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Abstract 

This work presents a novel framework for deep learning (DL)-based CO2 flow modeling of saturation and pressure distribution 
over time and data assimilation approach for real-time forecasting. In this work we develop and apply deep learning-based forward 
and inverse modeling framework to accelerate real-time forecasting. First, a combination of convolutional neural networks (CNNs), 
long-short term memory (LSTM), and deep neural networks (DNNs) is employed to construct DL-based surrogate modeling of 
multiphase CO2 flow and pressure propagation over time in heterogeneous subsurface fields. Second, a variational autoencoder 
(VAE) in the data assimilation (DA) framework is developed for a real-time history matching of CO2 and pressure plume 
development. The encoder in VAE works as a nonlinear dimension reduction method that determines a low-dimensional latent 
space “z” with encoded/compressed information, possibly performing better than traditional linear dimension reduction methods. 
For data assimilation, the latent space z, much smaller than the dimension of actual physical parameter space, is updated, which is 
conditioned on the observed data for effective sampling with better convergence on the low dimensional subspace. The decoder in 
VAE using the updated latent data is used to generate distribution of input parameters (e.g., permeability and porosity), which are 
used as input to CNN-LSTM-DNN forward model for fast prediction of CO2 saturation and pressure plume development. With 
computationally efficient DL-based forward models the fast data assimilation can be completed in a timely fashion. Additionally, 
posterior covariance analysis gives us an ensemble generation of input parameters (e.g., permeability and porosity distribution) for 
computationally efficient uncertainty quantification with DL-based forward models. For demonstration purposes, two-dimensional 
(2D) example cases with various heterogeneous permeability fields are used to evaluate the feasibility of the proposed framework. 
The newly developed data assimilation framework demonstrates promising results of permeability estimation with uncertainty 
quantification and pressure prediction with the demonstration case. With full 3D reservoir scale problems, training time may take 
longer, but based on our experience with other 3D problems, the CNN-LSTM-DNN model can be trained very efficiently, the 
execution time of single ML forward model over transient solutions is very short (<< 1 second), and the latent dimension is typically 
small (e.g, 16-32). As a result, the computational efficiency of data assimilation framework will be similarly archived for a 3D 
reservoir model. Hence, the proposed data assimilation framework approach can be easily used to demonstrate in a realistic 3D 
problem for real-time forecasting. 
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1. Introduction  

This work presents a novel framework for deep learning-based CO2 flow modeling of pressure and saturation 

distribution over time and data assimilation approach for real-time forecasting of pressure response. In traditional 

history matching/data assimilation approaches [1-3] the biggest challenging obstacle for real-time forecasting is that 

these approaches need to account for high dimensional problems which typically require the high computational 

burdens such as matrix calculations. Secondly, a number of observations are generally much smaller than unknown 

parameters such as permeability and porosity, which causes the inverse model to be underdetermined and ill-posed. 

Thirdly, primary model parameters such as permeability and porosity are uncertain, requiring us to account for the 
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uncertainty in the model and data. Hence, we often need to run a number of forward model runs to perform inverse 

modeling with uncertainty quantification such as ensemble data assimilation. Although many new algorithms and 

advanced hardware development enabled us to perform faster, it is still very challenging to achieve real-time 

forecasting. 

In this work we overcome two main challenges by constructing ML-driven fast forward model(s) to resolve 

computational burdens of reservoir simulations and by reducing dimension of primary variables into low dimensional 

latent space to resolve the number of forward model runs required for inversion. First, combination of convolutional 

neural networks (CNNs), long-short term memory (LSTM), and deep neural networks (DNNs) is employed to 

construct deep learning (DL)-based surrogate modeling of predicting multiphase CO2 flow and pressure propagation 

over time in heterogeneous subsurface fields. Second, a variational autoencoder (VAE) in the data assimilation (DA) 

framework is developed for a real-time history matching of CO2 and pressure plume development. In contrast to linear 

dimensional methods such as principal component analysis [e.g., 24, 6], the encoder in VAE works as a nonlinear 

dimension reduction method that determines a low-dimensional latent space “z” with encoded/compressed 

information, possibly performing better than traditional linear dimension reduction methods. For data assimilation, the 

latent space z is updated conditioned on the observed data for effective sampling with better convergence on the low 

dimensional subspace. The decoder in VAE using the updated latent data is used to generate distribution of state 

variables (i.e., permeability and porosity), which are used as input to CNN-LSTM-DNN model for fast forecasting of 

CO2 saturation and pressure plume development. With computationally efficient CNN-LSTM-DNN forward model 

the fast data assimilation can be completed in a timely fashion for real-time history matching of CO2 operations and 

forecasting CO2 and pressure plume development. In this report, we report the overview of VAE and data assimilation 

framework and two examples to demonstrate how the newly developed data assimilation framework is performed with 

DL-driven fast forward model constructed with synthetic data generated from the Clastic Shelf dataset.  

