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Abstract

The demand for reliable and safe lithium-ion batteries (LIBs) for electric vehicles (EVs)
and energy storage systems (ESS) necessitates the exploration of nonflammable
phosphorus-based electrolytes as alternatives to the traditional flammable carbonate-
based ones. However, integrating phosphorus-based electrolyte poses challenges,
including capacity fading and compatibility issues with graphite material. Here, a high-
throughput (HTP) electrochemical characterization method, similar to PH test paper, is
introduced to fast screen compatible phosphorus-based electrolyte for use with
graphite. Among 1,740 combinations of phosphorus-based electrolytes and graphite
materials, 101 promising combinations are identified for further evaluation. These
identified phosphorus-based electrolytes and graphite materials are evaluated and
optimized in Li/Graphite half-cells and Graphite/LiFePO4 (LFP) full-cells using
commercial-level electrodes. The desolvation energy of a complex with one Li+ and four
solvent molecules of phosphate or carbonate is calculated by density functional theory
(DFT). Key parameters such as viscosity, ionic conductivity, and flammability of the
electrolytes are thoroughly tested and optimized. The modified phosphate-dominant
electrolyte (2 M LiFSI TEP/DME/EC (6/2/2, volume ratio) + 5 wt.% VEC + 5 wt.% FEC)
demonstrates excellent thermal stability with lithiated graphite and showcases superior
cycling performance in the Graphite/LFP full cell, surpassing prior research findings in
phosphate-dominant electrolytes. By the rapid HTP screening and identification of
compatible electrolyte-graphite combinations, this approach contributes to expediting
the development of safer LIBs for EVs and ESS.
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Summary

This study has introduced a HTP electrochemical characterization method and explored
nonflammable phosphorus-based electrolytes as promising alternatives for LIBs. The
HTP method, utilizing a Li/Graphite test electrode, enabled rapid screening and
identification of potential electrolyte-graphite combinations. Among a large number of
combinations screened, 101 were identified for further evaluation. Through extensive
evaluation and optimization, the modified phosphate-dominant electrolyte, 2 M LiFSI
TEP/DME/EC (6/2/2, viviv) + 5% FEC + 5% VEC, demonstrated superior cycling
performance in Gr/LFP full cell configurations, surpassing previous research findings in
developing phosphate-dominant electrolytes. The HTP electrochemical characterization
method presented in this study offers a valuable tool for the efficient development of
safe and efficient LIBs. In the future, integrating HTP viscosity and ionic conductivity
tests with artificial intelligence (Al) vision inspection and machine learning technology
will enhance the efficiency of this tool further. By rapidly screening electrolyte-graphite
combinations, researchers and industry experts can expedite the discovery of optimal
formulations while minimizing the risks associated with flammable electrolytes. While
this work focused on the HTP screening method of electrolyte formulations, additional
investigations into surface properties of graphite and the development of robust SEls in
phosphorus electrolytes should also be pursued to further enhance LIB performance
and safety. The novel HTP electrochemical characterization method, combined with the
exploration of nonflammable phosphorus-based electrolytes, represents a significant
advancement in the development of safer and more efficient LIBs.
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1.0 Introduction

