This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressediin
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Adapting Multi-Grid-in-Time to
Train Deep Neural Networks

Eric C. Cyr, Sandia National Laboratories T e =y ¢

Stefanie Guenther (LLNL), Lars Ruthotto (Emory), RGP | "
Jacob B. Schroder (UNM), Nico R. Gauger (TU |
Kaiserslautern), Gordon Moon (KAU), Ravi Patel

(SNL), Shengchao Lin (Mathworks), Matthias

Heinkenschloss (Rice) s

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions/of Sandia, LLC, a wholly.owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration/under contract' DE-NA0003525.

SAND2022-11168C

©cENERGY NOYSA

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia, LLC, a
wholly owned subsidiary of Honeywell International
Inc., for the U.S. Department of Energy’s National
Nuclear Security Administration under contract DE-
NA0003525.

Neural Networks

A neural network is a parameterized model:

Neural Network NN(QC, @) —> Y Output

Input Parameters
It is composed of multiple
U1 — AQQZ —+ b(),
uipr = flui;{Aibif) t=1...L—1,

y = Arur;
@ {AZ7 b }z_O U {AL}

“Your mileage may vary, there are so many possible architectures, this is our starting point

‘ Neural Network Architectures”

Qutput

Feed
Forward Wit1 = g(Aiui + ;)

ResNet Uir1 = U; + Q(Aiuz' T bi)

Weighting Matrix

wi1 = wi + Atg(Agu; + bi) Bias Vector
ODENet
Oru = g(Au + b) Activation Function:

nonlinear componentwise

“Your mileage may vary, there are so many possible architectures, this is our starting point

Determining the Parameters

Neural network should map data according to the sampled training set :
Input Output

Find ® minimizing the in the model over the training set:

N
Parameters mén ; Loss (NN(CUna @)7 yn)

Loss function is model/data difference:

model data)

° LOSS(y Yy model dataHZ

= Hy

° LOSS(y model —»data Z ydata lOg model)

. ‘ Neural Network Training as Constrained Optimization

Forward Inference:

Input Layer 1 Layer 2 Layer 3

Neural networks are a model that
transform input u, to output u, by
“evolving” through layers

Output

Training:

Solve optimization problem constrained

by evolutionary models
* Supervised Training: Determine parameters
that give best match to data

minimize
Ul .2

Loss(ur, 21 ...2L)

subj. to w; = F(u;_1, %)

Parameters

.| Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent Algorithm: Each step computes gradient from a subset
" e Initialing ey o plases (batch) of the data selected at random:

w_b = initialize_b()
for epochs in [1,max_epochs]:

sample the data in batches
for y_batch in data.get_batches(samps_per_batch()):

Ny,
1
inference step - forward propagation V(.a ﬁb Z LOSS (NN(a;b,na 6)7 yb,n)
n=1 ! '

x = forward_prop(y_batch,w_W,w_b)

compute gradient - backward propagation
g_W,g_b = backward_prop(x,y_batch,w_W,w_b)

Y

pdate the weights/biases Batch Size Randomly

w_W - learning_rate *x g_W

w_W - learning_rate * g_W SEIECtEd data

U
w_W
w_b

Batched SGD samples from the

data space defining the global loss

* Reduces required memory footprint

* Uses samples more efficiently (see
Bottou, Curtis, Nocedal)

Original SGD paper: Robbins, Monro. "A stochastic approximation method." The
annals of mathematical statistics (1951): 400-407.

‘ SGD: Forward and Backward Propagation

(\ 1. Forward Prop

Stochastic Gradient Descent Algorithm:

initialize the weights/biases
w_W = initialize_W()
w_b initialize_b()

Output

for epochs in [1,max_epochs]:
sample the data in batches
for y_batch in data.get_batches(samps_per_batch()):

inference step - forward propagation
x = forward_prop(y_batch,w_W,w_b)

compute gradient - backward propagation
g_W,g_b = backward_prop(x,y_batch,w_W,w_b) —

update the weights/biases
w_W = w_W - learning_rate * g_W
w_b = w_W - learning_rate * g_W

Batched SGD samples from the
data space defining the global loss Ve (Loss) |:
* Reduces required memory footprint

Gradient
Obj. Sens.