2. ML Model Structure and Description 

2.1. ML Forward model (CNN-LSTMs-DNN) 

 ML model architecture: A DL-driven reduced order model is constructed based on Convolutional neural network 

(CNN)-Long Short Term Memory (LSTM)-Dense Neural Network (DNN) architecture for pressure prediction. This 

ML architecture has been originally developed to predict pressure and CO2 saturation distribution in three-dimensional 

(3-D) Clastic Shelf data generated as a part of US DOE SMART-CS Initiative project [5] based on the previous study 

[6-7]. Here we developed a 2D version of CNN-LSTM-DNN model to make a pressure prediction. The model 

architecture includes two separate inputs consisting of (1) static and/or spatial data such as permeability, porosity, and 

final cumulative injection amounts at four well locations and (2) temporal or dynamic data such as cumulative 

injection amount over time per well. For static input, 2D distribution of permeability, porosity, and final cumulative 

injection amount are used to construct an input dimension with three features (i.e., n_features = 3) and for dynamic 

input, cumulative injection amount per well is used.  

For static input, six 2D CNN layers as an encoder is used to project the state variables into a low-dimensional 

subspace which is concatenated with dynamic data to construct time-series input into one LSTM layer to assimilate 

the time-series dynamics in the low dimensional space, and a deep neural network with four dense layers as decoder 

to project the solution back into high dimensional space to match the dimension of model prediction. Each CNN layer 

block has the same architecture including 2D CNN followed by batch normalization and maxpooling layer. The 

number of LSTM unit is 512. The model architecture was optimized, however, other key hyperparameters are 

manually evaluated to find relatively optimal values. For CNN and dense layers, rectified linear unit (Relu) and leaky 

Relu activation functions are used, respectively. In particular, a TimeDistributed layer wrapper available in Keras is 

employed to allow each dense layer to maintain the same model parameters for every temporal slice (i.e., every time 

step in the current model).  

Loss functions: Custom loss functions are constructed based on known physics and domain expert knowledge. In 

addition to a reconstruction mean square error (MSE) the pressure model employs loss equations to account for the 

initial pressure distribution and 3×3 pressure distribution around each injection well. Each additional loss term has its 

own weight that can be considered an optimizer.    
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2.2. Nonlinear dimension reduction via Variational Autoencoder  

 
Figure 1. Schematic of variational autoencoder 

 

VAE model description and architecture: Variational autoencoders (VAEs) are a variant of AEs that tackles the 

problem of the latent space irregularity by making the encoder return a desirable distribution over the latent space 

using variational (i.e., deterministic optimization in terms of the mean of distribution) techniques. The idea is to set a 

parameterized family of distribution as a target in the latent space by minimizing a given approximation error metric  

as in the loss function shown in the Figure 1. Once trained, input data are encoded in a low-dimensional latent space 

such that the outputs returned by the encoder are enforced to follow a well-known distribution, for example, a standard 

normal distribution. Then with the trained decoder, we simply feed samples from a standard normal distribution to 

generate meaningful input parameters such as permeability fields.  

2.3. Data Assimilation Framework 

 The developed method utilizes one of the current efficient data assimilation methods such as Bayesian Inversion 

with Gaussian Prior and the posterior probability is maximized using the Gauss-Newton (GN) method. At each GN 

iteration, one has to construct a Jacobian matrix (J), which can be computed using the adjoint-based method.  The 

schematic of our data assimilation approach is shown in Figure 2. 

 

Figure 2. Schematic of data assimilation framework. Latent space “z” obtained by VAE, is updated in (En)DA-based methods with various 

measured data. 