The world is steadily transitioning from unsustainable, fossil fuel-based energy sources
to cleaner, albeit intermittent, renewable sources for powering electric vehicles (EVs)
and grid-level energy storage systems (ESS) in cities, homes, and office buildings.'3
Currently, lithium-ion batteries (LIBs) reign as the preferred battery technology for
electric energy storage due to their lightweight nature, long cycle life, and high
volumetric and gravimetric energy density metrics. By 2030, the estimated demand
capacity of LIBs for EVs alone is projected to reach an astounding 8 terawatt-hours
(TWh) and about 1 TWh for the stationary storage.! With such extensive implementation
of lithium-ion batteries at the TWh level, ensuring the production of reliable and safe
LIBs has emerged as a major concern for researchers, as mishandling or abuse can
lead to rapid and catastrophic thermal failure.* °® State-of-the-art LIBs commonly employ
carbonate-based electrolytes, which possess a significant flammability risk, further
exacerbating the potential for thermal runaway. In response to this challenge,
researchers have extensively explored phosphorus-based alternatives since 2000 due
to their nonflammable nature, high flash point, and wide liquid range.®® Notable
examples of phosphorus-based materials include trimethyl phosphate (TMP),9 triethyl
phosphate (TEP),'° and dimethyl methylphosphonate (DMMP)."" However, even the
addition of just 20 wt.% phosphate to a carbonate electrolyte leads to severe capacity
fading in the graphite anode.7 Incorporating phosphate presents its own hurdle: it
strongly coordinates with Li+ ions due to its high donor number (DN) and can readily
intercalate into graphite layers in the absence of a robust solid electrolyte interface (SEIl)
film, resulting in graphite exfoliation.’>'* To overcome this challenge, rational selection
of graphite materials and SEI additives is crucial to ensure the proper functioning of
graphite in a phosphate-dominant electrolyte. Wang .et al found that amorphous
carbon-coated graphite demonstrates superior stability in 2 M LiN(SO2C2Fs)2 TMP/y-
Butyrolactone (7/3, volume ratio) + 8 wt.% VEC + 2 wt.% VC +2 wt.% cyclohexane.'
Despite the improved compatibility, the cycling capability remains limited to less than 10
cycles, even with a thin graphite electrode (~ 4.8 mg/cm?). Studies have revealed that
the compatibility between phosphate and graphite can be significantly enhanced in high
concentrated electrolytes and localized high-concentration electrolyte (LHCE) due to the
formation of Li*-anion contact ion pairs (CIP) and aggregate clusters (AGGs) without
free phosphate molecules.' 16 7 However, these concentrated electrolytes contain only
a small fraction (approximately 15 wt.% in LHCE) of phosphate, resulting in increased
viscosity and reduced ionic conductivity.'® Consequently, this impedes the effective
utilization of commercially viable thick electrodes. In electrolytes dominated by
phosphate, the compatibility between phosphate and graphite is influenced by several
factors, including SEI additives, lithium salt, salt concentration, phosphate, cosolvents,
graphite type and its surface properties,' rendering electrolyte design and optimization
more complex and time-consuming.High-throughput (HTP) methods enable the rapid
screening of potential electrolytes across diverse formulations.' One widely adopted
approach is virtual screening, which employs HTP density functional theory (DFT)
calculations or machine learning (ML) to establish quantitative structure-property
relationships and predict novel materials.?’ While HTP electrolyte preparation can be
accomplished using automated robotic systems,?! the majority of HTP experimental
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screening focuses on physical properties such as solubility, conductivity, and
oxidative/reductive potentials.?? 23 Unfortunately, there is a lack of reports on fast HTP
electrochemical characterization of the compatibility between the electrolyte and active
materials in LIBs. In this study, we introduce a Li/Graphite test electrode, akin to a "pH
test paper”, to facilitate HTP electrochemical characterization between graphite and
nonflammable phosphorus-based electrolytes. Through this method, we successfully
identified 101 combinations of phosphorus-based electrolytes and graphite materials out
of a total of 1,740 combinations. It's important to note that by including additional
graphite and electrolyte recipes, the number of combinations in this HTP method can be
easily expanded to several thousand or more. Furthermore, we conducted further
evaluation and optimization of the identified phosphate electrolytes and graphite in
Li/Graphite half-cells and Graphite/LiFePO4 (LFP) full-cells using commercial-level
electrodes. The graphite/LFP full cell, utilizing the modified phosphate-dominant
electrolyte (2 M LiFSI TEP/DME/EC (6/2/2, volume ratio) + 5 wt.% VEC + 5 wt.% FEC),
exhibited superior cycling performance compared to previously published research. The
novel HTP electrochemical characterization presented in this work offers a promising
pathway to expedite the development of safe LIBs for future TWh-level EV and ESS
applications.
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2.0 Results and Discussion

