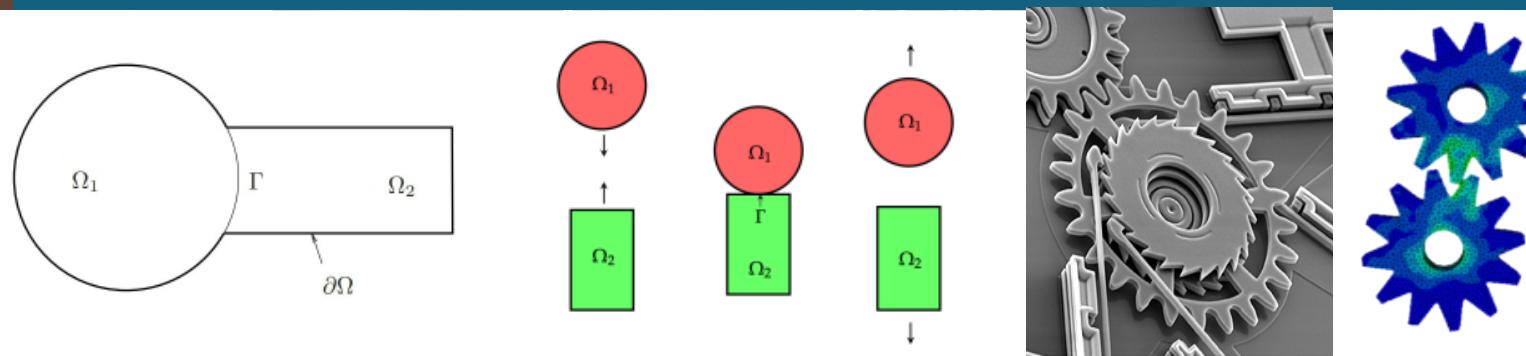


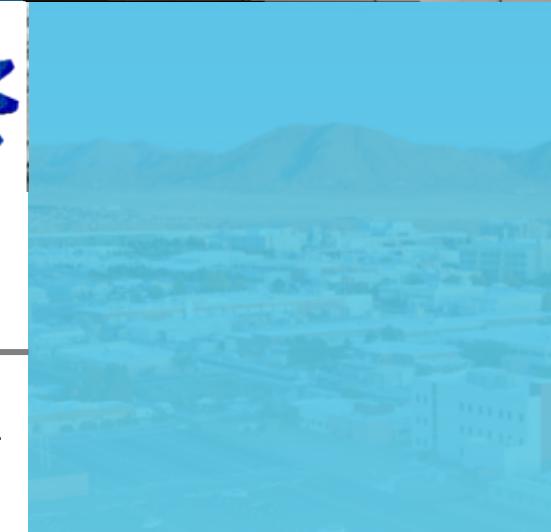
Sandia
National
Laboratories

The Schwarz Alternating Method for Multi-Scale Contact Mechanics



Alejandro Mota¹, Irina Tezaur¹, Daria Koliesnikova¹, Jonathan Hoy²

¹Sandia National Laboratories, ²University of Southern California



Congress on Numerical Methods in Engineering (CMN) 2022

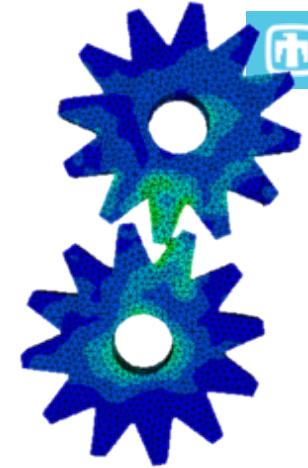
Las Palmas de Gran Canaria, Spain

September 12-14, 2022

SAND2022-XXXX

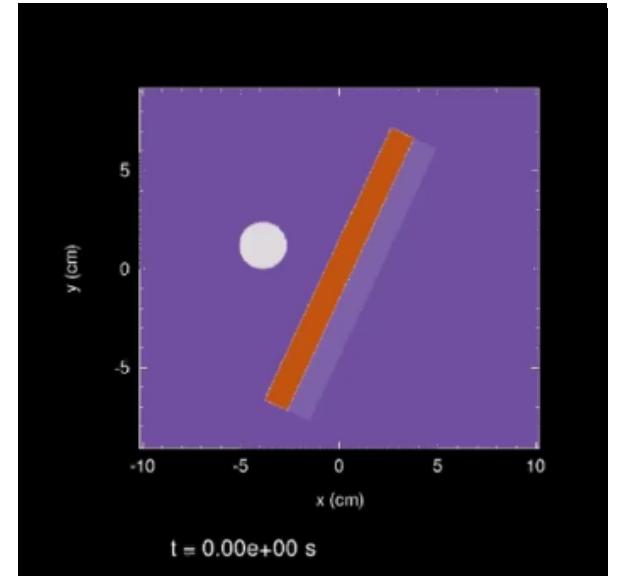
Motivation

- Stable, accurate and robust methods for simulating **mechanical contact** are extremely important in computational solid mechanics
 - *Example scenarios where contact arises:* touching surfaces, sliding, tightened bolts, impact, ...