* Uses samples more efficiently (see
Bottou, Curtis, Nocedal)

Original SGD paper: Robbins, Monro. "A stochastic approximation method." The 2- BaCk PrOp __
annals of mathematical statistics (1951): 400-407.

1 SGD Works

Assumptions

Lower bounded Objective: Unbiased gradient estimator:
"< F(©) VO Elg(O, &)|Ok] = VF(Oy)

Lipshitz Cont. Gradient: Gradient estimator has bounded variance:
IVF(©,) — VF(0,)]| < L|©, — ©,] E[lg(Ok, &) — VF©O)[%01] < v

Theorem (Ghadimi,Lan,2013;Lan,2020): For a nonconvex objective, with the above
assumptions, and a;, < 2/L, then

K K
1 S|
> (ar — 5 Lad)E[[VF(©)|?] < F(01) = F* + SLv* Y af
k=1 k=1
Take Home: SGD leads to small expected gradients

1. Ghadimi, Lan, “Stochastic first- and zeroth-order methods for nonconvex stochastic programming,” SIAM J. Optim., 2013.
2. Lan, “First-order and Stochastic Optimization Methods for Machine Learning,” Springer Series in the Data Sciences, 2020.

.| Use parallelisms to accelerate training

Parallel computing is important to training
* Focused on GPU level parallelism
* Relatively small clusters

Parallel scalability relies on
* Spatial/Model parallelism
* Data parallelism

e Parallelism handles increased data set size and
network width

Review of model/data parallelism: Ben-Nun, Hoefler. "Demystifying parallel and distributed deep learning:
An in-depth concurrency analysis." ACM Computing Surveys (CSUR) 52, 2019.

Data Parallel

7

Proc 3

Proc 2

Model Parallel

Proc1

7]
ayer

Layer L-1
I | |
k4
Layer L

Layer X

0 ‘ What about depth?

How reduce runtime with increased
neural network depth?

Input

—
(]
>
©
—
©
S
i

Output

Double the

layers L

number of

Input
Final Layer
Output

Further
increase
layer count

L

Input
Output

Final Layer

Potential Architectures: Current parallelism mitigates increasing data set
* ResNet’s sizes and network width:

* NeuralODEs Increased runtimes with depth are not reduced
* Recurrent Neural Networks by traditional approaches!

.1 Our New Approach: Layer-Parallel Training

Proc 1

Input

Proc 2

Proc 3

Proc 4

But it won’t work:

* Forward/Back prop are serial

 Distributing the layers does not

lead to acceleration

Final Layer

Output

A simple idea:
* Process each layer in parallel
* This will distribute computation

Stochastic Gradient Descent Algorithm:

initialize the weights/biases
w_W = initialize_Ww()
w_b = initialize_b()

for epochs in [1,max_epochs]:
sample the data in batches
for y_batch in data.get_batches(samps_per_batch()):

inference step - forward propagation
x = forward_prop(y_batch,w_W,w_b)

compute gradient - backward propagation
g_W,g_b = backward_prop(x,y_batch,w_W,w_b)

update the weights/biases
w_W = w_W - learning_rate * g_W
w_b = w_W - learning_rate *x g_W

» | Critical Assumption: Exactness of propagation

We can relax the exactness of propagation, and trade for parallelism!

Stochastic Gradient Descent Algorithm:

initialize the weights/biases
w_W = initialize_W()
w_b initialize_b()

for epochs in [1,max_epochs]:
sample the data in batches
for y_batch in data.get_batches(samps_per_batch()):
inference step - forward propagation
x = forward_prop(y_batch,w_W,w_b) -+ Ef'
compute gradient - backward propagation I IntrOduce a Sma” error
g_W,g_b = backward_prop(x,y_batch,w_W,w_b) 4'Eb

pdate the weights/biases
= w_W - learning_rate *x g_W
= w_W - learning_rate x g_W

u
w_W
w_b

* |f we can control the error we introduce, we can use it to get
parallelism!