2.1 HTP EL preparation and HTP electrochemical characterization

The utilization of advanced robotics and data exchange within the framework of Industry 4.0 has
yielded machines that surpass human capabilities in executing repetitive tasks. In the domain of
electrolyte preparation for LIBs, the achievement of precision necessitates the addition of
multiple chemicals, including a lithium salt, 2-4 solvents, and 1-10 additives. This process is
often protracted and laborious, particularly when generating numerous electrolytes for screening
purposes. The HTP machine for electrolyte preparation liberates researchers from this
monotonous procedure while maintaining utmost accuracy and efficiency. Figures 1a-1c
illustrate the HTP machine employed in this study for nonaqueous electrolyte preparation.?* To
obviate contact with moisture and oxygen, the HTP robotic system was positioned within an Ar-
filled glove box. Initially, the lithium salt and solid additives were dispensed into a 2 mL vial at
the workstation depicted in Figure 1a. Subsequently, the solvents and liquid additives were
injected through a separate workstation (Fig. 1b). The vial was then sealed and placed in an 8 *
6 vial tray, followed by shaking the tray to effect complete dissolution of the solids (Fig. 1c). By
means of this methodology, a total of 290 phosphorus-based electrolytes were prepared,
comprising eight phosphorus-based solvents (TMP, TEP, TPrP, TBP, DMMP, DEEP, DEMP,
and DEPP, see Experimental procedure for full names), eight SEI additives (1,3-PS, DTD, FEC,
LiPO2F2, VC, VEC, and DEVP), and four lithium salts (LiPFe, LiFSI, LIDFOB, and LIBOB). The
concentration of the lithium salt in each phosphorus-based electrolyte was maintained at 1.2 M.
Additionally, a medium concentration of 2 M for LiFSI was prepared for comparative analysis. It
is important to note that the addition of SEI additives was fixed at 10 wt.% and not optimized.
Traditionally, the evaluation of compatibility between graphite anodes and electrolytes involves
assembling Li/Graphite (Gr) half cells in a coin cell format. These cells are then subjected to
galvanostatic charge/discharge cycling to determine if the graphite can achieve its normal
capacity, which typically ranges from 330-360 mAh/g depending on the graphite source. For a
graphite material, a minimum of 290 Li/Gr coin cells need to be assembled for the 290
phosphorus-based electrolytes prepared using a HTP machine. If multiple graphite materials are
involved, the number of coin cells required increases linearly. In this study, we have selected six
commercially available graphite materials (Fig.S1): 282863 (Sigma-Aldrich, Gr#1), TIMREX
KS15 (TIMCAL, Gr#2), TIMREX SLP30 (TIMCAL, Gr#3), S360-M (BTR, Gr#4), FormulaBTTM
SLC1520T (Superior Graphite, Gr#5), and Mage 3 (Hitachi, Gr#6). Consequently, a total of
1740 Li/Gr coin cells are necessary to complete the compatibility screening, which demands a
substantial amount of time and testing equipment, making it unsuitable for HTP characterization.
It is widely recognized that fully lithiated graphite undergoes a color transformation from black or
grey to gold.?® Based on this principle, we have designed a miniature Li/Gr test electrode (2 mm
W * 7 mm L) consisting of a graphite electrode, a thin Li foil on a Cu foil, as shown in Figure. 1d.
Immersing the Li/Gr test electrode in an electrolyte (Fig. 1e) triggers the spontaneous flow of
electrons from the Li foil to the graphite electrode through the Cu substrate, while Li+ ions
transport through the electrolyte and intercalate into the graphite layers, converting the graphite
into a LiCs composite. If the electrolyte is compatible with graphite, the graphite will exhibit a
golden color within 6-12 hours. Conversely, an incompatible electrolyte will not induce this color
change (Fig. 1e). Multiple Li/Gr test electrodes, incorporating various graphite sources, can be
immersed in the electrolyte as needed (Fig. 1f), enabling fast HTP electrochemical
characterization of the electrolytes and graphite materials. Figure 1g displays the pristine Li/Gr
test electrodes containing six graphite materials (Gr#1-Gr#6). After immersion in the traditional
carbonate electrolyte, 1 M LiPFs EC/DEC/EMC (1/1/1, viIviv) + 1 wt.% VC + 5 wt.% FEC, all
Li/Gr test electrodes exhibit a gold color within 6 hours (Fig. 1h), confirming the viability of the
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developed HTP characterization method. However, when immersed in a phosphorus-based
electrolyte, such as 1.2 M LiFSI TEP + 10 wt.% 1,3-PS, only Gr#2 exhibits a dark gold color and
Gr#1 displays partial gold coloration, while Gr#3-Gr#6 show no color change (Fig. 1i), indicating
the significance of graphite selection. Substituting the SEI additive 1,3-PS with FEC results in
