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Abstract

Computer vision-based decision support tools are being developed and evaluated to augment international safeguards 
practitioners for multiple types of visual analysis activities. These tools have significant potential to be integrated into 
human-machine teaming for efficient and effective processing of large quantities of safeguards data. Though some computer 
vision decision support tools may achieve high levels of performance, the performance of the human-machine system 
requires additional evaluation. Our team has conducted extensive human performance testing to understand the cognitive 
impacts of using computer vision decision support tools. Our safeguards-informed research has yielded three main 
conclusions regarding the use of decision support tools for visual tasks. First, even imperfect models can provide productive 
decision support for users. Second, there exists a balance between user speed and accuracy, resulting in users of high-
performing models sometimes missing subtle but important errors. Third, user expertise impacts how the user responds to 
model errors. As a result, multiple decision support models may be needed to support users at different levels of expertise. 
The paper expands on the research behind these conclusions and provides directly actionable recommendations for 
safeguards implementation of computer vision-based decision support tools.

1. INTRODUCTION

Many international nuclear safeguards monitoring tasks involve visual inspection and assessments – either 
of physical objects in the field, or of visual data on screens from safeguards equipment, open-source information, 
and other data. Recent increases in performance of computer vision models that help humans to interpret visual 
data have led to evaluations of how these capabilities could be applied to safeguards tasks. Some examples of 
research in this area include:

— The collection and interpretation of open-source images to predict the operational status of nuclear 
facilities [1].

— The retrieval of relevant data using multi-modal search strings such as images, video, or audio [2].
— The monitoring of patterns of life and change detection via overhead imagery analysis [3].
— The identification and tracking of safeguards-relevant containers, and identification of deviations from 

patterns of life, from safeguards surveillance camera data [4].
— The localization of a user within a known facility based on surrounding contextual images [5].

These research efforts represent the potential for significant impact on inspector and analyst workload, 
supporting safeguards practitioners in sorting and prioritizing data for their expert reviews. It is critical to consider 
these research tools and capabilities as part of a broader system that includes users. Our team has developed and 
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implemented a series of human performance experiments to assess how the outputs of these models impact users’ 
cognition and decision-making during safeguards-relevant visual search tasks. We have specifically focused on 
the cognitive impacts to users when the models provide incorrect responses. Our team has assessed many aspects 
of decision support model errors, including visualizations of model outputs [6], error types [7], confidence levels 
[8], differences between domain-specific and domain-general tasks [9], expert and novice users [10], quality of 
machine learning explanations [11], and directions to users [11]. 

Here, we will examine three key findings that can inform the development and implementation of computer 
vision models to support international safeguards visual tasks. First, even models with relatively poor performance 
can provide productive decision support for users, but improvements in model performance generally produce 
larger benefits to users. Second, there are risks when users have models with very high performance. No model 
has perfect accuracy and users of very high-performing models are less likely to notice the instances where the 
model makes an error. Finally, user expertise impacts how the user responds to model errors. Some tasks may 
require alternative outputs or approaches to decision support for users with various levels of experience.

2. EXPERIMENTAL BACKGROUND/METHODOLGY

We will describe results of two experiments using visual search tasks in which users scan an image in 
search of a defined target. The visual search tasks were selected to be representative of multiple safeguards-
relevant tasks such as open-source information analysis, satellite imagery analysis, or situational awareness in the 
field. The first visual search task – the T and L task – is used extensively within the corpus of research on human 
visual search (for example, [12] and [13]). It is a domain-general task that can be performed without any specific 
expertise, yet it relies on the same fundamental cognitive processes that are required for more specialized visual 
search tasks, such as those that are important in the safeguards domain. 

In the T and L task, users search for a letter T that has a perfectly centered crossbar. The images contain 
distractor stimuli, referred to as “L”s, that have offset crossbars. In our implementation of the T and L task, the 
target and distractor stimuli were displayed in shades of grey on a cloudy grey background. Experiment 
participants were tasked with viewing these images and determining whether there was a target T in each one. In 
some conditions they had no decision support aid and had to find the targets through visual search. In other 
conditions, they saw decision support aids that purported to identify targets in the images. The appearance, 
placement, and accuracy of the decision support indicators was experimentally manipulated by our team according 
to the research design, see Fig. 1. 

