
A u t h o r s

Sandia National Laboratories is a multimission
laboratory managed and operated by National

Technology & Engineering Solutions of Sandia, LLC, a
wholly owned subsidiary of Honeywell International
Inc., for the U.S. Department of Energy’s National

Nuclear Security Administration under contract DE-
NA0003525.

Adapting Multi-Grid-in-Time to
Train Deep Neural Networks

Stefan ie Guenther (LLNL) , Lars Ruthot to (Emory) ,
Jacob B. Schroder (UNM), Nico R. Gauger (TU
Kaisers lautern) , Gordon Moon (KAU), Ravi Pate l
(SNL) , Shengchao L in (Mathworks) , Mat th ias
Heinkenschloss (Rice)

Eric C. Cyr, Sandia National Laboratories

SAND2022-11168CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Feature
Vectors

Neural Networks
A neural network is a parameterized model:

Neural Network

Input

Output

Parameters

It is composed of multiple layers*

*Your mileage may vary, there are so many possible architectures, this is our starting point

2

Neural Network Architectures*

Update Rule:

Feed
Forward

ResNet

ODENet

Weighting Matrix

Bias Vector

Activation Function:
nonlinear componentwise

*Your mileage may vary, there are so many possible architectures, this is our starting point

3

Determining the Parameters
Neural network should map data according to the sampled training set :

Parameters

Input Output

Loss function is model/data difference:

4

Neural Network Training as Constrained Optimization

u0 u1 u2 u3 u4

Neural networks are a model that
transform input u0 to output u4 by
”evolving” through layers

Forward Inference: Training:

Feature
Vectors

Parameters

Solve optimization problem constrained
by evolutionary models
• Supervised Training: Determine parameters

that give best match to data

5

Stochastic Gradient Descent (SGD)6

Original SGD paper: Robbins, Monro. "A stochastic approximation method." The
annals of mathematical statistics (1951): 400-407.

Stochastic Gradient Descent Algorithm:

Batched SGD samples from the
data space defining the global loss
• Reduces required memory footprint
• Uses samples more efficiently (see

Bottou, Curtis, Nocedal)

Each step computes gradient from a subset
(batch) of the data selected at random:

Batch Size Randomly
selected data

SGD: Forward and Backward Propagation7

Original SGD paper: Robbins, Monro. "A stochastic approximation method." The
annals of mathematical statistics (1951): 400-407.

Stochastic Gradient Descent Algorithm:

Batched SGD samples from the
data space defining the global loss
• Reduces required memory footprint
• Uses samples more efficiently (see

Bottou, Curtis, Nocedal)

La
ye

r 1

La
ye

r 2

O
ut

pu
t

In
pu

t

La
ye

r 3

ᵆ� ᵆ� 1 ᵆ� 2 ᵆ� 3 ᵆ� 4

La
ye

r 1

La
ye

r 2

O
bj

. S
en

s.

Gr
ad

ie
nt

La
ye

r 3

1. Forward Prop

2. Back Prop

SGD Works8

1. Ghadimi, Lan, “Stochastic first- and zeroth-order methods for nonconvex stochastic programming,” SIAM J. Optim., 2013.
2. Lan, “First-order and Stochastic Optimization Methods for Machine Learning,” Springer Series in the Data Sciences, 2020.

Assumptions

Lipshitz Cont. Gradient:

Lower bounded Objective: Unbiased gradient estimator:

Gradient estimator has bounded variance:

Take Home: SGD leads to small expected gradients

Use parallelisms to accelerate training

Parallel computing is important to training
• Focused on GPU level parallelism
• Relatively small clusters

Parallel scalability relies on
• Spatial/Model parallelism
• Data parallelism
• Parallelism handles increased data set size and

network width

M
od

el
 P

ar
al

le
l

Da
ta

 P
ar

al
le

l

Review of model/data parallelism: Ben-Nun, Hoefler. "Demystifying parallel and distributed deep learning:
An in-depth concurrency analysis." ACM Computing Surveys (CSUR) 52, 2019.

