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Overview

 What do white dwarf spectra tell us?
* Mass, Temperature, Atmospheric Composition

 How do white dwarfs help answer broader astrophysical questions?
* Ages of stellar populations, exoplanets, cosmology

* Why do we think there are problems with spectroscopic mass determinations?
* Independent mass estimates disagree
 What developments are underway with the white dwarf photosphere
experiment?
* Achieving higher densities in hydrogen
* Developing independent electron density diagnostic (PDV)
* Measuring Stark broadening of He | 5015 & 5876 lines

* Theory update: screening, continuum lowering/occupation probability, H,
guasi-molecular features



The Importance of White Dwarf Spectra
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White Dwarf Spectra = Composition, Mass, & Temperature
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White Dwarf Spectra = Composition, Mass, & Temperature
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White Dwarf Spectra = Composition, Mass & Temperature
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White Dwarf Spectra = Composition, Mass & Temperature
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/ Measurements focused on 3 main types

700
600}

Benchmark measurements
of Balmer lines.

)]
o
o

400f

Relative Flux

300}

200}

4000 5000 6000 7000
Wavelength (A)

100k

Measuring He | Stark/neutral

broadening.

4000 4500 5000

SDSS J1153+0056

Measuring hotter hot DQ
conditions (Cll lines)

Normalized Flux (f,)




White Dwarfs and Stellar Evolution
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White Dwarfs Constrain Ages of Stellar Populations
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White Dwarfs Constrain Ages of Stellar Populations
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White Dwarfs Provide Unigue Insights on Exoplanets
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White Dwarfs Provide Unigue Insights on Exoplanets
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Initial-Final Mass Relation allows us to infer
progenitor mass from white dwarf mass
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Count

Host Mass of Confirmed Exoplanets (NASA Exoplanet Archive)
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Planetary detection on the main sequence is particularly

hard at high mass.
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Host Mass of Confirmed Exoplanets (NASA Exoplanet Archive)
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White Dwarfs allow us to probe this regime much more easily.



Host Mass of Confirmed Exoplanets (NASA Exoplanet Archive)
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The Initial Final Mass relation lets us translate knowledge

of white dwarf planetary systems to previous stages of
stellar evolution.



Count

Host Mass of Confirmed Exoplanets (NASA Exoplanet Archive)
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The Initial Final Mass relation lets us translate knowledge

of white dwarf planetary systems to previous stages of
stellar evolution.



White Dwarfs Reveal
Planetary Interiors

They Crush Exoplanetary

Rocky Debris & Accrete It

Spectra Give Abundances

Accurate log g Necessary to
Infer Composition

For more on planetary material in white dwarf
atmospheres, see the breakout session talk by
Simon Blouin this afternoon.
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Fvidence of Inaccurate Mass
& Temperature
Determinations






Why are some of these brighter than others?
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Why are some of these brighter than others?

Temperature
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Why are some of these brighter than others?

e, € Fooe X (Radius /Dist)?

star



Why are some of these brighter than others?

feaed € Foor X (Radius/Dist)?
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If we measure all of these, we can determine radius
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Mass & T.+from Broadband Photometry + Gaia Distances

le—28 J1615+4543 (Teff = 20847 K, Dist = 599 pc)
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Photometric and Spectroscopic Temperatures
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Photometric and Spectroscopic Masses Disagree
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Fits to white dwart spectral lines ook pretty
good, but...
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Individual Balmer lines give different results
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Schaeuble et al. (2019)

Measures

— Continuum LOS
— Emission LOS
— Absorption LOS
e Z-pinch extent
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The White Dwart Photosphere Experiment
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Hydrogen data at higher densities can more easily test
theories of line shapes and occupation probability

z2832, B0—90 ns
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Figure 2. Measured HB spectral transmission at 80-90 ns during experiment
z2832. We fit using different theoretical line-profile calculations (n. ~ 83, ~ 93,
and ~ 76 x 10'® cm~ for VCS, TB, and XENO, respectively) and show the good-
ness of fit (reduced y?).