 We introduce this error through a multigrid algorithm, and get
parallelism as a result

.1 SGD With Inexact Gradients

Assumptions

Objective Constraints: Summable conditional biases:
sk K
FP< F(®) vO S kB [JE[G(Or, £)164] - VF©L)]] < B
||VF(®U) o VF(@’U)” < LHG)U o Q’UH k=1
Biased gradient estimator: Gradient estimator has bounded variance:
IE[G(Ok, &)|OK] — VF(O,)| < A E[13(Ok, &) — VF(OR)[*|04] < v
Theorem (Lin, 2022): For a nonconvex objective, with the above assumptions, and I
a, < 1/L, then
K

K
(ar — L) E[IVF(Or)|’] < 2(F(©1) — F*) + AB+ L1*) aj
k=1 k=1

Take Home: SGD with inexact gradients leads to small expected gradients

.| Neural ODEs: Layers as Time Dimension

We make one more transformation: from ResNets to NeuralODEs

Uir1 = Ui + f(uis {Aibi}) = %UJ = f(t,u; {A,b})

See for instance:
1. Chen, Rubanova, Bettencourt, Duvenaud. "Neural ordinary differential equations." arXiv preprint
arXiv:1806.07366 (2018).
2. Haber, Ruthotto. "Stable architectures for deep neural networks." Inverse Problems 34, no. 1 (2017).

I”

With this formulation we can develop a “Layer-Parallel” Algorithm using "Parallel-

in-Time” methods

* Parareal: Lions, Maday, Turinici, Résolution d’EDP par un schéma en temps “pararéel”, C. R.
Acad. Sci. Paris Sér. | Math. 332 2001.

* PFASST: Emmett, Minion. "Toward an efficient parallel in time method for partial differential
equations.”" Communications in Applied Mathematics and Computational Science 7, 2012.

 MGRIT: Falgout, Friedhoff, Kolev, MacLachlan, Schroder. "Parallel time integration with
multigrid." SIAM SISC 2014.

. | Layer Parallel Training — A Multigrid Approach*

Multi-grid algorithm uses “divide and conquer” approach to inference
* “Fine grid relaxation”: Fixes local errors between layers - embarrassingly parallel
« “Coarse grid correction”: Fixes global errors - serial inference on smaller network

Proc 1 Proc 2 Proc 3 Proc 4

Fine Grid Relaxation
(Approximate/Parallel)

Input
Layer 3
Output

Final Layer

[h\

Approximate Coarse
. . Solution Correction
Coarse grid correction, \
Bigger Time steps /
(Exact/Serial/Cheap)

Multigrid is applied for both forward and back propagation

‘Based on Multigrid-In-Time: Collaboration with J. Schroder (UNM), S. Glinther (LLNL), L. Ruthotto (Emory), N. Gauger (TU Kasierslatern)
Multi-grid in time reference: Falgout, Friedhoff, Kolev, MacLachlan, Schroder. "Parallel time integration with multigrid.” SIAM SISC 2014.

. | Layer Parallel Scaling Results

: i e /79 b¢ta\

| 6757¢8b345g¢s

21790/ av ¥ 6

L 71 90| ¢ %94

Tl ¥4 /15 €0

1 17589265 %) 97

AL R22I2L34#4§O0

2 a3 L 073857

Ol by 6 0o2¢3d

: 1 o 11 3 . 7/ 28n0n069q806/
(a) Peaks (b) Indian Pines (c) MNIST

Three different classification problems
1. Peaks: Put particle position into one of 5 different classes

2. Indian Pines: Hyperspectral imaging, what crop? Soy, corn, etc...

3. MNIST: Handwritten digit classification

A comment on the code:

* Neural network code using Xbraid (LLNL) parallel-in-time library
* Code is not optimized: e.g. MNIST uses hand coded convolutions
* Neural networks architectures not optimized, simple ODENets

Xér@ao-

1

~

training loss

training loss

‘ Layer Parallel Scaling Results

—
— DN = h 00

0.8

0.4
0.2
0

SO0
O =W T N0~

Peaks

Simultaneous layer-parallel ———

Layer-serial reference

o

50

100 150 200 250 300 350
iteration

T | T --Im—;f-f"‘“‘“ 100§
:'“l ST NN 180 %
Y 60 =
i 'f' ."-.\ 4 40 ':
.y --“\\-_ E_’
L \~\“\7 e 420 =
i 1 | |”*w1. _ —.I.::—i 0 ?f‘
0 50 100 150 200 250 300
iteration
Indian Pines
Simultaneous layer-parallel ———
Layer-serial reference

