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Uncertainty quantification for high-fidelity models
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▶ Determine uncertainty on HF models
▶ Expectation, variance
▶ Probability of failures

▶ Severe simulation budget constraints
▶ High dimensional PDEs
▶ Large-scale computing resources

▶ Model complexity increases dimensionality
▶ HF models → UQ more important

▶ Less validation, study, and analysis
▶ Greater exploitation of nonlinearities
▶ Uncertainty due to model form, initial

conditions, and operating conditions
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Leveraging multiple models/simulation sources

Key idea

We almost never have just one model, instead we develop many over the
course of a study/analysis. Can we leverage these?
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▶ Sources
▶ Hierarchy of fidelities
▶ Ensemble of peer models
▶ Discretization levels
▶ Experimental data



Motivation Multi-fidelity UQ Existing approaches MFNets Examples Conclusions

Leveraging multiple models/simulation sources

Key idea

We almost never have just one model, instead we develop many over the
course of a study/analysis. Can we leverage these?

ESI2022 Gorodetsky goroda@umich.edu 4/26

▶ Sources
▶ Hierarchy of fidelities
▶ Ensemble of peer models
▶ Discretization levels
▶ Experimental data

▶ Challenges



Motivation Multi-fidelity UQ Existing approaches MFNets Examples Conclusions

Leveraging multiple models/simulation sources

Key idea

We almost never have just one model, instead we develop many over the
course of a study/analysis. Can we leverage these?

ESI2022 Gorodetsky goroda@umich.edu 4/26

▶ Sources
▶ Hierarchy of fidelities
▶ Ensemble of peer models
▶ Discretization levels
▶ Experimental data

▶ Challenges
▶ Models with varying inputs/outputs



Motivation Multi-fidelity UQ Existing approaches MFNets Examples Conclusions

Leveraging multiple models/simulation sources

Key idea

We almost never have just one model, instead we develop many over the
course of a study/analysis. Can we leverage these?

ESI2022 Gorodetsky goroda@umich.edu 4/26

▶ Sources
▶ Hierarchy of fidelities
▶ Ensemble of peer models
▶ Discretization levels
▶ Experimental data

▶ Challenges
▶ Models with varying inputs/outputs
▶ Legacy data collected separately



Motivation Multi-fidelity UQ Existing approaches MFNets Examples Conclusions

Leveraging multiple models/simulation sources

Key idea

We almost never have just one model, instead we develop many over the
course of a study/analysis. Can we leverage these?

ESI2022 Gorodetsky goroda@umich.edu 4/26

▶ Sources
▶ Hierarchy of fidelities
▶ Ensemble of peer models
▶ Discretization levels
▶ Experimental data

▶ Challenges
▶ Models with varying inputs/outputs
▶ Legacy data collected separately
▶ Corrupted evaluations: unconverged grids,

unexplored parameters



Motivation Multi-fidelity UQ Existing approaches MFNets Examples Conclusions

Leveraging multiple models/simulation sources

Key idea
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▶ Sources
▶ Hierarchy of fidelities
▶ Ensemble of peer models
▶ Discretization levels
▶ Experimental data

▶ Challenges
▶ Models with varying inputs/outputs
▶ Legacy data collected separately
▶ Corrupted evaluations: unconverged grids,

unexplored parameters
▶ Lack of assumed relationships
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Contribution in this talk

Problem: A-priori structural assumptions (hierarchical or otherwise) between
models can lack robustness and limit efficiency

Contribution: A new modeling framework for multi-fidelity surrogate models
that can flexibly adapt to variety of situations

Model 1: h1

Model 2: h2

...

Model M : hM

Data: D1

Data: D2

...

Data: DM

Data Synthesis

✓2

✓3

✓4

✓5

✓6

Uncertainty
Quantification

U

ĥ1 Quantity of
Interest q
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Can be embedded within many aspects of UQ
Example: Bayesian Monte Carlo
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Ghahramani and Rasmussen Bayesian Monte Carlo, 2003

1 Estimation of expectations

2 Within optimization

3 Within experimental design

4 Bayesian optimization
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Outline

▶ Overview of existing multi-fidelity modeling paradigms

▶ MFNets: A graph-based generalization targeting heterogeneous
ensemble

▶ Optimization formulation

▶ Examples
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Existing approaches: discrepancies,
recursivity, hierarchies, autoregressive
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The standard approach: autoregressive (recursive) modeling
Two-model case

1 A single node represents a surrogate for some information source

f1
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functional F12
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2 A new (higher fidelity) information source is introduced

3 A recursive relationship is established, by passing f1 through some
functional F12

4 The discrepancy is denoted by δ2, hope is that it is “simple”
▶ Recursive co-kriging: Kennedy and O’Hagan, Gratiet and Garnier
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The standard approach: autoregressive (recursive) modeling
Two-model case

1 A single node represents a surrogate for some information source

2 A new (higher fidelity) information source is introduced

3 A recursive relationship is established, by passing f1 through some
functional F12

4 The discrepancy is denoted by δ2, hope is that it is “simple”
▶ Recursive co-kriging: Kennedy and O’Hagan, Gratiet and Garnier

f1 f2
F12

δ2 = f2 − F12[f1]