As shown in Figure 2, we use VAE and its decoder to map the permeability k field to the latent vector z whose 

dimension is much smaller than the original dimension of k field while ensuring a good approximation accuracy as 

below. With 𝑙 Gauss Newton iterations from 𝑚0 = 𝑚𝑝𝑟𝑖𝑜𝑟 

𝑚𝑙+1 = 𝑚0 + 𝐶𝑝𝑟𝑖𝑜𝑟𝐽(𝐽𝐶𝑝𝑟𝑖𝑜𝑟𝐽
𝑇 + 𝐶𝑜𝑏𝑠)

−1
(𝑦 − 𝐺(𝑚𝑙) + 𝐽(𝑚𝑙 −𝑚0)) 

With (nonlinear) dimension reduction 𝐺 of dim⁡(𝑚) to the dimension of the latent space with 𝑑𝑖𝑚⁡(𝑧), 

𝑦 = 𝐺(𝐷(𝑧)) where 𝑑𝑖𝑚⁡(𝑧) ⁡≪ 𝑑𝑖𝑚⁡(𝑚) and the latent space variable is updated as 
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𝑧𝑙+1 = 𝑧𝑙 + 𝛼(𝐽𝑧
𝑇𝐶𝑜𝑏𝑠

−1 𝐽𝑧 + 𝐶𝑝𝑟𝑖𝑜𝑟𝑧
−1 )

−1
(𝑦 − 𝐺 (𝐷(𝑧𝑙)) − 𝐶𝑝𝑟𝑖𝑜𝑟𝑧

−1 𝑧𝑙) 

with step length (learning rate 𝛼). And the posterior covariance is given as 

𝐶𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟𝑧 = (𝐽𝑧
𝑇𝐶𝑜𝑏𝑠

−1 𝐽𝑧 + 𝐶𝑝𝑟𝑖𝑜𝑟𝑧
−1 )

−1
. 

 In this work, Jacobian matrix can be easily approximated with a finite difference method with the number of 

unknowns (+ 1) forward model runs. As seen in the equations above, the unique feature of our framework is that the 

data assimilation is performed in small nonlinear latent space of unknown parameters with dim(z). Hence, it requires 

only “dim(z)” forward model executions at each iteration instead of dim(m) or dim(obs). Finally, with VAE it 

constructs the prior. 

3. Results 

3.1. CNN-LSTM-DNN Forward Model Data 

 A total of 70 cases from the Clastic Shelf data are used to train, validate, and test the CNN-LSTM-DNN model. 

The best trained model was selected based on the loss of the validation set which was not used directly for model 

training. Figure 3 shows key results of model prediction of pressure for cases P50-1 (case#48) and P50-16 (case#63) 

and parity plots of pressure fields for two P50 and two P75 cases. 

 
Figure 3. Selected pressure field cases (right, middle) and parity plots (left) of CNN-LSTM-DNN model for pressure prediction. Simulation 

values on the x-axis are from the Clastic Shelf model data (i.e., truth values in this synthetic cases). Case number represents permeability and 

porosity fields corresponding to the probability of the distribution. 

3.2. CNN-LSTM-DNN Forward Model Data 

As shown in Figure 2, the decoder is used as a generative model to construct permeability fields from the latent 

space (z). Figure 4 shows the reconstructed permeability fields through the latent space, which resemble training data 

very well. As described, the training data is encoded to learn how to construct the latent space, which is then used to 

reconstruct the permeability field. In this case the latent space dimension was 32 that is the same for the data 

assimilation case study in the following section. 
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Figure 4. Performance of the decoder to construct 2D permeability fields from training Clastic Shelf permeability fields. 

 

4. Demonstration with Clastic Shelf data 

4.1. Case Description 

A demonstration case with Clastic Shelf data is developed to perform forecasting of the pressure distribution due 

to CO2 injection by updating the permeability field as new monitoring data become available over time. For 

performance comparison, case P50-1 is chosen as a testing case and the layer #3 in the Clastic Shelf model where the 

reservoir top layer is located is used in this demonstration case. Overall, Figure 5 shows two-dimensional (2D) 

permeability, porosity, pressure, and saturation distributions. Permeability (& porosity) and CO2 injection rates at four 

injection wells are input and observed data include pressure data at four injection (INJ) and two monitoring wells 

(MW) (monthly data up to 2 yrs, followed by yearly data to 10 yrs). 

 

 
 

Figure 5. (left) Permeability, porosity, pressure, and saturation distributions in the layer #3 (top layer of the reservoir formation) of case P50-1 

(case#48) in the Clastic Shelf data. Pressure and saturation distribution at the last time step (10 yrs) are shown with four injection wells. (right) 

Pressure profiles at four injection, two monitoring, and three testing wells. Two numbers in a blanket indicate the location of each well. 
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For the demonstration purpose, the observed pressure data at four injection (INJ) and two monitoring wells 

(MWs) are used to calibrate the permeability field during calibration stage up to Obs=1.5, 2, 5, and 10 yrs (Figure 

5). For the following forecasting period up to 10 yrs, performance of the calibrated model with an updated 

permeability field is compared against the observed data to evaluate the data assimilation framework developed in 

this work. For an example of Obs=1.5 yrs, pressure data up to 1.5 yrs are used first for model calibration and then 

data assimilation with pressure data up to 2, 5, and 10 yrs are performed. For performance comparison, case P50-1 is 

used as testing case with two monitoring wells data. Pressure change over time at three testing locations (see Figure 

5), 2D pressure fields in the entire domain at selected times, update of permeability fields and uncertainty 

quantification are also reported.  