T T T T T T 80"
B R 0=
- AR SR A d 60 g
150%
4 40
4 30 =
- 205
4 10.=
0 %

Weak Scaling

Strong Scaling

time (sec)

time (sec)

Indian Pines

cores
64 128 256 512
S llel ! '
ayer-parallel - +-
1200 Layer-serial --x- - ..
1000 i
800 |
600 X 10X]
400 - Speedup
200 |, .- s
0 e R S
256 512 1024 2048
layers
I | I R | T o T
/ 4 N 256 — +—
1024 | X j A N 5f2 ”—:” |
N N = 1024
‘19 ST L ON_2048 o
256 D St o A i
N N \X Z
N %
128 SO IS B S -S|
e) ~X
64 L T T S .
2 4 8 16 32 64 128 256 512
cores

time (scc)

1024 |

512

256

time (scc)

1283

64

MNIST

il cores
64 128 256 512
Laﬁ/m -parall cl S)'(
ayer-serial - -x- - R
g i
N /,x’/ 16x |
I e Speedup_
e
t-—--- to----- t----- m
256 512 1024 2048
4 layers
T T T T T T
N'= 256 — -
S RN N — 512 --x-- |
NN . N=1024
RN % * fON=2048 5
ERGAN N
SO Tkl |
B +~ N i
h Sk s \\\’* \EI\ ~ .
- ~ x\“ -
S S
T+
| | | | 1 1 |
2 4 8 16 32 64 128 256 512
cores

uracy (%) of L0000

Test Acc

Workhorse of ML is SGD optimizer

0.90

How does Layer-Parallel perform

Compare networks trained with SGD
Using “harder” fashion MNIST data set
Similar speedups as seen previously

0.88 -

0.86 4

0.84

0824

0.8BD =

—— Steps=32 Procs=1
Steps=32 Procs=16

—— Steps=32,Procs=32 0.86 -

—— Steps=32Procs=8
8

uracy (%) of 10000

Test Acc

10 20 30 40 50
Epochs

0.85 4

0.84

0.83 4

= 5teps=64 Procs=1

Steps=64 Procs=16

—— Steps=64,Procs=32

| —— Steps=64, Procs=64
—— Sieps=64.Procs=8

[i]

10 20 30 40 50
Epochs

Test Accuracy (%) of 10000

p=
[+
&
[

2
-]
o
=]

e
==]
i
Ln

(=]
[+
R
(=]

0.825 1

—— Steps=128 Procs=1
Steps=128 Procs=16
Steps=128 Procs=32

—— Steps=128 Procs=64

—— Steps=128 Procs=8

—— Steps=128,Procs=128

5

10

Epochs

15 20

No loss of accuracy from layer-parallel compared to serial algorithm

.| Recurrent Neural Nets (RNN)

|
Problem: Classify a sequence, e.g. learn the mapping
(I)(iEl,LEQ...,ZUN)%{l,C} ‘
[| v L Y J
Sequence of N items One of C classes |
Solution: Recurrent neural network '
Learn a neural network ‘Q’ to produce a classifier To Classification
Objective: “Output
Hidden State
Recurrent “Cell” ‘

Input Sequence

See “Colah’s Blog” for a really great discusSion ps./cola.githu.io/posts/2015-08-understanding-Lsus)

» | Generalized Recurrent Units (GRUs)
LSTMs and GRUs are two trainable types of RNNs

* Historically RNNs are hard to train (my read is they were unstable)
* “memory”: remembers important features in the sequence
* “forget” gates: eliminates some redundant/irrelevant from the sequence

Generalized Recurrent Units:

