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Soot forms fast. What about nanomaterials?

• In flames and engines, soot particles form in nanoseconds
• Gas phase reactions produce an aromatic jumble
• Flat polycyclic aromatic hydrocarbons (PAHs) stick to the young “particle”

2 big questions in the soot formation community:
• What reactions lead to a particle forming so fast?
• Can we use these reactions to quickly grow useful nanomaterials?
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Phenyl + propargyl

Energies from Morozov et al., PCCP 2020, 22, 6868-6880



Phenyl + propargyl
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Phenyl + propargyl
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Phenyl + propargyl
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Flow simulation allows comparison to models

• Reactor has varying pressure and temperature

• Flow properties and chemical kinetics and are 
solved simultaneously

• We simulate the flow using a boundary-layer model
– Weddle, et al., Int. J. Chem. Kin. 2018, 50, 473-480 

20-40 Torr in 
hot section
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Phenyl + Propargyl
Agreement between experiment and simulation

• The experiment cannot distinguish isomers

• The simulation mostly agrees with experiment

• C9H7 is mostly indenyl radical according to simulation

C9H8
C9H7
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• We cut well-skipping from the simulation

C9H8
C9H7

Phenyl + Propargyl
Large role of well-skipping at 30 Torr
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• We cut well-skipping from the simulation

• C9H7 yield changes, no longer agrees with 
experiment

• Conclusion – well-skipping is the dominant 
source of C9H7 here
– Though C9H8 yield is higher

C9H8
C9H7

Phenyl + Propargyl
Large role of well-skipping at 30 Torr
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Phenyl + Propargyl
Small role of well-skipping at atmospheric pressure

• At 30 Torr (low pressure flames), 
well-skipping is significant

• Well-skipping is inconsequential 
at atmospheric pressure

Atmospheric pressure

30 TorrC9H8
C9H7
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Phenyl + Propargyl
Concentration scans consistent with proposed mechanism

• We scanned each precursor concentration 
to test for 1st or 2nd order reaction behavior

• As expected, C9H7 and C9H8 are 1st order in 
both reactants

• Biphenyl (C12H10) is 2nd order vs phenyl, 
invariant with propargyl

C9H8
C9H7
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Phenyl + Benzyl
Observation of chain reaction

• Chain reaction – the product becomes the reactant

Couch et al., Ange. Chem. Int. Ed. 2021, 60, 27230-27235 19



Benzyl Diphenylmethane Diphenylmethyl
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Phenyl

• Chain reaction – the product becomes the reactant

Phenyl + Benzyl
Observation of chain reaction
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Couch et al., Ange. Chem. Int. Ed. 2021, 60, 27230-27235

• Chain reaction – the product becomes the reactant
• Decomposition competes with further growth

– 5-member-ring radicals are quite stable

Phenyl + Benzyl
Decomposition to another stable radical
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Phenyl + Cyclopentadienyl
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Phenyl + Cyclopentadienyl
Calculation of rates
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Collisions



Phenyl + Cyclopentadienyl
Calculation of rates

• Good agreement between 
simulation and experiment

• Ph-C5H4 radical comes from well-
skipping, not sequential steps
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Phenyl + Cyclopentadienyl
Product decomposition

• 62 kcal/mol for isomerization

• 3 or more competing pathways 
after isomerization 25



Summary
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