Learning Requirements

▶ Things to learn: f1, F12, δ2
▶ If any are nonlinearly parameterized, then not a Gaussian process!
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The standard approach: autoregressive (recursive) modeling
General case

1 Introduce a third (higher fidelity) information source

f1 f2
F12

f3

ESI2022 Gorodetsky goroda@umich.edu 10/26



Motivation Multi-fidelity UQ Existing approaches MFNets Examples Conclusions

The standard approach: autoregressive (recursive) modeling
General case

1 Introduce a third (higher fidelity) information source

2 Again establish a recursive relationship

f1 f2
F12

f3
F23

f3 = F23[f2] + δ3 = F23 [F12f1 + δ2] + δ3
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The standard approach: autoregressive (recursive) modeling
General case

1 Introduce a third (higher fidelity) information source
2 Again establish a recursive relationship
3 Again learn the discrepancy

f1 f2
F12

f3
F23

δ3 = f3 − F23[f23]

Challenges

▶ Techniques often require nested sample points and step-wise optimization
[Gratiet 2014, Perdikaris 2017]

▶ Many approx. formats: GP, PCE, Radial Basis, Neural Networks, etc.

▶ In GP: techniques that assume separable Fij [fi] = ρij(x)fi(x) treat
parameters of ρij as hyperparameters that are optimized separately to
retain Gaussianity.
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Examples in cases with two models
While extremely classical, still many new papers with new F
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Meng, Babaee, Karniadakis, 2021
Zhang, Xie, Ti, Zhu, Zheng, 2021

F has a NN structure

Partin, Geraci, Rushdi, Eldred, Schiavazzi,
2022
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Examples in cases with two models
While extremely classical, still many new papers with new F

Discrepancy has a NN structure
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De, Hassanaly, Reynolds, King, Doostan, 2022
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Examples in cases with two models
While extremely classical, still many new papers with new F
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Meng, Babaee, Karniadakis, 2021
Zhang, Xie, Ti, Zhu, Zheng, 2021

Partin, Geraci, Rushdi, Eldred, Schiavazzi,
2022

De, Hassanaly, Reynolds, King, Doostan, 2022
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A new approach: MFNETS
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Why do we need another paradigm?

1 Not all information sources are obviously hierarchical
▶ Depends on QoI
▶ Peer models are common
▶ Discretizations and numerical issues affect hierarchies
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Why do we need another paradigm?

1 Not all information sources are obviously hierarchical
▶ Depends on QoI
▶ Peer models are common
▶ Discretizations and numerical issues affect hierarchies

2 In the sampling context, moving beyond hierarchical can often extract
more correlations

▶ MIMC [Haji-Ali 2016] vs. MLMC [Giles 2008]
▶ Generalized ACV [Gorodetsky 2020] vs. recursive control variate approaches (MFMC)

[Peherstorfer 2016]
▶ Multilevel Blue [Schaden and Ullman 2020]
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Why do we need another paradigm?

1 Not all information sources are obviously hierarchical
▶ Depends on QoI
▶ Peer models are common
▶ Discretizations and numerical issues affect hierarchies

2 In the sampling context, moving beyond hierarchical can often extract
more correlations

▶ MIMC [Haji-Ali 2016] vs. MLMC [Giles 2008]
▶ Generalized ACV [Gorodetsky 2020] vs. recursive control variate approaches (MFMC)

[Peherstorfer 2016]
▶ Multilevel Blue [Schaden and Ullman 2020]

3 Need more training algorithms to consider non-GP cases and non-nested
sampling
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Multifidelity Networked Surrogate Models (MFNets)

Main idea: model relationships between surrogate outputs

An MFNet is a DAG G = (V, E) with nodes representing information sources V = {f1, . . . , fM}
and directed edges E = {(j → i)} representing their relationships

fi(x) = Fi[{fj(x); j ∈ pa (i)}] + δi(x).
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Multifidelity Networked Surrogate Models (MFNets)

Main idea: model relationships between surrogate outputs

An MFNet is a DAG G = (V, E) with nodes representing information sources V = {f1, . . . , fM}
and directed edges E = {(j → i)} representing their relationships

fi(x) =
∑

j∈pa(i)

ρji(x)fj(x) + δi(x).
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Linear parametric approximations

1

2

3

4

5

6

(a) DAG.

f1

f2

f3

f4

f5

f6

(b) Multi-fidelity surrogate.

Figure: From graph to surrogate.

For this graph, we have

f1(x) = δ1(x) = V T
1 (x)β1
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Linear parametric approximations

1
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(a) DAG.

f1

f2

f3

f4

f5

f6f6

(b) Multi-fidelity surrogate.

Figure: From graph to surrogate.

