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Feature 
Vectors

Neural Networks
A neural network is a parameterized model:

Neural Network

Input

Output

Parameters

It is composed of multiple layers*

*Your mileage may vary, there are so many possible architectures, this is our starting point
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Neural Network Architectures*

Update Rule:

Feed 
Forward

ResNet

ODENet

Weighting Matrix

Bias Vector

Activation Function: 
nonlinear componentwise

*Your mileage may vary, there are so many possible architectures, this is our starting point
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Determining the Parameters
Neural network should map data according to the sampled training set : 

Parameters

Input Output

Loss function is model/data difference: 
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Neural Network Training as Constrained Optimization

u0 u1 u2 u3 u4

Neural networks are a model that 
transform input u0 to output u4 by 
”evolving” through layers

Forward Inference: Training:

Feature 
Vectors

Parameters

Solve optimization problem constrained 
by evolutionary models
• Supervised Training: Determine parameters 

that give best match to data

5



Stochastic Gradient Descent (SGD)6

Original SGD paper: Robbins, Monro. "A stochastic approximation method." The 
annals of mathematical statistics  (1951): 400-407.

Stochastic Gradient Descent Algorithm:

Batched SGD samples from the 
data space defining the global loss
• Reduces required memory footprint
• Uses samples more efficiently (see 

Bottou, Curtis, Nocedal)

Each step computes gradient from a subset 
(batch) of the data selected at random:

Batch Size Randomly 
selected data



SGD: Forward and Backward Propagation7

Original SGD paper: Robbins, Monro. "A stochastic approximation method." The 
annals of mathematical statistics  (1951): 400-407.

Stochastic Gradient Descent Algorithm:

Batched SGD samples from the 
data space defining the global loss
• Reduces required memory footprint
• Uses samples more efficiently (see 

Bottou, Curtis, Nocedal)
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SGD Works8

1. Ghadimi, Lan, “Stochastic first- and zeroth-order methods for nonconvex stochastic programming,” SIAM J. Optim., 2013.
2. Lan, “First-order and Stochastic Optimization Methods for Machine Learning,” Springer Series in the Data Sciences, 2020.

Assumptions

Lipshitz Cont. Gradient:

Lower bounded Objective: Unbiased gradient estimator:

Gradient estimator has bounded variance:

Take Home: SGD leads to small expected gradients



Use parallelisms to accelerate training

Parallel computing is important to training
• Focused on GPU level parallelism
• Relatively small clusters

Parallel scalability relies on
• Spatial/Model parallelism
• Data parallelism
• Parallelism handles increased data set size and 

network width
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Review of model/data parallelism: Ben-Nun, Hoefler. "Demystifying parallel and distributed deep learning: 
An in-depth concurrency analysis." ACM Computing Surveys (CSUR) 52, 2019.
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What about depth?10
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How reduce runtime with increased 
neural network depth?

Double the 
number of 

layers

Further 
increase 

layer count

Current parallelism mitigates increasing data set 
sizes and network width:

Increased runtimes with depth are not reduced 
by traditional approaches!

Potential Architectures:
• ResNet’s
• NeuralODEs
• Recurrent Neural Networks



Our New Approach: Layer-Parallel Training

But it won’t work:
• Forward/Back prop are serial
• Distributing the layers does not 

lead to acceleration

Stochastic Gradient Descent Algorithm:

A simple idea:
• Process each layer in parallel
• This will distribute computation
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We can relax the exactness of propagation, and trade for parallelism!

• If we can control the error we introduce, we can use it to get 
parallelism!