9

What about depth?10

Fi
na

l L
ay

er

O
ut

pu
t

In
pu

t

La
ye

r 4

La
ye

r 3

La
ye

r 2

La
ye

r 1

Fi
na

l L
ay

er

O
ut

pu
t

In
pu

t

La
ye

r 6

La
ye

r 5

La
ye

r 4

La
ye

r 3

La
ye

r 8

La
ye

r 7

La
ye

r 2

La
ye

r 1

Fi
na

l L
ay

er

O
ut

pu
t

In
pu

t

La
ye

r 2
n -

2

La
ye

r 4

La
ye

r 3

La
ye

r 2
n

La
ye

r 2
n -

1

La
ye

r 2

La
ye

r 1 …

How reduce runtime with increased
neural network depth?

Double the
number of

layers

Further
increase

layer count

Current parallelism mitigates increasing data set
sizes and network width:

Increased runtimes with depth are not reduced
by traditional approaches!

Potential Architectures:
• ResNet’s
• NeuralODEs
• Recurrent Neural Networks

Our New Approach: Layer-Parallel Training

But it won’t work:
• Forward/Back prop are serial
• Distributing the layers does not

lead to acceleration

Stochastic Gradient Descent Algorithm:

A simple idea:
• Process each layer in parallel
• This will distribute computation

11

We can relax the exactness of propagation, and trade for parallelism!

• If we can control the error we introduce, we can use it to get
parallelism!

• We introduce this error through a multigrid algorithm, and get
parallelism as a result

Critical Assumption: Exactness of propagation

Introduce a small error

Stochastic Gradient Descent Algorithm:

+ ᵵ� ᵈ�

12

SGD With Inexact Gradients13

Assumptions

Objective Constraints:

Biased gradient estimator: Gradient estimator has bounded variance:

Take Home: SGD with inexact gradients leads to small expected gradients

Summable conditional biases:

Neural ODEs: Layers as Time Dimension14

We make one more transformation: from ResNets to NeuralODEs

See for instance:
1. Chen, Rubanova, Bettencourt, Duvenaud. "Neural ordinary differential equations." arXiv preprint

arXiv:1806.07366 (2018).
2. Haber, Ruthotto. "Stable architectures for deep neural networks." Inverse Problems 34, no. 1 (2017).

With this formulation we can develop a “Layer-Parallel” Algorithm using ”Parallel-
in-Time” methods
• Parareal: Lions, Maday, Turinici, Résolution d’EDP par un schéma en temps “pararéel”, C. R.

Acad. Sci. Paris Sér. I Math. 332 2001.
• PFASST: Emmett, Minion. "Toward an efficient parallel in time method for partial differential

equations." Communications in Applied Mathematics and Computational Science 7, 2012.
• MGRIT: Falgout, Friedhoff, Kolev, MacLachlan, Schroder. "Parallel time integration with

multigrid." SIAM SISC 2014.

Layer Parallel Training – A Multigrid Approach*15

*Based on Multigrid-In-Time: Collaboration with J. Schroder (UNM), S. Günther (LLNL), L. Ruthotto (Emory), N. Gauger (TU Kasierslatern)
Multi-grid in time reference: Falgout, Friedhoff, Kolev, MacLachlan, Schroder. "Parallel time integration with multigrid." SIAM SISC 2014.

Multi-grid algorithm uses “divide and conquer” approach to inference
• “Fine grid relaxation”: Fixes local errors between layers – embarrassingly parallel
• “Coarse grid correction”: Fixes global errors – serial inference on smaller network

Proc 3

Fi
na

l L
ay

er

O
ut

pu
t

In
pu

t

La
ye

r 6

La
ye

r 5

Proc 2

La
ye

r 4

La
ye

r 3

Proc 4

La
ye

r 8

La
ye

r 7

Proc 1

La
ye

r 2

La
ye

r 1

La
ye

r 6

La
ye

r 4

La
ye

r 8

La
ye

r 2

Proc 1

Fine Grid Relaxation
(Approximate/Parallel)

Coarse grid correction,
Bigger Time steps

(Exact/Serial/Cheap)

