s

▪ Selective G2 coordination enables > 0.5 V oxidative stabilization

Dilution

Coordination
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Stabilization on Oxide Cathode Surfaces

Progressive CV on MgCr2O4 Spinel
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Qa/Qc > 1.25 @ 2.5 V

Qa/Qc > 1.25 @ 2.9 V

Qa/Qc > 1.25 @ 3.5 V

MgCr2O4/Mo WE

Mg CE

Ag/Ag+ RE

CV @ 10 mV/s

▪ Similar magnitude of stabilization cathode vs. Pt surface
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Mg Cycling in HFE Co-Solvents

Mg(TFSI)2 + 2G2 in TTE Mg(TFSI)2 + 2G2 in BTFE

AVG CE ~ 15% AVG CE ~ 65%

300 um

Thick Mg-Inorganic Byproduct Film

300 um

Pt

Mg

Mg Deposit SEM:

(2 mA/cm2)

Pt WE

Mg CE

Ag/Ag+ RE

CV @ 50 mV/s
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Predicted Impact of HFE on Reductive Stability

AIMD Simulations

Lei Cheng grp

• TTE reduction is a significant driver of 

parasitic chemistry

• BTFE reduction is not a significant driver of 

parasitic chemistry

Mg0 Mg0

BTFETTE

TTE reduction

Mg0 oxidation
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Limited by Mg-TFSI- Reduction

TTE Electrolyte BTFE Electrolyte

Mg Mg

Limited by HFE Reduction

e-

e-
Inorganic Mg-compounds

Impact of HFE on Mg Deposition/Reactivity
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Key Takeaways

• Selective solvation enables HFE-based Mg2+ electrolytes for higher voltage batteries

• Coordination selectivity is sensitive to glyme structure but not HFE structure

• Reductive stability is sensitive to HFE structure: BTFE more stable than TTE

• TFSI- salt becomes the limiting factor in BTFE: better salts needed

Oxidative StabilizationMg Cycling Mg2+ Solvate



16

Acknowledgement

Ethan Kamphaus

Lei Cheng

Kevin Zavadil

Stephen Meserole

Ying Cheng

Vijay Murugesan

Karl Mueller


