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Slip Transmission and Voiding during Slip Band
Intersections in Fe,(Ni,,Cr,, Stainless Steels
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Experimental Observations in Fe-Ni-Cr Stainless
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Eight Possible Band Intersections
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Questions

d What is the slip transmission propensity order
for the eight band intersection processes?

d What is the voiding propensity order for the
eight band intersection processes?

d Why the e-martensite becomes a’-martensite
when a secondary band penetrates an g-band?

d We perform molecular dynamics (MD)
simulations to answer these questions.



Literature MD Simulations
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 Enforce artificial shear;

 Predict wrong orientation



Unique Features of Our MD Simulations

d Use non-orthogonal cells to enforce fully periodic boundary
conditions to eliminate artificial surface effects that are present

In previous studies;
d Explore all eight possible slip band intersections;
 Identify propensity of both slip transmission and interfacial
voiding;
JPredict o’ formation without manual constraints.



Slip Transmission MD Methodology

dUse NVT (constant volume) ensemble;
 Perform simulations at 300 K for 8 ns;

J Apply shear strain-controlled method at a shear strain rate of
0.012 /ns with the shear direction parallel to the Burgers
vector,

d The shear strain rate is modeled in segments: a 0.00192
instantaneous shear strain is applied every 0.16 ns to enable
time-averaged shear stress to be calculated for each segment;
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e-to-¢ Transmission

y [112] initial configuration 4 ns (y=0.048) 4 ns (y=0.048)
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d Our MD algorithm is able to capture the expansion of the
secondary g-band and its collision with the primary e-band;

dRegardless of the character angle (30°, 90°), the secondary -
band is seen to transmit into the primary e-band at a shear
strain of 0.048;
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Twin-to-¢ Transmission

y [112] initial configuration 4 ns (y=0.048) 4 ns (y=0.048)
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d Our MD algorithm is able to capture the expansion of the
secondary twin-band and its collision with the primary ¢-band;

dRegardless of the character angle (30°, 90°), the secondary twin
-band is seen to transmit into the primary e-band at a shear
strain of 0.048;



e-to-Twin Transmission

y [112] initial configuration 4 ns (y=0.048) 4 ns (y=0.048)
]

m@

/.
Etﬂmwm/

z[110] Som- T=300K,7=0.012 ns! m= FCC s HCP

d Our MD algorithm is able to capture the expansion of the
secondary e-band and its collision with the primary twin-band;

dRegardless of the character angle (30°, 90°), the secondary e¢-
band is seen to unable to transmit into the primary twin-band at
the shear strain of 0.048.



Twin-to-Twin Transmission

y [112] initial configuration 4 ns (y = 0.048) 4 ns (y = 0.048)
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dOur MD algorithm is able to capture the expansion of the
secondary twin-band and its collision with the primary twin-
band,

dRegardless of the character angle (30°, 90°), the secondary twin

-band is seen to unable to transmit into the primary twin-band at
the chear <train of O 048



oOtress-Strain Curves for all 8
. Inlterjselctilons
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Transmlssmn Pathways into twm

dThe {1 1 1} stacklng in matrlx and twin regions is B-on-A (B/A)
or C-on-A (C/A) respectively;

 Top-views of stackings indicate that the Burgers vectors of
partial dislocations in B/A and C/A stackings are anti-aligned,;

d The lack of more aligned slip pathways accounts for the
difficulties to transmit into twin-bands.



Stress Concentration
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Transmission Mechanisms
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Voiding MD Methodology

d MD time/length scales do not allow simulation of voiding under realistic
conditions;

 Instead, we focus on identifying relative voiding propensities for the eight
slip band intersection processes;

[ The same shear straining simulations as used in transmission studies are
used here except at a reduced strain rate of 0.006875 /ns;

A constant hydrostatic tensile strain is added during the shear simulations
to help voiding. If voiding does not occur, the tensile strain is
progressively increased in small increments;

[ The combination of tensile / shear strains for the onset of voiding is used to rank
the relative voiding propensities.



Voiding MD Results
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MD Prediction of o’ Formation in ¢-
primary band
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MD Prediction of o Formation in All
Eight Band Intersections
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SUMMARY

1. MD simulations have been used to study all eight slip band
intersections in Feg,Ni,,Cr,, stainless steels;

2. Slip is found to transmit into e-bands more easily than twin-bands.
This is because twin bands do not provide transmission pathways;

3. Voiding always occurs at the slip intersection regions;

4. Voiding more easily occurs when the impinging (secondary) band is
associated with edge dislocations rather than the 30° dislocations;

5. MD predicts o’ formation when slip penetrates e-bands. No o’
formation is observed when slip penetrates twin-bands;

6. The predicted orientation relations between o', v, and ¢ agree with
experiments.