Approximate
Solution

Coarse
Correction

Multigrid is applied for both forward and back propagation

Layer Parallel Scaling Results

Three different classification problems
1. Peaks: Put particle position into one of 5 different classes
2. Indian Pines: Hyperspectral imaging, what crop? Soy, corn, etc…
3. MNIST: Handwritten digit classification

A comment on the code:
• Neural network code using Xbraid (LLNL) parallel-in-time library
• Code is not optimized: e.g. MNIST uses hand coded convolutions
• Neural networks architectures not optimized, simple ODENets

16

Layer Parallel Scaling Results
Peaks

Indian Pines
W

ea
k

Sc
al

in
g

St
ro

ng
 S

ca
lin

g

16x
Speedup

MNISTIndian Pines

10x
Speedup

17

Using Stochastic Gradient Descent (SGD)
Workhorse of ML is SGD optimizer
• How does Layer-Parallel perform
• Compare networks trained with SGD
• Using “harder” fashion MNIST data set
• Similar speedups as seen previously

No loss of accuracy from layer-parallel compared to serial algorithm

18

Recurrent Neural Nets (RNN)
Problem: Classify a sequence, e.g. learn the mapping

Sequence of N items One of C classes

Solution: Recurrent neural network
Learn a neural network ‘Q’ to produce a classifier

See “Colah’s Blog” for a really great discussion (https://colah.github.io/posts/2015-08-Understanding-LSTMs/)

Q

x1

h1 Q

x2

h2 …0 Q

xN

hN

To Classification
Objective: “Output”

Recurrent “Cell”

Input Sequence

Hidden State

19

Generalized Recurrent Units (GRUs)
LSTMs and GRUs are two trainable types of RNNs
• Historically RNNs are hard to train (my read is they were unstable)
• “memory”: remembers important features in the sequence
• “forget” gates: eliminates some redundant/irrelevant from the sequence

Generalized Recurrent Units:
• h*: Hidden State,
• x*: Input Sequence,
• W* and b*: Learnable Network Parameters

Hadamard Product

20

GRUs to ODEs

Stiff mode: Collapsing onto
multi-rate asymptotic (this
is a dissipation term!)

Introduction of new
sequence information

21

Implicit GRUs22

Human Activity Recognition Using Smartphones Dataset (v1.0)1,2

1. Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra and Jorge L. Reyes-Ortiz. A Public Domain Dataset for Human Activity Recognition Using Smartphones.
21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013. Bruges, Belgium 24-26 April 2013.

2. https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones

Dataset Details:
• 30 Volunteers performed six activities: WALKING, WALKING_UPSTAIRS, WALKING_DOWNSTAIRS, SITTING, STANDING, LAYING

• Smartphone accelerometers measured three different types of motion, yielding 9 features per sample
• Times windows of 2.56s composed of 128 time samples are labeled with activity
• 70% of volunteers selected for training data (7352 sequences), and 30% for test (2947 sequences)

Short Story: Supervised Classification Problem (Very Small)
• 6 labels
• Sequence of 128 steps, with 9 features
• Training set of 7352 sequences
• Testing set of 2947 sequences

https://www.youtube.com/watch?v=XOEN9W05_4A

PyTorch GRU and LSTM Implementations get to 90% test
accuracy in 5-10 epochs with Adam (e.g. its not a really
difficult problem)

23

Classic/Implicit/Parallel GRU Comparisons
• Parallel speedup of 2x

Very small problem, Amdahl Law limited
• All three methods have reasonable accuracy

Slight degradation for Implicit, and Parallel
• Comparing inference serial (blue) and parallel

inference (red) for a network trained in parallel
Similar forward accuracy

Take Home:
1. Implicit GRU has accuracy is competitive

with “classic”
2. Training in parallel has modest impact on

serial inference

HMDB51: A Large Human Motion Database1,2
25

1. H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre. HMDB: A Large Video
Database for Human Motion Recognition. ICCV, 2011.