• We introduce this error through a multigrid algorithm, and get 
parallelism as a result

Critical Assumption: Exactness of propagation

Introduce a small error

Stochastic Gradient Descent Algorithm:

+ ᵵ� ᵈ�
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SGD With Inexact Gradients13

Assumptions

Objective Constraints:

Biased gradient estimator: Gradient estimator has bounded variance:

Take Home: SGD with inexact gradients leads to small expected gradients

Summable conditional biases:



Neural ODEs: Layers as Time Dimension14

We make one more transformation: from ResNets to NeuralODEs

See for instance:
1. Chen, Rubanova, Bettencourt, Duvenaud. "Neural ordinary differential equations." arXiv preprint 

arXiv:1806.07366 (2018).
2. Haber, Ruthotto. "Stable architectures for deep neural networks."  Inverse Problems 34, no. 1 (2017).

With this formulation we can develop a “Layer-Parallel” Algorithm using ”Parallel-
in-Time” methods
• Parareal: Lions, Maday, Turinici, Résolution d’EDP par un schéma en temps “pararéel”, C. R. 

Acad. Sci. Paris Sér. I Math. 332 2001.
• PFASST: Emmett, Minion. "Toward an efficient parallel in time method for partial differential 

equations." Communications in Applied Mathematics and Computational Science 7, 2012.
• MGRIT: Falgout, Friedhoff, Kolev, MacLachlan, Schroder. "Parallel time integration with 

multigrid." SIAM SISC 2014. 



Layer Parallel Training – A Multigrid Approach*15

*Based on Multigrid-In-Time: Collaboration with J. Schroder (UNM), S. Günther (LLNL), L. Ruthotto (Emory), N. Gauger (TU Kasierslatern)
Multi-grid in time reference: Falgout, Friedhoff, Kolev, MacLachlan, Schroder. "Parallel time integration with multigrid." SIAM SISC 2014. 

Multi-grid algorithm uses “divide and conquer” approach to inference
• “Fine grid relaxation”: Fixes local errors between layers – embarrassingly parallel
• “Coarse grid correction”: Fixes global errors – serial inference on smaller network
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Multigrid is applied for both forward and back propagation



Layer Parallel Scaling Results

Three different classification problems
1. Peaks: Put particle position into one of 5 different classes
2. Indian Pines: Hyperspectral imaging, what crop? Soy, corn, etc…
3. MNIST: Handwritten digit classification

A comment on the code:
• Neural network code using Xbraid (LLNL) parallel-in-time library
• Code is not optimized: e.g. MNIST uses hand coded convolutions
• Neural networks architectures not optimized, simple ODENets
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Layer Parallel Scaling Results
Peaks

Indian Pines
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Speedup

MNISTIndian Pines

10x
Speedup
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Using Stochastic Gradient Descent (SGD)
Workhorse of ML is SGD optimizer
• How does Layer-Parallel perform
• Compare networks trained with SGD
• Using “harder” fashion MNIST data set
• Similar speedups as seen previously

No loss of accuracy from layer-parallel compared to serial algorithm 

18



Recurrent Neural Nets (RNN)
Problem: Classify a sequence, e.g. learn the mapping

Sequence of N items One of C classes

Solution: Recurrent neural network
Learn a neural network ‘Q’ to produce a classifier

See “Colah’s Blog” for a really great discussion (https://colah.github.io/posts/2015-08-Understanding-LSTMs/)

Q

x1

h1 Q

x2

h2 …0 Q

xN

hN

To Classification 
Objective: “Output”

Recurrent “Cell”

Input Sequence

Hidden State

19



Generalized Recurrent Units (GRUs)
LSTMs and GRUs are two trainable types of RNNs
• Historically RNNs are hard to train (my read is they were unstable)
• “memory”:  remembers important features in the sequence
• “forget” gates: eliminates some redundant/irrelevant from the sequence

Generalized Recurrent Units: 
• h*: Hidden State, 
• x*: Input Sequence, 
• W* and b*: Learnable Network Parameters 

Hadamard Product

20



GRUs to ODEs

Stiff mode: Collapsing onto 
multi-rate asymptotic (this 
is a dissipation term!)

Introduction of new 
sequence information

21



Implicit GRUs22



Human Activity Recognition Using Smartphones Dataset (v1.0)1,2

1. Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra and Jorge L. Reyes-Ortiz. A Public Domain Dataset for Human Activity Recognition Using Smartphones. 
21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013. Bruges, Belgium 24-26 April 2013.

