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Uncertainty quantification for high-fidelity models M

UNIVERSITY OF

MICHIGAN

» Determine uncertainty on HF models

» Expectation, variance
» Probability of failures

» Severe simulation budget constraints

» High dimensional PDEs
» |arge-scale computing resources

» Model complexity increases dimensionality

» HF models — UQ more important

» |ess validation, study, and analysis

» (Greater exploitation of nonlinearities

» Uncertainty due to model form, initial
conditions, and operating conditions
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Leveraging multiple models/simulation sources M
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Key idea

We almost never have just one model, instead we develop many over the
course of a study/analysis. Can we leverage these?
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Key idea

We almost never have just one model, instead we develop many over the
course of a study/analysis. Can we leverage these?

Faotenelal Flow

» Sources

» Hierarchy of fidelities

» Ensemble of peer models
» Discretization levels

» Experimental data

» Challenges

» Models with varying inputs/outputs

» |egacy data collected separately

» Corrupted evaluations: unconverged grids,
unexplored parameters

» Lack of assumed relationships

o
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Contribution in this talk

MICHIGAN

Problem: A-priori structural assumptions (hierarchical or otherwise) between
models can lack robustness and limit efficiency

Contribution: A new modeling framework for multi-fidelity surrogate models
that can flexibly adapt to variety of situations

Model 1: hy
Model 2: hy .
Unce%“tam‘?y Quantity of
Quantification I
nterest ¢
U
Model M: hy,
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Can be embedded within many aspects of UQ M

Example: Bayesian Monte Carlo

MICHIGAN

Estimation of expectations
Within optimization

Within experimental design y Parameters
Bayesian optimization ——
v l A\ [ H _—
NN
4 'V Output

Inputs
Ghahramani and Rasmussen Bayesian Monte Carlo, 2003
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Outline M
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» QOverview of existing multi-fidelity modeling paradigms

» MFNets: A graph-based generalization targeting heterogeneous
ensemble

» Optimization formulation
» Examples
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Existing approaches: discrepancies,
recursivity, hierarchies, autoregressive
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The standard approach: autoregressive (recursive) modeling M

TWO'mOdeI CaSG UNIVERSITY OF

MICHIGAN

A single node represents a surrogate for some information source
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The standard approach: autoregressive (recursive) modeling M

TWO'mOdeI Case UNIVERSITY OF

MICHIGAN

A single node represents a surrogate for some information source
A new (higher fidelity) information source is introduced

A recursive relationship is established, by passing f; through some
functional Fio

OO

fo = Fia|f1] + 62
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The standard approach: autoregressive (recursive) modeling M

TWO'mOdeI Case UNIVERSITY OF

MICHIGAN

A single node represents a surrogate for some information source
A new (higher fidelity) information source is introduced

A recursive relationship is established, by passing f; through some
functional Fio

The discrepancy is denoted by d,, hope is that it is “simple”

» Recursive co-kriging: Kennedy and O’Hagan, Gratiet and Garnier

OO

02 = fo — Fi2|fi]
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The standard approach: autoregressive (recursive) modeling M

TWO'mOdeI Case UNIVERSITY OF

MICHIGAN

A single node represents a surrogate for some information source
A new (higher fidelity) information source is introduced

A recursive relationship is established, by passing f; through some
functional Fi9

The discrepancy is denoted by o5, hope is that it is “simple”

» Recursive co-kriging: Kennedy and O’'Hagan, Gratiet and Garnier

B

02 = f2 — Fi2|fi]

Learning Requirements

» Things to learn: fi, Fis, 09
» |f any are nonlinearly parameterized, then not a Gaussian process!
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The standard approach: autoregressive (recursive) modeling M

General case

MICHIGAN

Introduce a third (higher fidelity) information source

B——
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The standard approach: autoregressive (recursive) modeling M

General case

MICHIGAN

Introduce a third (higher fidelity) information source
Again establish a recursive relationship

B

fs = Fas|fo] + 03 = Fos [Fiaf1 + 02] + 03
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The standard approach: autoregressive (recursive) modeling M

General case

MICHIGAN

Introduce a third (higher fidelity) information source
Again establish a recursive relationship
Again learn the discrepancy

B

03 = f3 — Faz|fos]
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The standard approach: autoregressive (recursive) modeling M

General case

UNIVERSITY OF

MICHIGAN

Introduce a third (higher fidelity) information source
Again establish a recursive relationship
Again learn the discrepancy

B

03 = f3 — Fa3|fa3]

Challenges

» Technigues often require nested sample points and step-wise optimization
|Gratiet 2014, Perdikaris 2017]

» Many approx. formats: GP, PCE, Radial Basis, Neural Networks, etc.