Above: gears in contact within MEMS device. From sandia.gov/media

Below: oblique cylinder impact simulated using Sandia's ALEGRA code.



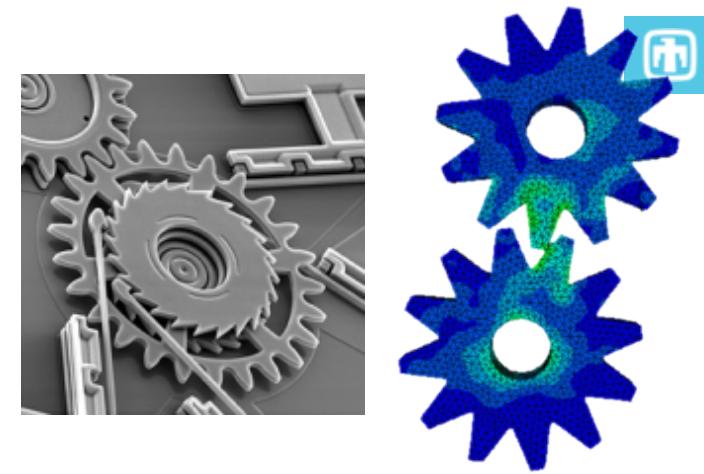
3 Motivation

- Stable, accurate and robust methods for simulating **mechanical contact** are extremely important in computational solid mechanics
 - *Example scenarios where contact arises:* touching surfaces, sliding, tightened bolts, impact, ...

Two-step process to the computational simulation of contact:

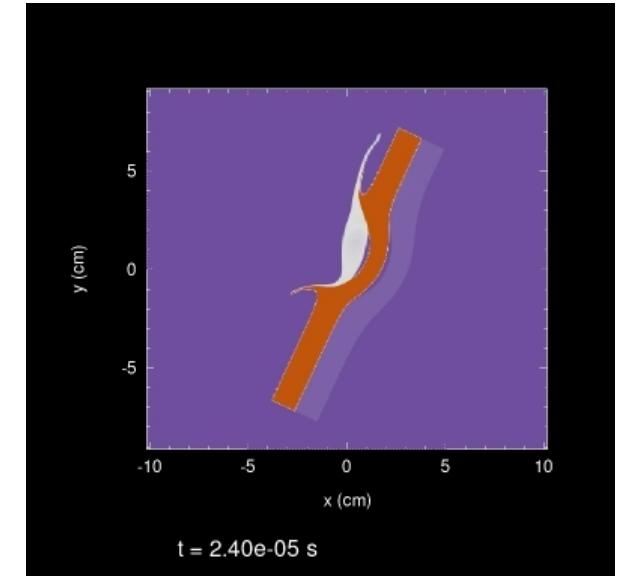
1. Proximity search

2. Contact enforcement step



Above: gears in contact within MEMS device. From sandia.gov/media

Below: oblique cylinder impact simulated using Sandia's ALEGRA code.