4.2. Demonstration Results 

Pressure data observed at four injection wells only and two additional monitoring wells up to varying years (Obs 

= 1.5, 2, 5, and 10 yrs) are used for data assimilation in this section. Estimated permeability fields with different 

observed pressure data (Obs=1.5, 2, 5, 10 yrs) and corresponding standard deviation fields of 1,000 permeability fields 

generated by the post covariance analysis are shown in Figure 6. These stochastic realizations can be used to construct 

the uncertainty bound of predicted pressure (results not shown here). Predicted pressure data at three testing locations 

over time are presented in Figure 7. 2D pressure fields predicted by the calibrated model at selected times (1.5, 2, 5, 

and 10 yrs) are presented in Figure 8. 

 

 
 

Figure 6. (a-b) Estimated permeability fields using observed pressure data at four injection wells only (Scenario #1) and two additional 

monitoring wells (Scenario #2) using different observed periods (Obs = 1.5, 2, 5, and 10 yrs). The locations of injection and monitoring wells are 

shown as circles. (c-d) Standard deviation fields of 1,000 permeability realizations generated based on the calibrated permeability fields using 

post covariance analysis are plotted together with the true permeability field (case P50-1). Stochastic realizations can be used to estimate the 

uncertainty bound of pressure prediction as well. 
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Figure 7. Comparison between observed and predicted pressure data over time at three testing locations for two Scenarios with varying observed 

periods (Obs = 1.5, 2, 5, and 10 yrs). Pressure data observed at four injection wells (4INJ) and two additional monitoring wells (4INJ_2MWs) are 

known. Varying observed data (Obs = 1.5, 2, 5, and 10 yrs) are used for data assimilation and the rest of pressure data is the ML based prediction 

using the permeability field in Figure 6. 
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Figure 8. Comparison between observed (CMG data) and predicted pressure field at four different times. Observed pressure data at four injection 

wells and two monitoring wells up to Obs =1.5, 2, 5, 10 are used for data assimilation. For Obs =1.5 yrs, the rest of pressure fields after 1.5 yrs 

are ML-based predictions at 2, 5, and 10 yrs using the permeability field estimated (see Figure 6b). 

Overall, Figure 6 shows that estimated permeability fields for all 8 cases (four different observed periods per each 

monitoring scenario) resemble the target permeability field very well. Although subtle changes in permeability fields 

(e.g., changes around wells) are shown locally, the visual comparison shows remarkable similarities. This indicates 

that pressure data at a limited number of wells may contain relatively good response over the model domain. In 

addition, the decoder developed in this work (see Figure 4) can generate a relatively high quality of permeability fields 

which can represent key features of the clastic shelf data. It is noted that the initial field was generated relatively 

uniformly using the latent variables with zero mean and unity of variance. Standard deviation fields (Figure 7c-d) that 

are computed based on 1,000 permeability realizations generated by the post covariance analysis show that both 

Scenarios for Obs=1.5, 2, and 5 yrs have relatively similar patterns until Obs=10 yrs when Scenario #2 with two 

additional MWs shows higher standard deviations than Scenario #1. The similar patterns of permeability estimation 

and standard deviations of stochastic fields using Obs=1.5, 2, and 5 yrs for both Scenarios indicate that pressure data 

between Obs=1.5 yrs and up to Obs=5 yrs may have similar information regarding the permeability and pressure 

response, but additional data after 5 yrs may contain more pressure response, particularly with pressure data at two 

monitoring wells (as in high standard deviation field using Obs=10yrs for Scenario #2). 