2. https://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database/

Task: Classify human activity in each video
• Full Database:

• ~6700 Clips Distributed in 51 Classes
• Train/Test Split: 6053/673
• Frame count ranges from 20 to more than 200
• We truncate/pad each video to 128 frames
• We use 240x240 pixels in each frame

• Subset Database (we run this):
• 6 Classes: chew eat jump run sit walk
• Train/Test Split: 1157/129
• Frame count ranges from 20 to more than 200
• We truncate/pad each video to 128 frames
• We use 240x240 pixels in each frame

http://serre-lab.clps.brown.edu/wp-
content/uploads/2012/08/HMDB_snapshot1.png

Representatives of 28 Classes

Implicit GRU RNN26

Q

hN
To Classification

Objective: “Output”

Implicit GRU
“Cell”

Input Feature xN

ResNet
18,34,50

(pretrained)

Implicit GRU with ResNet Preprocessor:
• ResNet 18, 34 or 50 (pretrained) computes 1000

features per frame
• Implicit GRU uses a hidden size of 1000, with two layers

Computing Platform (Sandia’s Attaway machine):
• 2.3 GHz Intel Xeon, 2 Sockets, 18 Cores each: 36 cores

per node
• Run with 9 OpenMP threads per MPI rank (4 ranks per

node)

Training Details:
• Batch Size of 100
• ADAM optimizer with learning rate of 10-3

• ResNet18 is not applied on coarse grids
• Image feature is computed once

Subset: Training Loss and Test Accuracy27

Parallel Training and Implicit vs. Classic GRU makes
little difference in training loss and accuracy

ResNet 18

ResNet 18

Runtime: Timings Breakdown28

Runtime: Timings Breakdown29

Speedups obtained in forward, backward, and disk time

ResNet 18,34,50: Full dataset30

Accuracy on 32 MPI ranks
• Relatively insensitive to the

starting condition
• Learning rate scheduling

possible-not explored
• MGRIT iteration scheduling also

possible

Good strong scaling speedups

What about initial guesses?
Serial Training:
• Weights: Many different ways – Glorot 2010, He 2016, “Box” 2020
• Features: Defined by evolution both backward and forward

Layer-Parallel:
• Weights: Same way as in serial? Is there something “better”
• Features: Tricky, what is natural guess? What about for backprop?

What is the input to Layer 5 at the
beginning of the Layer-Parallel algorithm?

Glorot, Bengio, 2010; He, Zhang, Ren, Sun, 2015; Cyr, Gulian, Patel, Perego, Trask, “Box”, 2020

Proc 1 Proc 2 Proc 3 Proc P-1 Proc P

La
ye

r 1

La
ye

r 4

La
ye

r 2

Fi
na

l

O
ut

pu
t

In
pu

t

La
ye

r L
-1

La
ye

r L

La
ye

r 3

La
ye

r 6

La
ye

r 5

La
ye

r L
-2

La
ye

r L
-3

Layer-Parallel Initialization: Nested Iteration

Initialization of Layer-Parallel is complex
• Initialize weights and biases
• Initialize state and adjoint

To overcome this, we have developed a
nested iteration
• Like full multigrid
• Train on the coarse network first,

then upscale

Layer-Parallel Initialization: Nested Iteration

Layer-Parallel Iteration: Forward/Backward
(Computational Kernel)

Piecewise Constant transfer to finer level

m(l) optimization iterations
For each level (L=0 is fine)
Initialization on coarse level (see below)

Initialization on the coarse level:
• Weights: Random
• Features: Coarse level runs serially, no

initialization is necessary

Nested Iteration: Indian Pines and Peaks34
Pe

ak
s

In
di

an
 P

in
es

• 3 level example with Indian Pines and Peaks data sets
• Work Unit = Average Fine Level forward/adjoint gradient computation

Nested iteration yields better validation accuracy in less time

200 steps
125 steps

75 steps

200 steps
100 steps

50 steps

Nested Iteration: Regularization
To understand the regularization impact of nested
iteration
• 4 different values for hyper parameters, chosen to give

good results

• 12 independent runs for each hyper parameterization
(48 total runs)