» In GP: techniques that assume separable F;;[fi| = pi;j(x) fi(x) treat

parameters of p;; as hyperparameters that are optimized separately to
retain Gaussianity.

R EESSEIEE——————

ESI2022 Gorodetsky goroda@umich.edu 10/26




Motivation Multi-fidelity UQ Existing approaches MFNets Examples Conclusions

Examples in cases with two models M

While extremely classical, still many new papers with new F
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NN,
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M ;?:vi.}tfi
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N

— Vi

Meng, Babaee, Karniadakis, 2021 Zhang, Xie, Ti, Zhu, Zheng, 2021

JF has a NN structure

D Convolution —
|:| Upsample |
|:| Dropout/block

Input: v

.IIH:EE

Partin, Geraci, Rushdi, Eldred, Schiavazzi,
2022
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Examples in cases with two models M

While extremely classical, still many new papers with new F
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Examples in cases with two models M

While extremely classical, still many new papers with new F
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NN, K
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Meng, Babaee, Karniadakis, 2021 Zhang, Xie, Ti, Zhu, Zheng, 2021

Input Hidden Output
layer layers layer

(X)) —

Branch Network
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.IIH:EE

D Convolution —
|:| Upsample | ,D:H:B>

|:| Dropout/block

Input: v

Partin, Geraci, Rushdi, Eldred, Schiavazzi, \ ,- E
2002 T

Trunk Network
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A new approach: MFENETS
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Why do we need another paradigm? M
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Not all information sources are obviously hierarchical

» Depends on Qol
» Peer models are common
» Discretizations and numerical issues affect hierarchies
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Why do we need another paradigm? M

UNIVERSITY OF
MICHIGAN

Not all information sources are obviously hierarchical

» Depends on Qol
» Peer models are common
» Discretizations and numerical issues affect hierarchies

In the sampling context, moving beyond hierarchical can often extract
more correlations

> MIMC [Haji-Ali 2016] vs. MLMC [Giles 2008]

» Generalized ACV [Gorodetsky 2020] vs. recursive control variate approaches (MFMC)
[Peherstorfer 2016]

» Multilevel Blue [Schaden and Ullman 2020]
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Why do we need another paradigm? M

UNIVERSITY OF
MICHIGAN

Not all information sources are obviously hierarchical

» Depends on Qol
» Peer models are common
» Discretizations and numerical issues affect hierarchies

In the sampling context, moving beyond hierarchical can often extract
more correlations

> MIMC [Haji-Ali 2016] vs. MLMC [Giles 2008]

» Generalized ACV [Gorodetsky 2020] vs. recursive control variate approaches (MFMC)
[Peherstorfer 2016]

» Multilevel Blue [Schaden and Ullman 2020]

Need more training algorithms to consider non-GP cases and non-nested
sampling
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Multifidelity Networked Surrogate Models (MFNets) M
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Main idea: model relationships between surrogate outputs

An MFNet is a DAG G = (V, £) with nodes representing information sources V = { f1,..., far }
and directed edges € = {(j — 1)} representing their relationships

fi(x) = Fi[{f;j(x); 7 € pa(i)}] + 0;(x).

(b) Evaluating @) for k = 9 requires data from fo and

a) Sample structure of a multifidelity surrogate. i \ : i
(@) Sample structure of a multiidelity surrogate traversing the ancestors of fy (depicted in red).

Figure 1: An example DAG used to define a multifidelity surrogate. This structure exhibits a complicated
relationship between each function and the high-fidelity f1;. Both hierarchical and peer relationships are
exhibited within these networks. For instance the left panel shows an example of hierarchical structure
(f2 = fe — fo) in green and example of peer structure (f7 — fio, fs — f10) in blue.
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Multifidelity Networked Surrogate Models (MFNets)

Main idea: model relationships between surrogate outputs

An MFNet is a DAG G = (V, £) with nodes representing information sources V = { f1, . . .

and directed edges € = {(j — 1)} representing their relationships

file) = > pji(@)fi(@) + bi(@).

jepa(i)

UNIVERSITY OF
MICHIGAN

7fM}

. i l > at1 - 1 r k= e 1, g atr AT '{ p
(a) Sample structure of a multifidelity surrogate. (b) EV‘_lludtmg @) for & IQ requires thd from f9 and
traversing the ancestors of fg9 (depicted in red).