* h.: Hidden State,

* Xs«: Input Sequence,

* W. and b.: Learnable Network Parameters

Tt = U(Wirmt + bir + Wirhe_q + bh?’) "
2t — U(Wizxt +bix + Wi he—1 + bh,z)

ny = tanh(W;,xy + bin + 17 © (Whnhe—1 + b)) F hy = Q(ht—la Lty 5)

he =2 O hi_1+ (1 —2:) ©ny

Hadamard Product

| GRUs to ODEs

We rewrite the update with a time step update (assume At = 1)

hy = Q(hi—1,x4;E) =2 © hy—1 + (1 — 2¢) O ny
— ht—l + At ((Zt — 1) ® ht—l -+ (1 — Zt) ® nt)

Taking At = 0, we arrive at an ODE form

Oh(t) = —(1— 2() @ h(t) + (1 — 2(£)) ® n(t)

Stiff mode: Collapsing onto Introduction of new
multi-rate asymptotic (this sequence information
is a dissipation term!)

» | Implicit GRUs

Stiff mode suggests a problem for traditional GRU’s with large At:
» This will be a problem for coarse grids in layer-parallel!

» In the NeuralODE case we took bigger time steps on coarse grids
» Here we will take At = 1, coarse grid will likely be unstable!

Remedy: a new “Implicit GRU”, default to At = 1:
(1 -+ At(]. — Zt)) O ht — ht—l -+ At(l — Zt)) Ny

* Because stiff mode is implicit, this new formulation will be stable
for "large” At
* We will leverage this in a MGRIT solver

1.

2.

» | Human Activity Recognition Using Smartphones Dataset (v1.0)1?

Dataset Details:

* 30 Volunteers performed six activities: WALKING, WALKING_UPSTAIRS, WALKING_DOWNSTAIRS, SITTING, STANDING, LAYING

* Smartphone accelerometers measured three different types of motion, yielding 9 features per sample
* Times windows of 2.56s composed of 128 time samples are labeled with activity

e 70% of volunteers selected for training data (7352 sequences), and 30% for test (2947 sequences)

Short Story: Supervised Classification Problem (Very Small)
* 6 labels

* Sequence of 128 steps, with 9 features

* Training set of 7352 sequences

* Testing set of 2947 sequences

PyTorch GRU and LSTM Implementations get to 90% test
accuracy in 5-10 epochs with Adam (e.g. its not a really
difficult problem)

ttps://www.youtube.com/watch?v=XOEN9WO05_4A

Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra and Jorge L. Reyes-Ortiz. A Public Domain Dataset for Human Activity Recognition Using Smartphones.
21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013. Bruges, Belgium 24-26 April 2013.
https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones

‘ Classic/Implicit/Parallel GRU Comparisons

* Parallel speedup of 2x

» Very small problem, Amdahl Law limited 201
* All three methods have reasonable accuracy
» Slight degradation for Implicit, and Parallel
 Comparing inference serial (blue) and parallel
inference (red) for a network trained in parallel

» Similar forward accuracy

Test Accuracy

0.9 7

<
o0

=
-

<
o

0.5 4

—— GRU

== Implicit GRU
—— Parallel: Parallel Inference
=8 Parallel: Serial Inference

5 6
Epochs

7

8

—— Parallel
=== GRU
——- implicit GRU

Time Per Epoch (s)

2 4 8 16 32
Processors

Take Home:

1. Implicit GRU has accuracy is competitive
with “classic”

2. Training in parallel has modest impact on
serial inference

HMDB51: A Large Human Motion Database!?

. C o : Representatives of 28 Classes
Task: Classify human activity in each video
* Full Database: j - ﬂ h ﬂ . _!
* ~6700 Clips Distributed in 51 Classes e :::“

e Train/Test Split: 6053/673 ' E i . . .

* Frame count ranges from 20 to more than 200 po " -
I:l'iw el ik .i '1|I'.|I|:

* We truncate/pad each video to 128 frames

* We use 240x240 pixels in each frame ﬁ . E ‘ - - .