For this graph, we have

f1(x) = δ1(x) = V T
1 (x)β1

f6(x) =
∑

j∈pa(6)

ρj6(x)fj(x) + δ6(x) = ρ36(x)f3(x) + ρ56(x)f5(x) + δ6(x),

where ρ36(x) = W T
36(x)α36, ρ56(x) = W T

56(x)α56, and δ6(x) = V T
6 (x)β6.
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Motivating Gibbs sampling: separability in expansion

1

2 3

4

Figure: Directed acyclic graph (DAG).

f3(x) =V T
1 (x)β1 (ρ12ρ23 + ρ14ρ42ρ23) + V T

4 (x)β4ρ42ρ23 + V T
2 (x)β2ρ23

+ V T
3 (x)β3, where ρji(x) = W T

ji(x)αji
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Motivating Gibbs sampling: separability in expansion

1

2 3

4

Figure: Directed acyclic graph (DAG).

f3(x) =V T
1 (x)β1 (ρ12ρ23 + ρ14ρ42ρ23) + V T

4 (x)β4ρ42ρ23 + V T
2 (x)β2ρ23

+ V T
3 (x)β3, where ρji(x) = W T

ji(x)αji

If all edge paramters {αji}Mj,i=1 are fixed, the functions {fi}Mi=1 are linear w.r.t

the node parameters {βi}mβ

i=1.
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Motivating Gibbs sampling: separability in expansion

1

2 3

4

Figure: Directed acyclic graph (DAG).

f3(x) =V T
1 (x)β1 (ρ12ρ23 + ρ14ρ42ρ23) + V T

4 (x)β4ρ42ρ23 + V T
2 (x)β2ρ23

+ V T
3 (x)β3, where ρji(x) = W T

ji(x)αji

If all paramters except αji are fixed, the functions {fi}mf

i=1 are linear w.r.t the
edge parameter αji.
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Gibbs sampling: Algorithm

Require: MFNets G; input-output pairs D; number of samples n;
Ensure: n samples of the parameters

1: Set inital parameters α
(0)
e for e ∈ E and β(0)

2: for i = 1, 2, . . . , n do
3: for each edge e of G do

4: Draw a sample α
(i)
e from p

(
αe | D, α̃, β̃

)
= Np

(
m

(αe)
p ,Σ

(αe)
p

)

5: Update G using α
(i)
e

6: end for
7: Draw a sample β(i) from p (β | D, α̂) = Np

(
m

(β)
p ,Σ

(β)
p

)

8: Update G using β(i)

9: Collect ith sample
{
α
(i)
e for e ∈ E,β(i)

}
of the parameters

10: end for

1 2 3

4
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Examples
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Synthetic example with stochastic models

fk(x) =
(
2 + (2x5

1 + 2x5
2)∆1 + 3x1x2 + (x2

1 + x2
2 + 5x2

1x
2
2)∆2 + 0.5x1 + 0.5x2

)
(1 + E[N (0, 1)]) ,

∆1 ∆2 N (Monte Carlo)
f1 0 0 5
f2 0 0 10
f3 0 0 100
f4 0 1 5
f5 0 1 10
f6 0 1 100
f7 1 1 5
f8 1 1 10
f9 1 1 100
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Synthetic example with stochastic models

fk(x) =
(
2 + (2x5

1 + 2x5
2)∆1 + 3x1x2 + (x2

1 + x2
2 + 5x2

1x
2
2)∆2 + 0.5x1 + 0.5x2

)
(1 + E[N (0, 1)]) ,

f1

f2

f3

f4

f5

f6

f7

f8

f9

(a) Natural ordering

f1

f2

f3

f4

f5

f6

f7

f8

f9

(b) Hierarchical ordering
by model fidelity ∆ first

f1

f2

f3

f4

f5

f6

f7

f8

f9

(c) Alternate Hierarchical
ordering by noise fidelity
N first.

Figure: Analytical noise test case: models’ natural structure versus two candidate
hierarchical orderings.

ESI2022 Gorodetsky goroda@umich.edu 19/26



Motivation Multi-fidelity UQ Existing approaches MFNets Examples Conclusions

Synthetic response surfaces
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Highest fidelity model and pointwise errors
Natural ordering obtains order of magnitude lower errors
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Thermal block





−div(κ(µ0)∇u(µ)) = 0 in Ω,

u(µ) = 0 on Γtop,

κ(µ0)∇u(µ) · n = 0 on Γside,

κ(µ0)∇u(µ) · n = µ1 on Γbase.

κ(µ0) =

{
µ0 in Ω1,

1 in Ω2,

1 Three models: two finite element models with different mesh resolution, and reduced order
model.

2 Constructed using RBniCS [Hesthaven, Rozza, Samm, 2015]

3 Predict temperature at (0.5, 0.8)
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Thermal block results
Non-recursive solution is best over 85% realizations of training data
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Summary

▶ Determining how to efficiently fuse data from different simulations remains
a modeling problem
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Future directions

1 Develop automated ways to learn / average over graph structures
themselves

2 Increasing alignment of input space to increase correlations via active
basis methods

3 Variational version of the approach can be embedded in outer-loop
applications

4 MCMC approach is both necessary and yet still quite costly, can this be
done better?

5 Explore all the different ideas for F and discrepancy functions in the
context of MFNets

6 Expand applications

Thanks!
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