2. https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones

Dataset Details:
• 30 Volunteers performed six activities: WALKING, WALKING_UPSTAIRS, WALKING_DOWNSTAIRS, SITTING, STANDING, LAYING

• Smartphone accelerometers  measured three different types of motion, yielding 9 features per sample
• Times windows of 2.56s composed of 128 time samples are labeled with activity
• 70% of volunteers selected for training data (7352 sequences), and 30% for test (2947 sequences)

Short Story: Supervised Classification Problem (Very Small)
• 6 labels
• Sequence of 128 steps, with 9 features
• Training set of 7352 sequences
• Testing set of 2947 sequences

https://www.youtube.com/watch?v=XOEN9W05_4A

PyTorch GRU and LSTM Implementations get to 90% test 
accuracy in 5-10 epochs with Adam (e.g. its not a really 
difficult problem)

23



Classic/Implicit/Parallel GRU Comparisons
• Parallel speedup of 2x

Very small problem, Amdahl Law limited
• All three methods have reasonable accuracy 

Slight degradation for Implicit, and Parallel
• Comparing inference serial (blue) and parallel 

inference (red) for a network trained in parallel
Similar forward accuracy

Take Home:
1. Implicit GRU has accuracy is competitive 

with “classic”
2. Training in parallel has modest impact on 

serial inference



HMDB51: A Large Human Motion Database1,2
25

1. H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre. HMDB: A Large Video 
Database for Human Motion Recognition. ICCV, 2011.

2. https://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database/

Task: Classify human activity in each video
• Full Database:

• ~6700 Clips Distributed in 51 Classes
• Train/Test Split:  6053/673
• Frame count ranges from 20 to more than 200
• We truncate/pad each video to 128 frames
• We use 240x240 pixels in each frame

• Subset Database (we run this):
• 6 Classes: chew  eat  jump  run  sit  walk
• Train/Test Split: 1157/129
• Frame count ranges from 20 to more than 200
• We truncate/pad each video to 128 frames
• We use 240x240 pixels in each frame

http://serre-lab.clps.brown.edu/wp-
content/uploads/2012/08/HMDB_snapshot1.png

Representatives of 28 Classes



Implicit GRU RNN26

Q

hN
To Classification 

Objective: “Output”

Implicit GRU 
“Cell”

Input Feature xN

ResNet         
18,34,50 

(pretrained)

Implicit GRU with ResNet Preprocessor:
• ResNet 18, 34 or 50 (pretrained) computes 1000 

features per frame
• Implicit GRU uses a hidden size of 1000, with two layers

Computing Platform (Sandia’s Attaway machine):
• 2.3 GHz Intel Xeon, 2 Sockets, 18 Cores each: 36 cores 

per node
• Run with 9 OpenMP threads per MPI rank (4 ranks per 

node)

Training Details:
• Batch Size of 100
• ADAM optimizer with learning rate of 10-3

• ResNet18 is not applied on coarse grids
• Image feature is computed once



Subset: Training Loss and Test Accuracy27

Parallel Training and Implicit vs. Classic GRU makes 
little difference in training loss and accuracy

ResNet 18

ResNet 18



Runtime: Timings Breakdown28



Runtime: Timings Breakdown29

Speedups obtained in forward, backward, and disk time 



ResNet 18,34,50: Full dataset30

Accuracy on 32 MPI ranks
• Relatively insensitive to the 

starting condition
• Learning rate scheduling 

possible-not explored
• MGRIT iteration scheduling also 

possible

Good strong scaling speedups



What about initial guesses?
Serial Training:
• Weights: Many different ways – Glorot 2010, He 2016, “Box” 2020
• Features: Defined by evolution both backward and forward

Layer-Parallel:
• Weights: Same way as in serial? Is there something “better”
• Features: Tricky, what is natural guess? What about for backprop?