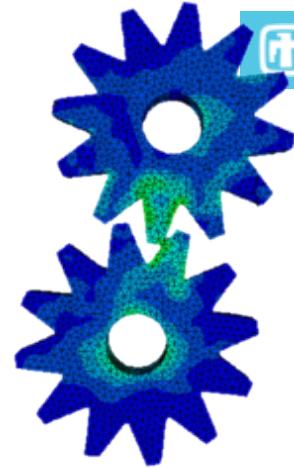


Motivation

- Stable, accurate and robust methods for simulating **mechanical contact** are extremely important in computational solid mechanics
 - *Example scenarios where contact arises:* touching surfaces, sliding, tightened bolts, impact, ...

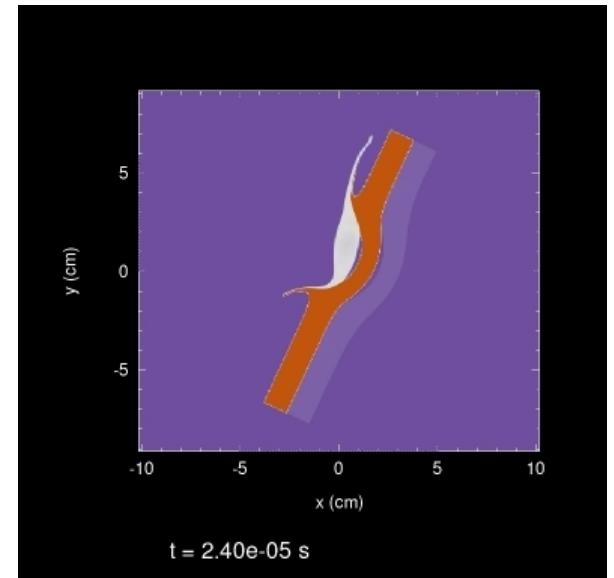
Two-step process to the computational simulation of contact:

1. **Proximity search:** computer science problem, has received much attention due to importance in video game development 😊
2. **Contact enforcement step**



Above: gears in contact within MEMS device. From sandia.gov/media

Below: oblique cylinder impact simulated using Sandia's ALEGRA code.

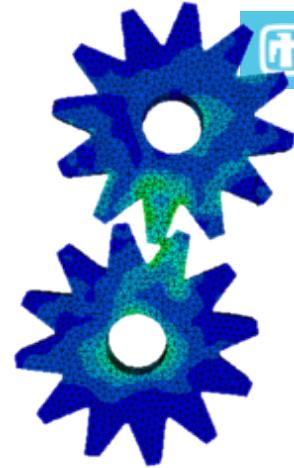


Motivation

- Stable, accurate and robust methods for simulating **mechanical contact** are extremely important in computational solid mechanics
 - *Example scenarios where contact arises:* touching surfaces, sliding, tightened bolts, impact, ...

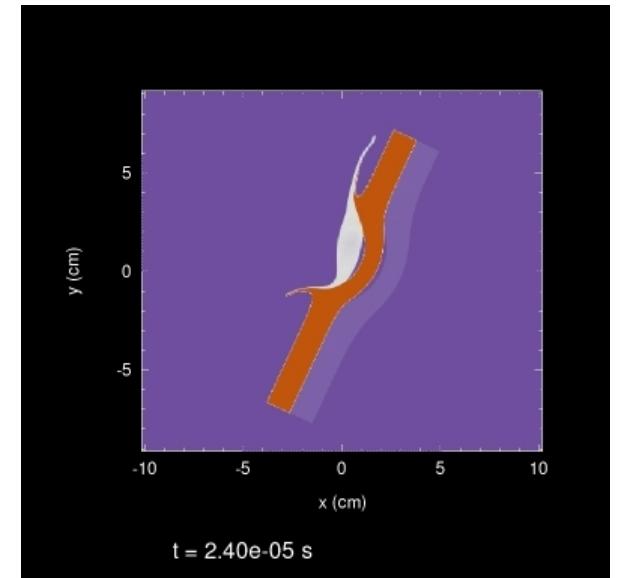
Two-step process to the computational simulation of contact:

1. **Proximity search:** computer science problem, has received much attention due to importance in video game development 😊
2. **Contact enforcement step:** existing methods (penalty, Lagrange multiplier, augmented Lagrangian) suffer from poor performance 😞
 - Long simulation times 😞
 - Lack of accuracy 😞
 - Lack of robustness 😞



Above: gears in contact within MEMS device. From sandia.gov/media

Below: oblique cylinder impact simulated using Sandia's ALEGRA code.