FIG. 1. Example T and L stimuli without decision support (left) and with simulated decision support (right)

We also used a more directly safeguards-focused search task, in which the users were tasked with viewing 
images and determining whether they contained hyperboloid-shaped cooling towers, see Fig. 2. In this case, all 
the images were open-source photographs of real structures. The targets were cooling towers and the distractors 
were other types of towers, such as windmills, smokestacks, and steam plumes for which the source was not 
visible. As with the T and L task, the location and accuracy of the decision support indicators was manipulated 
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according to the experimental design. The ways in which the accuracy of the decision support tool were 
manipulated are described in Table 1.

  

FIG. 2. Hyperboloid-shaped cooling tower without (left) and with (right) simulated machine learning responses. Image 
credit: Sharkhats, via Flickr. Image number 6115042441, 9/4/2011.

TABLE 1. DECISION SUPPORT MODEL OUTPUT MANIPULATIONS

Condition Name Target Presence Model Output 

True Positive Present Model correctly identifies the target.

True Negative Absent No model output is shown, correctly indicating absence of 
a target.

False Positive Absent Model incorrectly identifies a distractor as a target.

False Negative Present Model misses the target, and thus no model output is 
shown.

False Positive + False 
Negative 

Present Model incorrectly identifies a distractor as a target when 
there is a target in a different location. 

 
In both the T and L task and the cooling tower task, participants viewed the electronic images one at a time 

and selected a button to indicate whether there was a target in the image. They were tasked with correctly 
identifying the images that contained targets, regardless of the accuracy of the decision support output. The 
participants’ accuracy and response time was recorded for each image.  Most participants completed the task on 
Amazon Mechanical Turk. The online tasks included attention checks to ensure that the participants produced 
high-quality data. In addition to the online participants, we recruited a small number of nuclear fuel cycle experts 
from Sandia National Laboratories for a small case study comparing expert and non-expert performance 
(described in Section 5). 

3. IMPERFECT MODELS PROVIDE DECISION SUPPORT

One of our key findings was that even relatively poorly performing computer vision models could provide 
positive impact on user performance. This finding has important implications for the development of decision 
support tools. On the T and L task, we found that users with no decision support had an average overall accuracy 
of 79%. When we added the simulated decision support outputs, we saw significant increase in user performance 
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as shown in Fig. 3. We found that as the model performance increased, so did overall user performance. There 
was a benefit to performance even in cases where the decision support outputs were only 50% correct.

 
FIG. 3. User performance on the T and L visual search task over multiple simulated model accuracies 

Based on these findings, we recommend that developers of decision support tools for international 
safeguards visual tasks focus on achieving reasonable performance metrics rather than strive for incremental 
increases once a moderate performance level is reached. Despite increasing user performance returns as model 
performance increases, the finding that even modestly performing models support user performance on this visual 
search task indicates that models will be able to positively impact user performance at earlier stages than we 
previously thought.

4.  USERS OF HIGH PERFORMING MODELS SOMETIMES MISS SUBTLE BUT IMPORTANT ERRORS

Another finding from our experiments provides an important counterpoint to the finding discussed above. 
Although user performance generally improved as the accuracy of the decision support outputs increased, we 
found that participants were less likely to notice erroneous outputs. When the model outputs were highly accurate, 
participants were more likely to accept the model’s decision and less likely to perform a careful visual search of 
the images to confirm that decision. This pattern was reflected in the participants’ average response times, which 
were faster for more accurate models. It was also reflected by the participants’ accuracy on trials where the model 
output was incorrect, as shown in Fig. 4. As the model’s overall accuracy increased, the participants were less 
likely to identify instances where it had produced an output that was a false negative or a false positive.

This finding was replicated across two experiments using the T and L paradigm. In the first experiment, 
the decision support outputs had a mix of different types of errors, as described in Table 1. In the second 
experiment, all the model errors were of one type: either all false positives or all false negatives. In both cases, 
the participants’ ability to recognize images where the decision support output was incorrect decreased as the 
overall accuracy of the decision support model increased. This decrease in user performance could be attributed 
to users overly trusting the models or becoming compliant with model output. 