Falcon et al. 2017



Hydrogen data at higher densities can more easily test
theories of line shapes and occupation probability

Previous data at higher densities
showed larger disagreement
among theories.
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Differences in “pseudo-continuum” opacity should
0e more pronounced at higher n,

1el10 p =1.10e-06 g/cm?3, Lemke tables, Synspec fits

e z2553: time=45 ns
- (1.25 eV, 17.28): pseudo off
— (1.25 eV, 17.28): pseudo on

23 24 25 2.6 27 28 29 30 3.1
eV

These calculations use the code Synspec, part of the Tlusty suite (lvan Hubeny),
which is used to fit the observed spectra of white dwarf stars.



Previous attempts at higher n_ had to move closer to
the back wall

Previous data at higher densities — Continuum LOS

showed larger disagreement — Emission LOS
— Absorption LOS

== Z-pinch extent
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Previous attempts at higher n_ had to move closer to
the back wall

Previous data at higher densities
showed larger disagreement
among theories.

Higher fill pressure did not result

in higher n_ at the 10 mm LOS. 110.00 S AAYAY,
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Achieved higher n, in H at 10 mm line of sight

Increased pressure (from 10 Torr to 25 Torr) and
Decreased window thickness (from 1.4 um to 0.7 um)
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Fits to HP suggest n, > 101 cm3

Hitting upper bounds of our current model grid.
Cf. our typical n, ~ 5 x 10 -3 x 10%7.

MCMC Fit: z3674_svs4_HBet em (z3674_svs4_HBet_em.fim)
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An independent n, diagnostic is important

 We don’t want to have to rely on theoretical HB lineshapes
* This is especially important at higher densities

 We don’t always have Hf3
e Carbon and C/O experiments
* Pure He experiments
* Wavelength range



notonic Doppler Velocimetry (PDV) provides
n independent measure of n,

PDV is sensitive to changes in the index of refraction.
The index of refraction changes as n, changes.

Replaced baffle with

rigid shelf to mount
||| reflective tape.




Acquired first PDV results last week (z3721)
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Helium atmosphere (DB) white dwarfs also show
oroblems with spectroscopic mass
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Spectral power [W/A]

Measuring Helium lines with the WDPE on Z

'i I T I ] T I
I
LOp | i : . : — . , ,
L 4713 \ | Measuring He I Stark line shapes in the laboratory to examine differences in photometric and spectroscopic DB
o5l Hel i White Dwarf masses
B ]
 HB E M.-A. ScHAEUBLE,}' 2 T. NacayaMma,! J. E. BaiLey,! M. A. Gicosos,® R. FLoripo,* S. BLouin,? T. A. GoMmEz,!
ook i B. DunvLaP,?” M. H. MONTGOMERY,? AND D. E. WINGET?
4800 L Sandia National Laboratories, Albugquerque, NM 87185, USA
2 Department of Astronomy and McDonald Observatory, The University of Texas at Austin, Austin, TX 78712, USA
3 Departamento de Fisica Tedrica, Atémica y Optica, Universidad de Valladolid, 47071 Valladolid, Spain
r 4{UNAT-Departmento de Fisica, Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain
0.75 - 5 Department of Physics & Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada
0.50 .
: Submitted to ApJ
0'25 B 5875 He I v ] o I . L . I . . . 1 . L . 1 1
: | ] 0 20 40 60 80
0.00 E= N TS S S Experiment time [ns]
5500 2600 2700 5800 5900 6000

Wavelength [A]




Spectral power [W/A]

Measuring Helium lines with the WDPE on Z
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Fits to He | 5015 give n, in agreement with HJ3

Optical depth
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Fits to He | 5875 give n_ in agreement with HJ3
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Screening matters
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Screening matters
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A non-interacting simulation can be parameterized

to mimic a fully interacting simulation
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Occupation probability prescription matters

Intensity (Area Normalized)
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H, quasi-molecular teatures

Area Normalized Line Shape

HB Line Shape Combination Example
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See poster by Jackson White!

