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Soot forms fast. What about nanomaterials?

e |n flames and engines, soot particles form in nanoseconds
e Gas phase reactions produce an aromatic jumble
e Flat polycyclic aromatic hydrocarbons (PAHs) stick to the young “particle”

2 big questions in the soot formation community:
e What reactions lead to a particle forming so fast?
e (Can we use these reactions to quickly grow useful nanomaterials?
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o + 1 reactions are good radical-propagating candidates

Barrierless Loosely
association bound H
R R
— — R _R4
R2 R4 Ro R4 2
Ry Ra3
R R4
Highly conjugated
radical

3
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Phenyl + propargyl

\C' .
+ —
l _ CH2<

Potential

energy
(kcal/mol) -91.0
-95.6

Energies from Morozov et al., PCCP 2020, 22, 6868-6880
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Phenyl + propargyl

Cs

\C\
©/\ ~ () afon

Potential

energy
(kcal/mol)
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Apparatus

e Flash pyrolysis (~100 us)

30 Torr, 1600 K silicon carbide tube

Flow —

Thermal camera image
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Gas flow

Flash pyrolysis (~100 us)

Apparatus

30 Torr, 1600 K silicon carbide tube

(99.8% Helium) ‘q_r

Commercially Desired
available radicals

NO :
— [
S
O. :
O — O
CH,Br CH,
T~

HC=C-CH,Br —» HC=C-CH,
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Apparatus

Reflectron mass spectrometer

lon reflector

e Flash pyrolysis (~100 us) followed by
electron-ionization mass spectrometry

e Flash pyrolysis (~100 us) followed by

. . . — |0N detector (MCP)
electron-ionization mass spectrometry | -

lon extraction

Electron
beam

10
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lon reflector

e Flash pyrolysis (~100 us) followed by
electron-ionization mass spectrometry
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. . . — |0N detector (MCP)
electron-ionization mass spectrometry | -

lon extraction

Electron
beam

AN

150 160 170
lon mass (m/z)
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Apparatus

Reflectron mass spectrometer

lon reflector

e Flash pyrolysis (~100 us) followed by
electron-ionization mass spectrometry

e Flash pyrolysis (~100 us) followed by
electron-ionization mass spectrometry | (-

— |0N detector (MCP)

lon extraction

Electron
beam

AN
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Flow —

e Reactor has varying pressure and temperature

e Flow properties and chemical kinetics and are
solved simultaneously

e We simulate the flow using a boundary-layer model

—  Weddle, et al., Int. J. Chem. Kin. 2018, 50, 473-480

Flow simulation allows comparison to models

60
g \
= 40t
o
>
% 20t 20-40 Torr in -
a hot section \

0 0.005 001 0.015 0.02 |0.025 0.03

< 1500 | -
Qo \
5 i ]
-@ 1000
S
2 500
2L
0

0 0.005 0.01 0.015 0.02 0.025 0.03
Distance (m)
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Phenyl + Propargyl

Agreement between experiment and simulation
CoH 300 ————————
g CoHg ~ e ;\ - ™ 250 | a) Experiment

SCy
X ©+H “cH:
H = -o- C,Hg (m/z 116)

~c . Well-skippin Cap . =

| AT = CH2-< — ©/+HC\\CH @ 190 far CoH, (m/2 115)
c
O

©/§C* 4\@%5 122

04
— b) Simulation
. . . . . o™
e The experiment cannot distinguish isomers o 0.4 =C.H,
> | e PhCHCCH,
e The simulation mostly agrees with experiment c 0.3 7 heLeCt
. . . . . . @02 *CH [ e
e C,H, is mostly indenyl radical according to simulation T '
[O)
S 0.1
=
-~ —-=-= i
0 = ST - bt . . : :
800 1000 120 1400 1600

Peak Temperature (K)
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Phenyl + Propargyl

Large role of well-skipping at 30 Torr

| CgH; 300 —————————
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Phenyl + Propargyl

Large role of well-skipping at 30 Torr
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CgH;

CgHg

e At 30 Torr (low pressure flames),
well-skipping is significant

e Well-skipping is inconsequential
at atmospheric pressure

Phenyl + Propargyl
Small role of well-skipping at atmospheric pressure
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CgHg

Phenyl + Propargyl

CgH;

e We scanned each precursor concentration
to test for 15t or 29 order reaction behavior

e Asexpected, C4H, and C4Hg are 15t order in
both reactants

e Biphenyl (C;,H,,) is 2" order vs phenyl,
invariant with propargyl
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Phenyl + Benzyl
Observation of chain reaction

4 e Chain reaction —the product becomes the reactant
% c: §
+ | N — — +H
s indoacindogs
300 342

350 319

w_
Couch et al., Ange. Chem. Int. Ed. 2021, 60, 27230-27235

Energy
(kJ/mol)
—
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Benzyl Diphenylmethane Diphenylmethyl
Phenyl

CH,

3 342
/T ----l\\\\\\--£l--./////,----

Triphenylmethane Triphenylmethyl
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e Chain reaction —the product becomes the reactant
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e Decomposition competes with further growth
— 5-member-ring radicals are quite stable

-
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e Chain reaction —the product becomes the reactant

2000 . : H
H
: +H

1500 ¢ 1

Phenyl + Benzyl
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Couch et al., Ange. Chem. Int. Ed. 2021, 60, 27230-27235
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Phenyl + Cyclopentadienyl

| Ca CH)

- W

* Surrogate for polycyclic o +  reactions
Aryl o radicals Resonance-stabilized r radicals

H
C

0 . : .
| OOQ ey,
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Phenyl + Cyclopentadienyl
Calculation of rates
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Phenyl + Cyclopentadienyl
Calculation of rates

1000
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Phenyl + Cyclopentadienyl
Product decomposition

350 . ; .

300 r +Ph—C5H4

250 | —.—Ph—C5H3 (+H) |
[% Ph-C;H, (+C2H2)
S 200 + 1
8 —'—Ph-CzH (+C3H3)
c 150 i
o

100 r

50
0
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Temperature (K)

e 62 kcal/mol for isomerization

e 3 or more competing pathways
after isomerization
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Summary

e We studied three o-radical + m-radical reactions Ry —Ry

— All three showed well-skipping behavior at 30 Torr 30 Torr

— Chain reaction and 5-member-ring radicals are observed

— At atmospheric pressure and higher, well-skipping is suppressed
but low-barrier H loss is still possible

— The simulation is successfully modeling the experiment

e How can we utilize soot chemistry for carbon materials?
— Grow nanotubes from larger radicals or PAHs

— Use carbon particles as nucleation site for other materials
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