In the T and L task, where the targets can be somewhat difficult to find, participants tend to have lower 
accuracy for images that contain targets than for those that do not. In a baseline experiment with no decision 
support outputs, our participants responded correctly to 90% of the target absent items and only 72% of the target 
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present items, on average. Similarly, when decision support outputs were provided, we observed that the 
participants performed worse on the false negative stimuli (which had a target that was missed by the decision 
support output) than the false positive stimuli (which had a non-target incorrectly identified as a target). When 
shown a false positive produced by the decision support tool, users could easily evaluate the item inside of the 
bounding box and come to their own conclusion about whether it was a target. In contrast, identifying a false 
negative required the users to conduct their own visual search of the image to see if any of the items might be a 
target. This was a much more time-consuming and effortful process, which is why the users were less likely to 
identify the false negatives. As the model outputs became more accurate overall, meaning that there were fewer 
false negatives for each participant, the participants were even less likely to search the images for missed targets. 
This made their performance on the false negatives decline even more. 

Based on these findings, we recommend that computer vision model developers tune model thresholds to 
be more tolerant of false positives than false negatives. This essentially means lowering the threshold for a model 
to classify an item as a target, with the trade-off of having more false positives returned to the user. Because of 
the importance within the safeguards domain of limiting false negatives (missing a relevant target), we propose 
that the value of reducing potential false negatives outweighs the risks of including more false positives. False 
negatives pose a greater challenge to human users, who are less likely to notice them, even in very straightforward 
tasks like the T and L task. Furthermore, we expect that the workflows surrounding positive identifications (such 
as passing information to a more senior analyst or inspector) will counteract any potential performance decrease 
posed by the presence of additional false alarms from a model. 

FIG. 4. User performance on the T and L visual search task when the model contained equal proportions of false positive 
and false negative results (left), and when the model contained only a single type of error (right). In both experiments, as 
model performance increased the user performance on error trials decreased. 

5. USER EXPERTISE IMPACTS RESPONSE TO MODEL ERRORS

Finally, we wanted to generalize the results from the T and L study to a safeguards-relevant stimulus. For 
this test, we used the hyperboloid cooling tower data. Initially, we observed very different levels of performance 
between Amazon Turk participants completing the T and L task and the cooling tower task. We hypothesized that 
the difference was due to expertise because the hyperboloid cooling towers may be unfamiliar to some users. We 
recruited a small number of nuclear fuel cycle experts from Sandia National Laboratories to serve as an expert 
community and compared their performance to the Amazon Mechanical Turk users who we called novices, 
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assuming few of them had extensive experience working with the nuclear fuel cycle. There were two versions of 
this task: one where no decision support outputs were provided, and one where we provided decision support 
outputs that were accurate 80% of the time. The results of this comparison for domain experts and novices are 
shown in Fig. 5.

In comparing the novice and expert performance on the cooling tower task, we observed that novice users 
benefitted the most from the true positive model outputs in terms of overall accuracy gains. However, the novices 
were also vulnerable to the decision support model’s false positive and false negative responses. Novices were 
more likely to miscategorize an image when given an erroneous decision support output than when they were 
given no decision support output at all.

In contrast, the experts completing the same task were not negatively impacted by incorrect decision 
support outputs. Their performance for images with erroneous decision support aids was no worse than it was for 
images without decision support aids. However, like the novices, the domain experts benefited from seeing correct 
decision support outputs. We observed increased expert accuracy for both types of correct responses, true positive 
and true negative, even though the true negative model response does not display a visual output (recall from 
Table 1 that the true negative is depicted with no bounding box, indicating no target is present). 

 
FIG. 5. User performance on the cooling tower visual search task, in which experts and novices performed identical tasks. 
While both groups were positively impacted by correct decision support output, novices were more negatively impacted by 
incorrect decision support than experts. 