Nested Iteration validation accuracy less sensitive than
non-nested iteration
• Promising improvement to robustness (not definitive)
• Hypothesis: nested iteration applies implicit

regularization

Tikanov Regularization 10-5 10-7

Initial Weights 0.0 10-6

Peaks Validation Accuracy

Introducing Torchbraid (v0.1)36

Original “Layer-Parallel” code was C++ with hand rolled kernels
• Effective research code (thanks Stefanie)
• Performance of convolutional kernels is suspect (blame me)
• Hard to do apples-to-apples comparisons with state of the art
• Not as easy to extend as PyTorch (and TensorFlow)

Torchbraid: Adding Layer-Parallel module to PyTorch
• Leverage more developers
• Uses automatic differentiation
• Support for ODENets and GRU-RNNs

Torchbraid Arch. (v0.1): An Evolving Library37

mpi4py

from torchbraid import LayerParallel
...
parallel_nn = LayerParallel(comm, # mpi4py Communicator
 basic_block, # Lambda building a PyTorch module
 local_num_steps, # Processor local number of steps
 Tf) # Final time value

LayerParallel – A PyTorch Module for
parallel training
• Follows ODENet and ResNet (He 2016)

nomenclature
• Supports automatic differentiation
• Memory/performance tradeoffs under

study
• Limited testing of different problems

Layer-Parallel/Parallel-in-Time Training
Running forward propagation:
• MNIST Training with ConvNets
• ODE Network with N Steps
• Each step contains 2 convolutional

layers
• Dashed lines: pyTorch serial

Take Home: Torchbraid
LayerParallel gives to speedups

against PyTorch serial time

38

Closing Thoughts
Presented a Layer-Parallel algorithm for training deep NNs
• Parallelism is exposed by permitting inexact propagation
• We trade inexactness for performance with multigrid algorithms
• Developed new recurrent neural network parallel training procedure
• Presented “TorchBraid” result: faster training

Layer-Parallel Papers:
• Guenther, Ruthotto, Schroder, Cyr, Gauger, Layer-Parallel Training of DNNs, SIMODs, 2020
• Cyr, Guenther, Schroder, Nested Iteration Initialization of DNNs, Accepted to PinT Proceedings, 2020
• Moon, Cyr, Working Title: Parallel Training of GRU with a Multi-Grid Solver for Very Long Sequences,

In Preparation, 2021

Thanks to the DOE Office of Science ASCR Early Career Research
Program for supporting this work!

39

References (An Incomplete List)40

Layer-Parallel (multigrid modified SGD)
o Gunther, Stefanie, Lars Ruthotto, Jacob B. Schroder, Eric C. Cyr, and Nicolas R. Gauger. "Layer-parallel training of deep residual

neural networks." SIAM Journal on Mathematics of Data Science 2, no. 1 (2020): 1-23.
o Moon, Gordon Euhyun, and Eric C. Cyr. "Parallel Training of GRU Networks with a Multi-Grid Solver for Long Sequences.” ICLR,

2022 (arXiv preprint arXiv:2203.04738).
o Eric C Cyr, Stefanie Gu ̈nther, and Jacob B Schroder. Multilevel initialization for layer-parallel deep neural network training. arXiv

preprint arXiv:1912.08974, 2019.
o Kirby, Andrew, Siddharth Samsi, Michael Jones, Albert Reuther, Jeremy Kepner, and Vijay Gadepally. "Layer-parallel training with

gpu concurrency of deep residual neural networks via nonlinear multigrid." In 2020 IEEE High Performance Extreme Computing
Conference (HPEC), pp. 1-7. IEEE, 2020.

Multigrid for Training
o Gaedke-Merzhäuser, Lisa, Alena Kopaničáková, and Rolf Krause. "Multilevel minimization for deep residual networks." ESAIM:

Proceedings and Surveys 71 (2021): 131-144.
o von Planta, Cyrill, Alena Kopanicáková, and Rolf Krause. "Training of deep residual networks with stochastic MG/OPT." arXiv

preprint arXiv:2108.04052 (2021).

Other
o Ben-Nun, Hoefler. "Demystifying parallel and distributed deep learning: An in-depth concurrency analysis." ACM Computing

Surveys (CSUR) 52, 2019.
o Eliasof, Moshe, Jonathan Ephrath, Lars Ruthotto, and Eran Treister. "Multigrid-in-Channels neural network architectures." (2020).