What is the input to Layer 5 at the 
beginning of the Layer-Parallel algorithm?

Glorot, Bengio, 2010; He, Zhang,  Ren, Sun, 2015; Cyr, Gulian, Patel, Perego, Trask, “Box”, 2020 
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Layer-Parallel Initialization: Nested Iteration

Initialization of Layer-Parallel is complex
• Initialize weights and biases
• Initialize state and adjoint

To overcome this, we have developed a 
nested iteration
• Like full multigrid
• Train on the coarse network first, 

then upscale



Layer-Parallel Initialization: Nested Iteration

Layer-Parallel Iteration: Forward/Backward
(Computational Kernel)

Piecewise Constant transfer to finer level

m(l) optimization iterations
For each level (L=0 is fine)
Initialization on coarse level (see below)

Initialization on the coarse level:
• Weights: Random
• Features: Coarse level runs serially, no 

initialization is necessary



Nested Iteration: Indian Pines and Peaks34
Pe

ak
s

In
di

an
 P

in
es

• 3 level example with Indian Pines and Peaks data sets
• Work Unit = Average Fine Level forward/adjoint gradient computation

Nested iteration yields better validation accuracy in less time

200 steps
125 steps

75 steps

200 steps
100 steps

50 steps



Nested Iteration: Regularization
To understand the regularization impact of nested 
iteration
• 4 different values for hyper parameters, chosen to give 

good results

• 12 independent runs for each hyper parameterization 
(48 total runs)

Nested Iteration validation accuracy less sensitive than 
non-nested iteration
• Promising improvement to robustness (not definitive)
• Hypothesis: nested iteration applies implicit 

regularization

Tikanov Regularization 10-5 10-7

Initial Weights 0.0 10-6

Peaks Validation Accuracy



Introducing Torchbraid (v0.1)36

Original “Layer-Parallel” code was C++ with hand rolled kernels
• Effective research code (thanks Stefanie)
• Performance of convolutional kernels is suspect (blame me)
• Hard to do apples-to-apples comparisons with state of the art
• Not as easy to extend as PyTorch (and TensorFlow)

Torchbraid: Adding Layer-Parallel module to PyTorch
• Leverage more developers
• Uses automatic differentiation 
• Support for ODENets and GRU-RNNs



Torchbraid Arch. (v0.1): An Evolving Library37

mpi4py

from torchbraid import LayerParallel
... 
parallel_nn = LayerParallel(comm,             # mpi4py Communicator
                            basic_block,      # Lambda building a PyTorch module
                            local_num_steps,  # Processor local number of steps
                            Tf)               # Final time value

LayerParallel – A PyTorch Module for 
parallel training
• Follows ODENet and ResNet (He 2016) 

nomenclature
• Supports automatic differentiation
• Memory/performance tradeoffs under 

study
• Limited testing of different problems



Layer-Parallel/Parallel-in-Time Training
Running forward propagation:
• MNIST Training with ConvNets
• ODE Network with N Steps
• Each step contains 2 convolutional 

layers
• Dashed lines: pyTorch serial

Take Home: Torchbraid 
LayerParallel gives to speedups 

against PyTorch serial time
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Closing Thoughts
Presented a Layer-Parallel algorithm for training deep NNs
• Parallelism is exposed by permitting inexact propagation
• We trade inexactness for performance with multigrid algorithms
• Developed new recurrent neural network parallel training procedure
• Presented “TorchBraid” result: faster training

Layer-Parallel Papers:
• Guenther, Ruthotto, Schroder, Cyr, Gauger, Layer-Parallel Training of DNNs, SIMODs, 2020
• Cyr, Guenther, Schroder, Nested Iteration Initialization of DNNs, Accepted to PinT Proceedings, 2020
• Moon, Cyr, Working Title: Parallel Training of GRU with a Multi-Grid Solver for Very Long Sequences, 

In Preparation, 2021

Thanks to the DOE Office of Science ASCR Early Career Research 
Program for supporting this work! 
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