* Subset Database (we run this): hard

* 6 Classes: chew eat jump run sit walk x e A Fog il N
* Train/Test Split: 1157/129 - - E!‘ B L .
I:lal

* Frame count ranges from 20 to more than 200 . pulip punch

* We truncate/pad each video to 128 frames http://serre-lab.clps.brown.edu/wp-
* We use 240x240 pixels in each frame content/uploads/2012/08/HMDB_snapshotl.png :
1. H.Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre. HMDB: A Large Video ‘

Database for Human Motion Recognition. ICCV, 2011.
2. https://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database/

.| Implicit GRU RNN

Implicit GRU with ResNet Preprocessor:

 ResNet 18, 34 or 50 (pretrained) computes 1000
features per frame

* Implicit GRU uses a hidden size of 1000, with two layers

Computing Platform (Sandia’s Attaway machine):

e 2.3 GHz Intel Xeon, 2 Sockets, 18 Cores each: 36 cores
per node

 Run with 9 OpenMP threads per MPI rank (4 ranks per
node)

Training Details:

* Batch Size of 100

e ADAM optimizer with learning rate of 103
* ResNetl8is not applied on coarse grids

* Image feature is computed once

To Classification

Objective: “Output”

Implicit GRU
“Cell”

Input Feature

ResNet
18,34,50
(pretrained)

1

Kk
ba

. ‘ Subset: Training Loss and Test Accuracy

Loss vs. Epoch Accuracy vs. Epoch
1.6 - — Exp. p=1
s mp. p=1
1.4 = |mp. p=8 0.70 A
| = |mp. p=16
1.2 - = Imp. p=32
ResNet 18 > 0.65
1.0 —
o]
5
3 0.8 1 e
9 < 0.60
)
0.6 - $
[ResNet 18
0.4 0.55 —— Exp. p=1
m— lmp. p=1
0.2 = |mp. p=8
0.0 - = Imp. p=32
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Epoch Epoch

Parallel Training and Implicit vs. Classic GRU makes
little difference in training loss and accuracy

-1 Runtime: Timings Breakdown

Epoch Time Breakdown

B Backward
[Disk
B Forward
B Total

Time per Epoch

Exp. p=1 Imp.p=1 Imp.p=2 Imp.p=4 Imp.p=8 Imp.p=16 Imp. p=32 Imp. p=64

» | Runtime: Timings Breakdown

Epoch Time Breakdown

B Backward
1 Disk
BN Forward
B Total

=

o
Lu

il

Time per Epoch
o

1013

Exp. p=1 Imp.p=1 Imp.p=2 Imp.p=4 Imp.p=8 Imp.p=16 Imp. p=32 Imp. p=64

Speedups obtained in forward, backward, and disk time

Test ACCUracy

0.65

0.60

0.55 4

0.50

0.45

0.40 1

0.35 1

Time Per Batch (s}

Resnet 18
0 15
Epochs
Resnet 18
300
250 1
200 1
150
100 -

Processors

Time Per Batch (s}

‘ ResNet 18,34 50: Full dataset

Processors

Good strong scaling speedups

Resnet 34
0.65
0,60 4 Accuracy on 32 MPI ranks
* Relatively insensitive to the
0.55
g starting condition
; e * Learning rate scheduling
0.45 1 possible-not explored
. * MGRIT iteration scheduling also
possible
0.35
0 5 10 15 25
Epochs
Resnet 34 Resnet 50
---------------------------------- -E 1000 4 E
0 E E 800 E
’ ﬁ.ax g 600 4 6..6):‘
. ! : i
—=— Parallel : _ =& Parallel E
-=- GRU by -=- GRU 4
. —=~ implicit GRU 2001 ——- implicit GRU
; : ; s ; : 1:5 e

Processors

What about initial guesses?

Serial Training:
* Weights: Many different ways — Glorot 2010, He 2016, “Box” 2020
* Features: Defined by evolution both backward and forward

Layer-Parallel:
 Weights: Same way as in serial? Is there something “better”
* Features: Tricky, what is natural guess? What about for backprop?

Proc 1 Proc 2 Proc 3 Proc P-1 Proc P

HHH |

What is the input to Layer 5 at the
beginning of the Layer-Parallel algorithm?