partial gold coloration for Gr#3-Gr#5 (Fig. 1j), highlighting the crucial role of the SEI additive in
stabilizing phosphorus-based electrolyte with graphite. By increasing the lithium salt
concentration to a medium concentration of 2 M, most graphite materials, except Gr#6, exhibit a
positive effect and partial gold coloration (Fig. 1k). Further increasing the concentration to 3 M
results in complete gold coloration for all graphite materials (Fig. 11), similar to the traditional
carbonate electrolyte (Fig. 1h), consistent with the published report indicating the compatibility
of high-concentration phosphate electrolyte with graphite.'”” Thus, the developed Li/Gr test
electrode offers a rapid and reliable method to characterize the electrochemical compatibility
between phosphorus-based electrolytes and graphite materials, facilitating integration into HTP
electrolyte screening.Figure 2a presents a summary of the color change results for six as-
developed Li/Gr test electrodes in each of the 290 phosphorus-based electrolytes. These results
are organized into a matrix, consisting of 38 rows (S1-S38) representing eight solvents, four
lithium salts, and two concentrations for LiFSI. The matrix also contains 48 columns (A1-A48)
representing six different Li/Gr test electrodes and eight SEI additives. As a result, any
combination of graphite and phosphorus-based electrolyte can be denoted as SxxAxx. For
example, S16A35 represents the combination of Li/Gr test electrode (Gr#5) and 1.2 M LiDFOB
TBP + 10 wt.% VEC. If the SxxAxx in Figure 2a is displayed with a yellow background, it
indicates a complete or partial color change to gold on the graphite of the Li/Gr test electrodes.
It is important to note that even a small area of color change on the Li/Gr test electrode in an
electrolyte, such as Gr#1 in 1.2 M LiFSI TEP + 10 wt.% 1,3-PS (Fig. 1i), is considered a positive
result and marked with a yellow background. This approach ensures that the HTP screening will
not miss any possibilities. Remarkably, within a short period of one week, including the
production of 1740 Li/Gr test electrodes, we identified 101 positive combinations showing partial
or complete gold coloration on the graphite. This outcome would have been impractical using
traditional methods that involve assembling and testing at least 1740 Li/Gr coin cells. From the
analysis of Figure 2a, the following key findings emerge: 1) Lithium borates with DEVP or LiFSI
additives demonstrate higher compatibility with graphite in low concentration phosphorus-based
electrolytes compared to LiPFs and LiFSI. This is attributed to the early reduction of borates
(1.5-1.8 V vs Li/Li+), which occurs prior to solvent reduction (less than 1 V) at the graphite
electrode (Fig. S2).25 2" 2) Increasing the LiFSI concentration to 2 M leads to more compatible
combinations between graphite and phosphorus-based electrolytes. 3) Phosphate-based
electrolytes (TEP, TBP) exhibit a higher likelihood of good compatibility with graphite than
phosphonate-based electrolytes (DMMP, DEEP). The compatibility between graphite and
phosphorus-based electrolytes is significantly influenced by the presence of free phosphorus-
based molecules in the electrolyte, which can harm the stability of the SEL.™ In general, a Li+
ion is more likely to coordinate with four ester solvent molecules in the electrolyte.?® When
considering the molar ratio of P:Li in 1.2 M and 2 M phosphorus-based electrolytes (Fig.2b),
most low concentrations of 1.2 M phosphorus-based electrolytes exhibit a P:Li ratio above 4,
particularly in phosphonate-based electrolytes. This indicates a higher presence of free
phosphonate molecules in the electrolyte compared to phosphate-based electrolytes, posing
challenges to SEI stability on graphite. In medium concentration 2 M phosphorus-based
electrolytes, the ratio of free phosphorus-based molecules decreases, and anions will
participate in direct coordination with Li+, resulting in a stable CIP-like mechanism in high
concentration electrolytes.? By conducting DFT calculations on the desolvation energy of a Li+
ion and four solvent molecules (Fig.2c), it's found that the desolvation energy of Li* in a
carbonate baseline electrolyte (1 M LiPFs EC/DEC/EMC (1/1/1, viviv) + 1 wt.% VC + 5 wt.%
FEC) with an EC/DEC/EMC molar ratio of approximately 2:1:1, is -12.7 kcal/mol, which aligns
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with previous literature.*® However, the phosphorus-based solvents display 2-7 times higher
desolvation energy than the carbonate solvents, making it more challenging for Li* to disengage
from the phosphorus-based solvents before intercalation into graphite. This can result in co-
intercalation of the phosphorus-based solvents into the graphite if a robust SEI does not exist.™
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(d) (e) Compatible, Incompatible, (f)