Based on these findings, we recommend that different models be developed and tailored for different types 
of users. We anticipate that safeguards analysts and inspectors–even those who are new to their positions–are 
experts in their field. Despite their expertise, we expect that at times safeguards practitioners will be making 
assessments on unfamiliar technologies or equipment. In these scenarios, safeguards experts may make decisions 
more like novices than experts. For novices, we observed that both false positives and false negatives had 
significant negative impact on user performance. However, even with both types of error negatively impacting 
performance, we make the case that false positives still be preferred over false negatives. While we do not advocate 
for models that provide so many false positives that users start ignoring model responses, analytical workflows 
that are informally and formally codified in safeguards will likely result in a real user requesting additional input 
from a peer, a technology expert, or other staff who can assist in dismissing the false positive (which also provides 
feedback to the original user, and is a powerful learning mechanism that will help them develop expertise). False 
negatives were similarly detrimental to user performance but may be harder to correct for operationally. 
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As we observed in the T and L task, our expert users were better able to respond to false positives than to 
false negatives. But in this task, we also observed that false negatives did not have a significant positive or negative 
impact on expert user performance, as accuracy stayed approximately the same as the no-aid condition. 

6. DISCUSSION AND CONCLUSIONS

To summarize our findings, even moderately performing computer vision decision support can benefit user 
performance on a visual search task. Model developers should strive for good, but not necessarily near-perfect, 
model performance that prioritizes expedited model deployment and a good user interface. These factors are likely 
to provide a larger benefit to human-machine performance than incremental improvements to model performance. 

Furthermore, even when model performance is very high, users should remain vigilant to their task. Even 
very good models have occasional errors, and users who become complacent and overly compliant with model 
recommendations are highly likely to overlook those errors.

It is also important to be mindful of the impact of different types of model errors. Our studies consistently 
found that people were less likely to notice a model error if it was a false negative than if it was a false positive. 
In these tasks, where a bounding box was used to indicate the presence and location of targets, false positives 
were cases where a bounding box was placed on an object that was not actually a target. In the domain-general T 
and L task, the participants simply had to look at the item inside of the bounding box and determine whether it 
was a T or an L, which was trivially easy (if they were paying attention and not just uncritically accepting the 
model’s decisions). In the domain-specific task, identifying whether the tower inside of the bounding box was a 
hyperboloid cooling tower was similarly easy for domain experts. However, these false positives proved to be 
harder for novices, who may have been unsure of the correct answer and deferred to the decision support 
recommendation, incorrectly accepting the false positive results.

False negatives were quite difficult for people to identify in both tasks. In this case, there was a target in 
the image, but it was not marked with a bounding box. Rather than simply evaluating what was inside of the 
bounding box to determine whether the model was correct, participants would have to conduct their own visual 
search of the image to find any unmarked targets. This process requires considerable effort and may not succeed 
if the target is difficult to find. As a result, the participants in our studies failed to find many (often more than 
half) of the targets that not correctly marked by the decision support output.

Given these findings, it may be beneficial to tune models so that they are less likely to produce false 
negatives. This kind of tuning is likely to result in a higher rate of false positives, but these are easier for users to 
recognize and correct. While systems that produce too many false positives often suffer from user disengagement, 
visual search or target recognition tasks can benefit from a sensitive detection threshold that produces few false 
negatives.

Finally, for tasks in which safeguards practitioners have little experience, higher levels of model 
performance may be necessary to support effective decision making. We anticipate deployment of decision 
support models within analytical workflows in which novice analysts or expert analysts working tangential to 
their primary expertise would consult with others when presented with a potential positive (true or false) output. 
Within that context, we recommend that false positives still be favored over false negatives to avoid potential 
misses of relevant or valuable information. This is true even for models that are intended for novices for whom 
both types of errors were detrimental to performance.   

Overall, our results indicate that computer vision decision support tools have considerable potential to 
enhance user performance both generally and in the international safeguards domain. In practice, these tools need 
to be thoughtfully implemented to consider deployment priorities that are likely domain-specific (such as the high 
consequences of false negatives in the international safeguards domain), user experience (experts or novices), and 
anticipated target prevalence (frequent targets versus rare targets), which will impact performance metrics. 
Finally, some highly specialized tasks might only be suitable for human experts. The best-performing systems 
will result from a combination of computer vision models implemented at tasks for which they excel with human 
users performing tasks at which they excel. 
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