Output

Input
Layer 2
Layer 4

Glorot, Bengio, 2010; He, Zhang, Ren, Sun, 2015; Cyr, Gulian, Patel, Perego, Trask, “Box”, 2020

I I Em B

Layer-Parallel Initialization: Nested Iteration

Initialization of Layer-Parallel is complex
* |nitialize weights and biases
* |nitialize state and adjoint

To overcome this, we have developed a

nested iteration

e Like full multigrid

* Train on the coarse network first,
then upscale

Well-initialized DNN
with 728 layers

Final trained 128
layer network

1
1
)
Nested iteration refinement yields good initial :
network parameters for deeper network Y

T T) 128 layers
| : Ly
1
: ! . 64 layers
] =
L 32 layers
— ->
Initial coarse 16 _’./ \. I
layer network L ;o P 16 layers

Layer-parallel multigrid training

Layer-Parallel Initialization: Nested Iteration

Algorithm 1 nested_iter(u(t=" 57D [rm})

1. . Loop over nested iter. levels, then optimization iter.

2. Initialize u(t =1 (L-1)

3. for/l=L-11>0,1-=1do

4: fori=0i<m, j+=1do

5: T LPTu) D) . LPT: Layer-

6: parallel training
-

; end for

g =N = p . Interpolate
9. end for
10: return [(0) . Return finest level weights

Initialization on the coarse level:

* Weights: Random

* Features: Coarse level runs serially, no
initialization is necessary

Initialization on coarse level (see below)
For each level (L=0 is fine)

m{) optimization iterations

Layer-Parallel Iteration: Forward/Backward
(Computational Kernel)

Piecewise Constant transfer to finer level

. | Nested Iteration: Indian Pines and Peaks

* 3 level example with Indian Pines and Peaks data sets
* Work Unit = Average Fine Level forward/adjoint gradient computation

Peaks

Validation Accuracy (%)

100

80 A

60 A

40 A

20

Validation Accuracy

/_\—A—'_H—/-

—— Nested - Level 2
Nested - Level 1

—— Nested - Level 0

—— Non-nested

25 50 75 100 125 150 175
Work Units

Nested iteration yields better validation accuracy in less time

200 steps
125 steps
75 steps

Indian Pines

Validation Accuracy (%)

100

80 A

60

40 A

20

Validation Accuracy

—— Nested - Level 2
Nested - Level 1
—— Nested - Level 0

— Non-nested

50

100

150
Work Units

200

250

300

200 steps

100 steps
50 steps

Nested Iteration: Regularization

To understand the regularization impact of nested

iteration

* 4 different values for hyper parameters, chosen to give
good results

Tikanov Regularization 10~ 107

Initial Weights 0.0 10

* 12 independent runs for each hyper parameterization
(48 total runs)

Nested Iteration validation accuracy less sensitive than

non-nested iteration

* Promising improvement to robustness (not definitive)

* Hypothesis: nested iteration applies implicit
regularization

Peaks Validation Accuracy

5 Channel
Nested Non-Nested
Mean 86.7% 85.0%
Median 88.0% 88.5%
M ax 97.0% 95.0%
Min 66.0% 20.0%
Std. Dev | 7.69% 11.7%
8 Channel
Nested Non-Nested
Mean 92.3% 90.7%
Median 94.0% 91.8%
M ax 99.0 % 96.5%
Min 72.5 % 57.0%
Std. Dev | 518 % 6.08 %

. | Introducing Torchbraid (v0.1)

Original “Layer-Parallel” code was C++ with hand rolled kernels

* Effective research code (thanks Stefanie) ‘
e Performance of convolutional kernels is suspect (blame me)

* Hard to do apples-to-apples comparisons with state of the art |
* Not as easy to extend as PyTorch (and TensorFlow) -
Torchbraid: Adding Layer-Parallel module to PyTorch

* Leverage more developers ' |
e Uses automatic differentiation O PyT Ch

* Support for ODENets and GRU-RNNs Torch B RA’EIJ‘")“_, l
. "L, e l

ign is ‘
'-dﬂ' [
& |

, | Torchbraid Arch. (v0.1): An Evolving Library

LayerParallel — A PyTorch Module for

parallel training
* Follows ODENet and ResNet (He 2016)

nomenclature
e Supports automatic differentiation

O Py

mpidpy

* Memory/performance tradeoffs under
study
* Limited testing of different problems

from torchbraid import LayerParallel

parallel nn = LayerParallel(comm, # mpid4py Communicator
basic _block, # Lambda building a PyTorch module
local num_steps, # Processor local number of steps
Tf) # Final time value