H2+ Quasi Molecular Line Shape
Profiles in Stellar Atmospheres

Jackson White!, Thomas Gomez'2, Mike Montgomery?, Bart Dunlap?
Department of Astronomy, University of Texas at Austin
2Sandia National Laboratory



Platform Development



Light from pinch is used to backlight plasma in cell

Long fiber delays
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into cell
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Dual core fiber allows
direct measurement
of backlighting signal

Cell no longer needs

backlighting wedge or

continuum line of sight
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Pinch light successfully fielded as backlight for absorption spectrum

Wavelength (A)

Backlight signal
attenuated by
H absorption

Absorption
Spectrum




Pinch light successfully fielded as backlight for absorption spectrum

Backlight signal
attenuated by
H absorption

Absorption
Spectrum



Overview

 What do white dwarf spectra tell us?
* Mass, Temperature, Atmospheric Composition

 How do white dwarfs help answer broader astrophysical questions?
* Ages of stellar populations, exoplanets, cosmology

* Why do we think there are problems with spectroscopic mass determinations?
* Independent mass estimates disagree
 What developments are underway with the white dwarf photosphere
experiment?
* Achieving higher densities in hydrogen
* Developing independent electron density diagnostic (PDV)
* Measuring Stark broadening of He | 5015 & 5876 lines

* Theory update: screening, continuum lowering/occupation probability, H,
guasi-molecular features






Converting surface gravity to
mass via mass-radius relationship
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Mass & T.+from Broadband Photometry + Gaia Distances

le—28 J1615+4543 (Teff = 20847 K, Dist = 599 pc)
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Mass & T.+from Broadband Photometry + Gaia Distances

le—28 J1615+4543 (Teff = 20847 K, Dist = 599 pc)
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Mass & T.+from Broadband Photometry + Gaia Distances

le—28 J1615+4543 (Teff = 20847 K, Dist = 599 pc)
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Analysis of the WDPE absorption spectra reveal
trends similar to those observed in stellar spectra
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Schaeuble et al. (2019)
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Line fits to absorption spectra. Hp and Hy 7, values differ by ~30%.

These are used to extract 7, values.



Analysis of the WDPE absorption spectra reveal
trends similar to those observed in stellar spectra
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Hydrogen data at higher densities can more easily test
theories of line shapes and occupation probability

=— Continuum LOS

Previous data at higher densities —Emission LOS |
. — Absorption LOS |
showed larger disagreement - Z-pinch extent
. buffer
among theories. ot 92552

Data had to be taken at the 5 mm
line of sight, where gradients

‘e
e
0

across the beam are larger. puffer i

Hydrogen (z3534)

Continuum data not collected
simultaneously, which limits the
ability to test theories of
occupation probability.

Raw Counts



Achieved higher n, in H at 10 mm line of sight

* Fill pressure = 18 Torr.

* More contamination visible.

* Cell sensor indicated increase in pressure after lockup; gas cabinet
sensor did not show increase.
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Achieved higher n,in H at 10 mm line of sight

* Fill pressure =35 Torr
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He [ 5015 line widths compared to theory
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He | 5875 line widths compared to theory
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Effect of neutral density
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Effect of neutral density
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Light from pinch is used to backlight plasma in cell

Dual core fiber allows
direct measurement

Long fiber delays of backlighting signal
light and directs it

into cell
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Pinch light successfully fielded as backlight for absorption spectrum
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Hydrogen absorption measured with backlight
from z pinch
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Pinch as backlight enables several possibilities

* |t should increase signal-to-noise and remove self-emission uncertainty

* Allows absorption measurement at late time when our standard
backlighting wedge has cooled off

* Allows the possibility of high S/N absorption measurements along other
lines of sight (e.g., downward lines of sight with short plasma lengths)

* With more shielding or distance, we should be able to capture peak
brightness for a significant gain in S/N.

* Capturing the peak would also allow for a brief backlighting pulse, which
could allow absorption and emission on the same system and LOS.



Naive application shows attenuated spectrum
brighter than backlight spectrum

70000

60000 A

50000 A

40000 A

30000 A
' N

10000 A

0_

3800 4000 4200 4400 4600 4800 5000 5200



Spectral lines from lens are removed ~ well in
resulting transmission spectrum

3:0-

2.5+

2.0

i

1.0

0:54

V

3800 4000 4200 4400 4600 4800 5000 5200

0.0 -




Spectra can be scaled based on early-time data
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