Tracking # turn gold keep black
Cu EL
£ e
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f’ Graphite Li*
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HTP EL/graphite compatibility characterization

(1/1/1)+1%VC+5%FEC

1.2M LiFSI TEP 1M LiPF4 EC/DEC/EMC
3M LiFSI TEP

+10% 1,3-PS

Figure 1. HTP electrolyte preparation and HTP electrochemical characterization of electrolytes and graphite
materials. The HTP machine facilitated the electrolyte preparation process, utilizing three workstations: (a) for
dispensing lithium salt and solid additives, (b) for injecting solvents and liquid additives, and (c) for sealing, shaking,
and stirring the vial. A schematic graph of a Li/Gr test electrode for HTP EL screening is shown in (d), along with the
working principle of the Li/Gr test electrode in (e). Additionally, (f) presents the schematic graph and photo of vials
containing multiple Li/Gr test electrodes. Pristine Li/Gr test electrodes are depicted in (g), and subsequent images
show the electrodes after soaking in various electrolyte formulations: (h) 1M LiPF6 EC/DEC/EMC (1/1/1, vIvIv%) +
1% VC + 5% FEC, (i) 1.2M LiFSI TEP + 10% 1,3-PS, (j) 1.2M LiFSI TEP + 10% FEC, (k) 2M LiFSI TEP + 10% FEC
and (I) 3M LiFSI TEP + 10% FEC.
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Figure 2. Color change of Li/Gr test electrodes in various phosphorus-based electrolytes prepared by HTP machine

and electrolytes properties. (a) presents a summary of the color change results for six as-developed Li/Gr test

electrodes immersed in 290 different phosphorus-based electrolytes, comprising a total of 1740 combinations. A

yellow background indicates that the color of graphite in the Li/Gr test electrode turned gold after soaking in the

respective electrolyte. (b) P:Li molar ratio of the relevant phosphorus-based electrolytes used in (a). (c) The
desolvation energy of a Li+ with four molecules of phosphorus-based solvents and carbonate solvent by DFT

calculation.
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2.2 Further electrolyte screening: Li/GR half-cell and Gr/LFP fuel cell

Galvanostatic charge/discharge of coin cells with Li/Gr half cell and Gr/LFP full cell
configurations are utilized to further narrow down the range of good combinations from the initial
101 positive results obtained through the HTP screening. Figure 3a and Figure S3 illustrate the
1st charge/discharge curves of Li/Gr half-cells at 0.02 C for the 101 positive combinations
screened by the HTP method. Among these, 26 combinations exhibited a reversible specific
capacity higher than 320 mAh/g (Fig. 3b, and Figure S4), which is close to the graphite in the
standard carbonate electrolyte (Fig. S1g) and are considered potential candidates for Gr/LFP
full cell evaluation. The remaining 75 combinations showed low reversible capacity, less than
320 mAh/g, in the Li/Gr half cells. Out of these, approximately 21 combinations (Fig. S5a)
exhibited a reversible capacity of less than 100 mAh/g. The reason these 21 combinations still
presented positive results/color change in the HTP screening is attributed to the differences in
the electrochemical processes between the Li/Gr test electrode in the HTP screening and the
Li/Gr coin cell testing. In the Li/Gr test electrode of the HTP screening, there is the lowest
resistance (short circuit) due to the direct connection of Li and graphite by Cu foil, and the
absence of a separator (Fig. 1e), leading to a fast dynamic response. However, when tested in
a Li/Gr coin cell, the cell's constant current operation at 0.02 C or above, along with the
presence of a porous separator, results in larger cell impedance and slower dynamics, thereby