Figure 1: An example DAG used to define a multifidelity surrogate. This structure exhibits a complicated
relationship between each function and the high-fidelity f;,. Both hierarchical and peer relationships are
exhibited within these networks. For instance the left panel shows an example of hierarchical structure
(fa = fe — fo) in green and example of peer structure (fr — fio, fs — fi0) in blue.
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Linear parametric approximations M
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(b)

Figure: From graph to surrogate.

) Multi-fidelity surrogate.

For this graph, we have

fi(z) = 61(z) = Vi (z) B
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Linear parametric approximations M
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&

(a) DAG. (b) Multi-fidelity surrogate.

Figure: From graph to surrogate.

For this graph, we have

fi(x) = b1(z) = Vi (z)Bh
fo(@) = D> pie(a)fi(x) + d6(x) = pse(x) f3(x) + pse(z) f5(x) + (),

jepa(6)

where pse(x) = Wag(z)ass, pse(x) = Wig(z)ass, and ds(x) = Vi (x)5s.
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Motivating Gibbs sampling: separability in expansion M
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O,

4

Figure: Directed acyclic graph (DAG).

f3(z) = Vi (%) B1 (pr2p2s + prapazpes) + Vi () Bapazpas + Vy (w) Bapos
+ V3 (z) B3, where pji(z) = W)i(z)aj;
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Motivating Gibbs sampling: separability in expansion M
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@

4

Figure: Directed acyclic graph (DAG).

fa(x) =Vi' (2) B1 (pr2p2s + prapaspas) + Vi (x) Bapazpas + V3 (x) Baps
+ V3 (x) B3, where pj;(z) = W]E(x)aji

If all edge paramters «{0431}7 -, are fixed, the functions {f;}}, are linear w.r.t
the node parameters {3;}.""
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Motivating Gibbs sampling: separability in expansion M

4

Figure: Directed acyclic graph (DAG).

f3(@) = Vi (2) B1 (p12p23 + prapazpas) + Vi (z) Bapazpas + V5 (%) B2pas
+ V3 (2) B3, where pji(z) = Wi(z)ay,

If all paramters except «;; are fixed, the functions {f:}.2% are linear w.r.t the
edge parameter « ;.
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Gibbs sampling: Algorithm M
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Require: MFNets G; input-output pairs D; number of samples n;
Ensure: n samples of the parameters

1: Set inital parameters a'?) for e € £ and 3(®)
2. fori=1,2,...,ndo
3: for each edge e of G do

4 Draw a sample aei) from p (ae | D, &, B) = Np (mz(gae), E}(jo@)
5 Update G using agi)

6. end for .

7 Draw a sample (¥ from p (8 | D, &) = Ny (mg(aﬁ), Zz(aﬁ))

8 Update G using 8(*)

9: Collect i'" sample {ag’) for e € S,B(i)} of the parameters

0:

10: end for

OO
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Require: MFNets G; input-output pairs D; number of samples n;
Ensure: n samples of the parameters

1: Set inital parameters a'?) for e € £ and 3(®)
2. fori=1,2,...,ndo
3: for each edge e of G do

4 Draw a sample aei) from p (ae | D, &, B) = Np (mz(,ae), Zz(oae))
5 Update G using ag)

G: end for .

7 Draw a sample (") from p (8 | D, &) = Ny (mg(aﬁ), Zz(aﬁ))

8 Update G using 8(*)

9: Collect i'" sample {ag’) for e € S,B(i)} of the parameters

0:

10: end for

- (1) >@ >@
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Gibbs sampling: Algorithm M
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Require: MFNets G; input-output pairs D; number of samples n;
Ensure: n samples of the parameters

1: Set inital parameters a'?) for e € £ and 3(®)
2. fori=1,2,...,ndo
3: for each edge e of G do

4 Draw a sample aei) from p (ae | D, &, B) = Np (mz(,ae), Zz(oae))
5 Update G using ag)

G: end for .