Figure 8 shows the pressure profile predicted at three testing locations (see Figure 6 for testing locations) with the 

forward ML model using the permeability fields estimated using varying observed data (Obs=1.5, 2, 5, 10 yrs). 
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Overall, predicted pressure profiles at three testing locations for all cases match the observed data well. Particularly 

the monthly data up to 2 yrs are quite well predicted at all three testing locations while the pressure data after 2 yrs 

(i.e., yearly observed data) are predicted with varying accuracy. Comparison of results with Obs=1.5 and 10 yrs at 

testing locations #1 and #3 (Figure 8a&d) shows that pressure up to 2 yrs is predicted well at both locations, while 

pressure after 2 yrs is predicted differently at two locations. At test location #1, pressure prediction after 2 yrs tends 

to be better with Obs=1.5 yrs compared to Obs=10yrs, while a few yearly pressure data between 2 and 5 yrs are 

relatively predicted well with Obs=10yrs, but less accurately after 5 yrs with Obs=10 yrs. At testing location #3, 

pressure prediction after 2 yrs is relatively similar. This reveals the impact of local heterogeneity patterns on the 

pressure field. The relatively higher error at test location #2 is mostly due to the location of test #3 which is located 

outside the high permeability zone. Since pressure perturbation is caused by CO2 injection at four different wells in 

the high permeability zone (i.e., lithoface), test #3 outside this zone is less sensitive to pressure data at additional 

monitoring wells and less accurately predicted.  

Pressure fields predicted at 1.5, 2, 5, and 10 yrs using the estimated permeability fields (Figure 7) are presented in 

Figure 8. As expected in the estimated permeability fields, predicted pressure fields match the CMG data (i.e., truth 

in this synthetic case) very well. MAPE values in Table 1 shows a slightly different tendency over time. However, the 

scale of MAPE values are quite small compared to the range of pressure fields (~1800 to ~2400 psi). This clearly 

demonstrates that the data assimilation framework works very well to recover the pressure fields with relatively limited 

observed data.  

     Table 1. Mean absolute pressure error (MAPE) values for each case predicted at T=1.5, 2, 5, and 10 yrs with varying 
observed data (Obs=1.5, 2, 5, 10 yrs). Pressure fields in Figure 8 are used to compute MAPE values. 

 Scenario: Observed data at 4 INJs, 2 MWS 

 1.5 yrs 2 yrs 5 yrs 10 yrs 

T = 1.5 yrs 0.070 0.165 0.041 0.058 

T = 2 yrs 0.153 0.209 0.064 0.090 

T = 5 yrs 0.210 0.287 0.091 0.182 

T = 10 yrs 0.272 0.246 0.088 0.158 

4.3. Computational Times 

Overall, training of CNN-LSTM-DNN and VAE decoder models was performed using NVIDIA Quadro RTX 6000 

and forward model prediction and data assimilation were performed using a laptop with 32G RAM - Intel(R) 

Core(TM) i9-10885H CPU @ 2.40GHz. It is noted that execution of trained ML models does not need GPU 

computing. Overall, training of CNN-LSTM-DNN takes ~ 10-15 min with 11 min for the forward model used in this 

demonstration. VAE training takes ~ 10min. Each run of CNN-LSTM-DNN and decoder of VAE models during data 

assimilation takes ~10 milliseconds. For data assimilation, a total number of iterations vary depending on the 

convergence, but it ranges between 20 and 42 for cases reported in this work. Overall, it takes 3-5 min for data 

assimilation.  

5. Recommended Next Steps 

 The newly developed data assimilation framework with CNN-LSTM-DNN forward model and decoder of 

permeability generation demonstrates promising results of permeability estimation with uncertainty quantification and 

pressure prediction with the demonstration case. Although the demonstration case was performed with 2D examples, 

our framework is not limited to 2D, but readily applicable for 3D full reservoir scale problems. Here we demonstrate 

the framework with pressure data, however, it is straightforward to extend to a problem for both pressure and 

saturation. It is noted that pressure prediction at the injection wells has slightly higher errors in the ML model although 

this is quite common in ML-driven models. In the near future, we will evaluate a recently developed continuous 

conditional generative adversarial network (CcGAN) [8,9] which seems to work for challenging datasets well 

including pressure at the injection wells. One key aspect of joint data assimilation is to represent reservoir 

characteristics (channel preferential flow patterns & barriers) and faults/fractures-matrix systems in the inverse 

modeling toolbox through multiple datasets that will have different types of spatio-temporal information. This will be 

achieved by updating the fast ML-based forward modeling engine for coupled hydro-mechanical processes (e.g., 
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poroelaticity) and data assimilation of both point measurement data and distributed monitoring data with the inverse 

modeling engine developed in this work. Generative ML models (VAE and GAN) can be utilized to represent joint 

fracture/fault and continuum-based reservoir models for data assimilation with uncertainty quantification. 
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