leading to low capacity. If the Li/Gr coin cells of these 21 combinations were wrapped with Cu
foil for 24 hours to simulate the short circuit in the Li/Gr test electrode, the reversible capacity of
all 21 combinations increased to above 100 mAh/g, with some exceeding 250 mAh/g (Fig. S5b).
Disassembling the shorted Li/Gr coin cell, such as S29A2 (Gr#2 and 1.2 M LiFSI TEP + 10%
1,3-PS) with the lowest specific capacity of 104.6 mAh/g, the graphite electrode displayed
partial gold coloration (Fig. S5c), which is consistent with the HTP screening results. Thus, Li/Gr
coin cell testing can further narrow down the range of positive results obtained from HTP
screening.Among the 26 potential combinations with reversible specific capacity over 320
mAh/g (Fig. 3b), Gr#5 was observed in eight out of the 26 combinations. Additionally, at low
concentrations of 1.2 M phosphorus-based electrolytes, only Gr#5 (S16A35) and Gr#3
(S29A15)in 1.2 M LIiDFOB TBP + 10% VEC and 1.2 M LiFSI TEP + 10% FEC, respectively,
displayed a reversible capacity of ~330 mAh/g with 91.3% and 70.7% of initial CE, as shown in
Figure. S6. Considering high CE and its compatibility, Gr#5 having 10-20 ym particle size (Fig.
S1e) was selected as the graphite anode for further electrolyte screening. In the Gr/LFP cells
with an areal capacity of ~2.9 mAh/cm2, the cell with 1.2 M LiDFOB TBP + 10% VEC delivered
only 64.3 mAh/g at 0.1 C and 5.9 mAh/g at 0.33 C (Fig. 3c and Fig. S7a). Even at 0.02 C, the
cell delivered only 106.3 mAh/g (Fig. S7b) due to the high desolvation energy of -90.1 kcal/mol
(Fig.2c), high viscosity of 20.4 cP at 25 °C and low ionic conductivity of 2.17 mS/cm at 25 °C
(Fig. 3d), as well as the use of commercial-level thick electrodes. In 2 M LiFSI TEP + 10% FEC
(S36A17), Gr#5 delivered similar cell performance, with 333.7 mAh/g of specific capacity and
89.0% of initial CE, as observed in 1.2 M LiDFOB TBP + 10% VEC in Li/Gr half-cell testing.
Despite the high viscosity of 16.8 cP at 25 °C and low ionic conductivity of 3.45 mS/cm at 25 °C,
in comparison with 3.6 cP and 7.54 mS/cm of the carbonate electrolyte (Fig. 3d), the Gr/LFP cell
in 2 M LiFSI TEP + 10% FEC delivered 141.3 mAh/g at 0.1 C (Fig. 3c), similar to the 146.4
mAh/g obtained with the carbonate electrolyte, indicating a good SEI on Gr#5. However,
increasing the rate to 0.33 C in the cell with 2 M LiFSI TEP + 10% FEC resulted in a long
constant voltage (CV) charge plateau at 3.8 V (~39% of the capacity) during the charge process
and larger voltage polarization, leading to a low specific capacity of 129.9 mAh/g compared to
142.3 mAh/g in the carbonate electrolyte. The reason behind this is the large desolvation energy
between Li+ and TEP (Fig. 2c), which is -62.5 kcal/mol, 5 times higher than that of the
carbonate electrolyte, making it difficult for Li+ to disengage from the TEP solvents.
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Figure 3. Further electrolytes screening in Li/Gr half cells and Gr/LFP full cells. (a) The 1st charge curves of Li/Gr half
cells at 0.02 C for the 101 positive combinations screened by the HTP method in Figure 2a. Working voltage: 0-1.5 V.
(b) 26 potential combinations among 101 positive combination in (a) that exhibit an initial reversible specific capacity
exceeding 320 mAh/g. (c) The voltage profiles of G#5/LFP cells in two identified phosphorus-based electrolytes and
a carbonate electrolyte at 0.1 C (real line) and 0.33 C (dash line). Working voltage: 2.2-3.8 V. (d) The relationships of
viscosity (top)/ionic conductivity (bottom) and temperature of the three electrolytes in (c).
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2.3 Electrolyte optimization