7 Draw a sample (") from p (8 | D, &) = Ny (mg(aﬁ), Zz(aﬁ))

8 Update G using 8(*)

9: Collect i'" sample {ag’) for e € S,B(i)} of the parameters

0:

10: end for

0
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Gibbs sampling: Algorithm M
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Require: MFNets G; input-output pairs D; number of samples n;
Ensure: n samples of the parameters

1: Set inital parameters a'?) for e € £ and 3(®)
2. fori=1,2,...,ndo
3: for each edge e of G do

Draw a sample a!" from p (ae D, &’B) = Np (mz(f‘@, 21(9%))

4
5 Update G using a(”

6: end for ,

7:  Draw asample 3 from p (8 | D, &) = Np (mz(”ﬁ)’ ZZ()B))
8

9:

O:

Update G using (%)
Collect i'" sample {ag’) for e € S,ﬁ(i)} of the parameters

10: end for

.
S

OO
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Gibbs sampling: Algorithm M
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Require: MFNets G; input-output pairs D; number of samples n;
Ensure: n samples of the parameters

1: Set inital parameters a'?) for e € £ and 3(®)
2. fori=1,2,...,ndo
3: for each edge e of G do

4 Draw a sample aei) from p (ae | D, &, B) = Np (mz(,ae), Zz(oae))
5 Update G using ag)

G: end for .

7 Draw a sample (") from p (8 | D, &) = Ny (mg(aﬁ), Zz(aﬁ))

8 Update G using 8(*)

9: Collect i'" sample {ag’) for e € S,B(i)} of the parameters

0:

10: end for

) >(2) @) >(3)
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Gibbs sampling: Algorithm M
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Require: MFNets G; input-output pairs D; number of samples n;
Ensure: n samples of the parameters

1: Set inital parameters a'?) for e € £ and 3(®)
2. fori=1,2,...,ndo
3: for each edge e of G do

4 Draw a sample aei) from p (ae | D, &, B) = Np (mz(f‘e), 22(90‘6)>
5 Update G using agi)

o: end for |

7 Draw a sample () from p (8 | D, &) = Ny (mgj), ZZ(;B))

8 Update G using g(%)

9: Collect i'" sample {ag’) for e € S,B(i)} of the parameters

0:

10: end for

0
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Examples
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Synthetic example with stochastic models

MICHIGAN

fr(z) = (2+ (223 + 225)A1 + 3z122 + (25 + 25 + 5x225)As + 0.5x1 + 0.5z2) (1 + E[N(0,1)]),

A1 | Ay | N (Monte Carlo)

fil O 0 5

fa | O 0 10
f31 O 0 100
fa ] O 1 5

fs | O 1 10
fe | O 1 100
fr 1 1 1 5

fs | 1 1 10
fo | 1 1 100
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Synthetic example with stochastic models M

UNIVERSITY OF
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=(2+ (223 4 225)A1 + 3z122 + (27 + 23 + 5x?x3) A + 0.521 + 0. 5z2) (1 4+ E[N(0,1)])

5 é /I o

0080 OO0

(a) Natural ordering ) Hierarchical ordering  (c) Alternate Hierarchical
by model fidelity A first ordering by noise fidelity
N first.

Figure: Analytical noise test case: models’ natural structure versus two candidate
hierarchical orderings.
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Synthetic response surfaces
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Highest fidelity model and pointwise errors M

Natural ordering obtains order of magnitude lower errors
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Thermal block M
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(—div(k(u0)Vu(p)) =0 in 9,

u(u) =0 on Ftop, ) mo in 1,
_ k(po) = .
k(puo)Vu(p) -n=20 on g;de, 1 inQa,

\K(NO)VU’(“’) N =1 on Ipgse-

N\

rto;p

rside

2,

rba.se

Three models: two finite element models with different mesh resolution, and reduced order
model.

Constructed using RBniCS [Hesthaven, Rozza, Samm, 2015]
Predict temperature at (0.5, 0.8)
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Thermal block results M

Non-recursive solution is best over 85% realizations of training data

MICHIGAN

(¢) Hierarchical

Figure 9: Thermal block model network structures.

Peer better than 6
Full better than recursive recursive )
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Full better than peer
_ Prob = 0.4486
4
2 21
2 i
0 - 0 - - 0 )
—2 —1 0 1 —2 0 2 -1 0 1 2
i full network error i peer network error _ /peer network error
o
10°1ll(l't'ﬂ'lll'ﬁi\'l' network l'I'I'UI') logl”(ru-ursi\'v network n-rmr) 10‘%1”( full network error )

(a) Full vs. hierarchical/recursive. (b) Peer vs. hierarchical /recursive. (¢) Peer vs. full.
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a modeling problem
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Future directions M
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Develop automated ways to learn / average over graph structures
themselves

Increasing alignment of input space to increase correlations via active
basis methods

Variational version of the approach can be embedded in outer-loop
applications

MCMC approach is both necessary and yet still quite costly, can this be
done better?

Explore all the different ideas for F and discrepancy functions in the
context of MFNets

E Expand applications
Thanks!
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