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The Push Toward High Voltage Mg Batteries JQR
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Mg Electrolyte Development

The Push Toward High Voltage Mg Batteries JQR
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Electrolyte Stability Design Rules

JCESR

1. Mg-Coordinating solvent determines reductive stability limit

2. Free solvent determines oxidative stability limit
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Electrolyte Stability Design Rules JCESR

1. Mg-Coordinating solvent determines reductive stability limit

2. Free solvent determines oxidative stability limit
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Electrolyte Stability Design Rules JCESR

1. Mg-Coordinating solvent determines reductive stability limit

2. Free solvent determines oxidative stability limit
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JCESR

Proof-of-Concept System

Non-Coordinating Co-Solvent

Hydrofluoroether (HFE)
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TTE BTFE

« High oxidative stability
* Weak solvating power

Electrolyte Composition

Salt: 0.5M Mg(TFSI),
Glyme: 1M G2 or 1.5M G1
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Raman Intensity Normalized to TFSI-

Selective Glyme Coordination in HFE
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Raman Intensity Normalized to TFSI-

1 —— Mg(TFSI),/G1
—— G1,;Mg(TFSI),/TTE

Free G1

760 780 800 820 840 860 880 900 920
Raman Shift (cm™')

Elimination of free G1
Perturbed G1 solvation of Mg2*

= G2 more effective than G1 at fully solvating Mg?* in HFE
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Primary Competition is Between Glyme and TFSI- JCESR

TFSI- Coordination Behavior Coordination Statistics
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= Glyme structure influences TFSI- coordination

= HFE structure doesn’t influence TFSI- coordination



Impact of Coordination on Oxidative Stabilization JCESR
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= Selective G2 coordination enables > 0.5 V oxidative stabilization
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Stabilization on Oxide Cathode Surfaces JCESR

Progressive CV on MgCr,O, Spinel
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Predicted Impact of HFE on Reductive Stability J@R

AIMD Simulations
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Impact of HFE on Mg Deposition/Reactivity

TTE Electrolyte
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Key Takeaways JCESR

Selective solvation enables HFE-based Mg?* electrolytes for higher voltage batteries

Coordination selectivity is sensitive to glyme structure but not HFE structure

Reductive stability is sensitive to HFE structure: BTFE more stable than TTE

 TFSI salt becomes the limiting factor in BTFE: better salts needed

Oxidative Stabilization
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