To enhance the cell performance of Gr/LFP cells in 2 M TEP electrolyte at 0.33 C, the addition
of cosolvents is considered to decrease the molar ratio of P:Li, thereby reducing the number of
TEP phosphate solvent that need to be eliminated during the charge process. The selection of a
low viscosity cosolvent can contribute to decreasing the overall electrolyte viscosity and
increasing the ionic conductivity, thereby facilitating faster ionic transportation. The chosen
cosolvent should meet the following criteria: 1) low viscosity (n), 2) high dielectric constant (g),
and 3) maintenance of non-flammability of TEP electrolyte at the maximum addition. Potential
cosolvents include dimethoxyethane (DME) with a low n of 0.48 cP at 20 °C and ethylene
carbonate (EC) with a high € of 95.3 at 25 °C, as reported in the literature.?' As observed in
Figure.4a, gradually increasing the volume ratio of DME and EC in TEP electrolyte results in a
continuous decrease in viscosity and a continuous increase in ionic conductivity. In particular, in
2 M LiFSI TEP/DME/EC (6/2/2, viIviv) + 5% FEC + 5% VEC, the viscosity drops to 7.6 cP, while
the ionic conductivity reaches 7.67 mS/cm, comparable to the carbonate electrolyte. Even at -35
°C, the ionic conductivity remains at 0.93 mS/cm, which is comparable to the 1.0 mS/cm
observed in the carbonate electrolyte. Additionally, when exposed to fire, the 2 M LiFSI
TEP/DME/EC (6/2/2, vivIv) + 5% FEC + 5% VEC electrolyte is hard to ignite, and any small fire
that occurs is extinguished within a second. In contrast, the carbonate electrolyte displayed
continuous burning. It is important to note that reducing the volume ratio of TEP to 50% made
the electrolyte flammable and was therefore not considered for further study. Furthermore, the
molar ratio of P:Li in 2 M LiFSI TEP/DME/EC (6/2/2, viviv) + 5% FEC + 5% VEC is also
decreased to 1.8:1, which is lower than the 2.9:1 observed in 2 M LiFSI TEP + 10% FEC
(Fig.2b), contributing to a faster dynamic response due to fewer TEP molecules. In Gr#5/LFP
full cell tests with an areal capacity of 2.9 mAh/cm2, the cell with 2 M LiFSI TEP/DME/EC (6/2/2,
viviv) + 5% FEC + 5% VEC demonstrated an impressive performance, cycling 140 times at 80%
of end-of-life (EOL) and 200 times at 70% of EOL at 0.33 C/0.33 C. This is a significant
improvement compared to the 2 M LiFSI TEP + 10% FEC, which cycled only 200 times at 40%
of EOL (Fig.4b and Fig.S8a). Additionally, the 2 M LiFSI TEP/DME/EC (6/2/2, viviv) + 5% FEC
+ 5% VEC electrolyte did not exhibit a long CV charge plateau at 0.33 C during the cycling
process (Fig.S8b and S8c), unlike the 2 M LiFSI TEP + 10% FEC (Fig.S8d), indicating an
improvement in dynamic performance through the addition of DME and EC. Furthermore, apart
from the low flammability of the 2 M LiFSI TEP/DME/EC (6/2/2, viviv) + 5% FEC + 5% VEC
electrolyte, its thermal stability with fully lithiated graphite (Gr#5, 100% SOC) is also enhanced
compared to the carbonate electrolyte. This is evident as the fully lithiated Gr#5 in the carbonate
electrolyte presents a four times higher exothermic peak at 258 °C compared to the 2 M LiFSI
TEP/DME/EC (6/2/2, viviv) + 5% FEC + 5% VEC (Fig.4c), proving the intrinsically safe
properties of the developed TEP electrolyte. Additionally, the cycling performance with
commercial-level graphite and LFP electrodes in the TEP-dominant electrolyte in this study
outperforms the phosphate-dominant electrolyte reported in previous studies (Fig.4d). Simply
replacing DME with other low-viscosity solvents commonly used in LIB, such as DMC, EP, and
TTE, did not result in good cycling performance as observed with DME (Fig.S9a and S9b). All
the cells with DMC, EP, and TTE cosolvents experienced rapid fading and retained only 40%-
48% of EOL after 200 cycles at 0.33 C. However, when cycled at 0.1 C, all the cells with DMC,
EP, and TTE cosolvents displayed stable cycling, retaining 89-96% of EOL after 100 cycles,
comparable to the 93% of EOL observed in the carbonate electrolyte (Fig.S9c and S9d). This
suggests a thermodynamically stable behavior between these electrolytes and graphite.
Nonetheless, it is crucial to re-tune the ratio of DMC, EP, or TTE, SEI| additives, and other
cosolvents for optimal dynamic performance in DMC, EP, or TTE type TEP electrolytes, which
will be a subject of future research using HTP screening technology. Moreover, other potential
combinations from the HTP screening were also tried with the addition of DME/EC cosolvents
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derived from S36A17 (Gr#5 and 2 M LiFSI TEP + 10% FEC), such as S34A11, S36A5, S36A23,
which had the same Gr#5 (Fig.S10), and S36A24, S38A3, S38A6, S38A33, which had different
graphite materials (Fig.S4). However, none of these combinations demonstrated good cycling
performance after the addition of DME/EC to the respective phosphorus-based electrolytes
(Fig.S11a and S11b), indicating that the optimized recipe for a potential combination is not
universally applicable to other combinations. Different potential combinations of graphite
material and phosphorus-based electrolyte may require their own cosolvents and SEI additives,
which will be incorporated into the next HTP screening.
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Figure 4. Electrolyte optimization with addition of cosolvents. (a) The relationship of viscosity (top)/ionic conductivity
(bottom) varied with temperature of TEP-based electrolytes with different cosolvents and carbonate electrolyte. (b)
Cycling performance of Gr#5/LFP cells in 2 M LiFSI TEP/DME/EC (6/2/2, vIviv) + 5% FEC + 5% VEC (red) and 2 M
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Appendix A — Supplementary Information
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Figure S1. The properties of six graphite materials utilized in HTP screening. (a-f) The morphology of six
commercially available graphite materials by SEM: (a) 282863 (Sigma-Aldrich, Gr#1), (b) TIMREX KS15 (TIMCAL,
Gr#2), (c) TIMREX SLP30 (TIMCAL, Gr#3), (d) S360-M (BTR, Gr#4), (e) FormulaBTTM SLC1520T (Superior
Graphite, Gr#5), and (f) Mage 3 (Hitachi, Gr#6). (g) The 1st voltage profiles of Li/Gr half cells with six graphite anode