.| Layer-Parallel/Parallel-in-Time T

Running forward propagation:

* MNIST Training with ConvNets

* ODE Network with N Steps

* Each step contains 2 convolutional
layers

* Dashed lines: pyTorch serial

TorchBRAID

Take Home: Torchbraid
LayerParallel gives to speedups
against PyTorch serial time

ralning

Strong/Weak Scaling

4096 o

2048 4

1024 4

512 A

Time (s)

256 1

1284 7

64 -

------------------ -8 Layers = 32, Speedup = 1.0
—@— Layers = 64, Speedup = 2.1
—8— Layers = 128, Speedup = 3.0
------------------ —a— Layers = 256, Speedup = 6.1
—@— Layers = 512, Speedup = 9.9
—8— Layers = 1024, Speedup = 20.8
—8— Layers = 2048, Speedup = 33.1

30X

""""""""""""" SPEEDUP

Test Accuracy (%) of 10000
o
w
Y

1 — steps=32,Procs=1

|1 —— Steps=32,Procs=8

8 16 32 64 128 256 512 1024 2048
Ranks

—— Steps=32,Procs=16
—— Steps=32,Procs=32

NO ACCURACY LOSS!

0 10 20 30 40 50
Epochs

. | Closing Thoughts

Presented a Layer-Parallel algorithm for training deep NNs

* Parallelism is exposed by permitting inexact propagation

 We trade inexactness for performance with multigrid algorithms

* Developed new recurrent neural network parallel training procedure
* Presented “TorchBraid” result: faster training

Layer-Parallel Papers:

* Guenther, Ruthotto, Schroder, Cyr, Gauger, Layer-Parallel Training of DNNs, SIMODs, 2020

* Cyr, Guenther, Schroder, Nested Iteration Initialization of DNNs, Accepted to PinT Proceedings, 2020

* Moon, Cyr, Working Title: Parallel Training of GRU with a Multi-Grid Solver for Very Long Sequences,
In Preparation, 2021

oficeof Thanks to the DOE Office of Science ASCR Early Career Research
Science Program for supporting this work!

A5 %n. U.S. DEPARTMENT OF

& ds L
i o

o, A

"." :-.: T -.'I?:‘

‘ References (An Incomplete List)

Layer-Parallel (multigrid modified SGD)

©)

©)

Gunther, Stefanie, Lars Ruthotto, Jacob B. Schroder, Eric C. Cyr, and Nicolas R. Gauger. "Layer-parallel training of deep residual
neural networks." SIAM Journal on Mathematics of Data Science 2, no. 1 (2020): 1-23.

Moon, Gordon Euhyun, and Eric C. Cyr. "Parallel Training of GRU Networks with a Multi-Grid Solver for Long Sequences.” ICLR,
2022 (arXiv preprint arXiv:2203.04738).

Eric C Cyr, Stefanie Gu'nther, and Jacob B Schroder. Multilevel initialization for layer-parallel deep neural network training. arXiv
preprint arXiv:1912.08974, 2019.

Kirby, Andrew, Siddharth Samsi, Michael Jones, Albert Reuther, Jeremy Kepner, and Vijay Gadepally. "Layer-parallel training with
gpu concurrency of deep residual neural networks via nonlinear multigrid." In 2020 IEEE High Performance Extreme Computing
Conference (HPEC), pp. 1-7. IEEE, 2020.

Multigrid for Training

©)

©)

Gaedke-Merzhauser, Lisa, Alena Kopani¢akova, and Rolf Krause. "Multilevel minimization for deep residual networks." ESAIM:
Proceedings and Surveys 71 (2021): 131-144.

von Planta, Cyrill, Alena Kopanicakova, and Rolf Krause. "Training of deep residual networks with stochastic MG/OPT." arXiv
preprint arXiv:2108.04052 (2021).

Other

©)

©)

Ben-Nun, Hoefler. "Demystifying parallel and distributed deep learning: An in-depth concurrency analysis." ACM Computing
Surveys (CSUR) 52, 2019.
Eliasof, Moshe, Jonathan Ephrath, Lars Ruthotto, and Eran Treister. "Multigrid-in-Channels neural network architectures.” (2020).