materials in carbonate baseline electrolytes at 0.1 C/ 0.1 C. Working voltage: 0-1.5 V.
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Figure S2. The effect of lithium salts in phosphorous-based electrolyte. (a-d) The 1st discharge profiles of Li/Gr half
cells at 0.02 C in phosphorus-based electrolytes with various lithium salts: (a) LIDFOB, (b) LiBOB, (c) LiPF6 and (d)
LiFSI. These voltage profiles were extracted from Figure S3.
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Figure S3. Further electrolyte screening in Li/Gr half cells. The 1st discharge curves of Li/Gr half cells at 0.02 C for
the 101 positive combinations screened by the HTP method in Figure 2a. Working voltage: 0-1.5 V.
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Figure S4. 1st charge profiles of 26 potential combinations among 101 positive combinations in Fig.3a that exhibit an

initial reversible specific capacity exceeding 320 mAh/g. Some promising combinations discussed in following main
text were listed.
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Figure S5. Short circuit study of Li/Gr half cells. (a) 1st charge profiles of 21 combinations exhibited a reversible
capacity of less than 100 mAh/g in Li/Gr half cells at 0.02 C in Fig. 3a. (b) 1st charge profiles of Li/Gr half cells in (a)
after wrapped the coin cells with Cu foil for 24 hours. (c-d) digital photos of the graphite anode electrodes harvested
in shorted coin cells with combinations of (c) S29A1, (d) S29A2 and (e) S35A11.
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Figure S6. The 1st charge profiles of all positive combinations with low concentration of 1.2M
phosphorus-based electrolyte. These charge profiles were extracted from Fig. 3a.
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Figure S7. (a) The areal capacity of G#5/LFP cells in two identified phosphorus-based
electrolytes and a carbonate electrolyte at 0.1 C (real line) and 0.33 C (dash line). Working
voltage: 2.2-3.8 V. (b) The 1st voltage profile of Gr#5/LFP cells in 1.2 M LIDFOB TBP + 10%
VEC tested at 0.02 C/0.02 C.
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Figure S8. (a) The areal capacity of Gr#5/LFP cells in 2 M LiFSI TEP/DME/EC (6/2/2, viviv) + 5% FEC + 5% VEC
(red) and 2 M LiFSI TEP + 10% FEC (green) at 0.33 C/0.33 C. Formation: 0.1 C/0.1 C for 11 cycles. (b) The
comparison of voltage profiles of Gr#5/LFP cells in three electrolytes at 0.33 C/0.33 C. (c) The voltage profiles of
Gr#5/LFP cell at different cycles in 2 M LiFSI TEP/DME/EC (6/2/2, viviv) + 5% FEC + 5% VEC. (d) The voltage
profiles of Gr#5/LFP cell at different cycles in 2 M LiFSI TEP + 10% FEC.
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Figure S9. The effect of different cosolvents in electrolyte optimization. (a) The cycling performance of Gr#5/LFP cells
in different electrolytes containing different cosolvents at 0.33 C/0.33 C. Formation: 0.1 C/0.1 C for 11 cycles.
Working voltage: 2.5-3.8 V. (b) The area capacity of Gr#5/LFP cells tested in (a). (c) The cycling performance of
Gr#5/LFP cells in different electrolytes containing different cosolvents at 0.1 C/0.1 C. Formation: 0.1 C/0.1 C for 11
cycles. 5-10 cycles at 0.33 C/0.33 C were performed after formation for consistent check. (d) The area capacity of
Gr#5/LFP cells tested in (c).
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Figure S10. The 1st charge profiles of all positive combinations with Gr#5 as the anode in all Li/Gr half cells. These
charge profiles were extracted from Fig. 3a. Three additional combinations were selected for further discussion in

main text.
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Figure S11. Employment of DME and EC as cosolvents to other potential combinations in Fig.

S4. (a) The relationship of viscosity (top)/ionic conductivity (bottom) varied with temperature of
different phosphorus-based electrolytes identified in Fig. S4. (b) The voltage profiles of Gr/LFP
full cells at different cycles with the graphite and phosphorus-based electrolyte from seven
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potential combinations listed in Fig. S4.
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Figure S12. The Laboratory Execution and Analysis (LEA) software suite for HTP electrolyte

preparation.
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