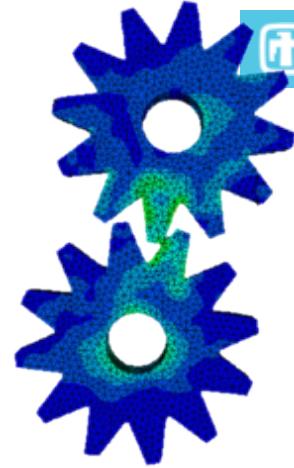
6 Motivation

- Stable, accurate and robust methods for simulating **mechanical contact** are extremely important in computational solid mechanics
 - *Example scenarios where contact arises:* touching surfaces, sliding, tightened bolts, impact, ...

Two-step process to the computational simulation of contact:

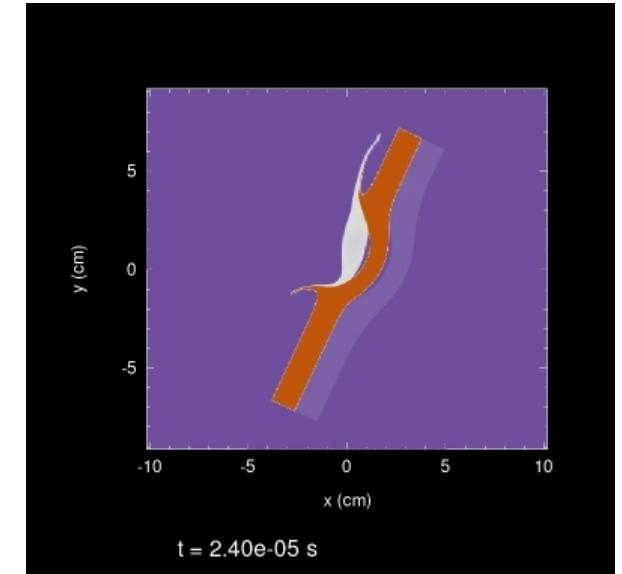
1. **Proximity search:** computer science problem, has received much attention due to importance in video game development 😊
2. **Contact enforcement step:** existing methods (penalty, Lagrange multiplier, augmented Lagrangian) suffer from poor performance 😞
 - Long simulation times 😞
 - Lack of accuracy 😞
 - Lack of robustness 😞

This talk: new approach for simulating multi-scale mechanical contact using the Schwarz alternating method.



Above: gears in contact within MEMS device. From sandia.gov/media

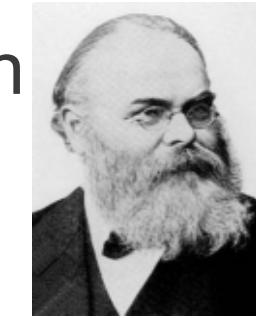
Below: oblique cylinder impact simulated using Sandia's ALEGRA code.



7 Schwarz Alternating Method for Domain Decomposition

- Proposed in 1870 by H. Schwarz for solving Laplace PDE on irregular domains.

Crux of Method: if the solution is known in regularly shaped domains, use those as pieces to iteratively build a solution for the more complex domain.



H. Schwarz (1843-1921)

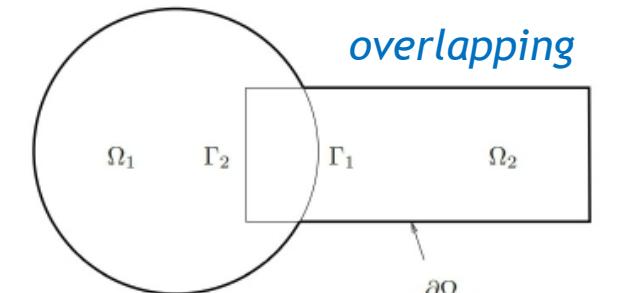
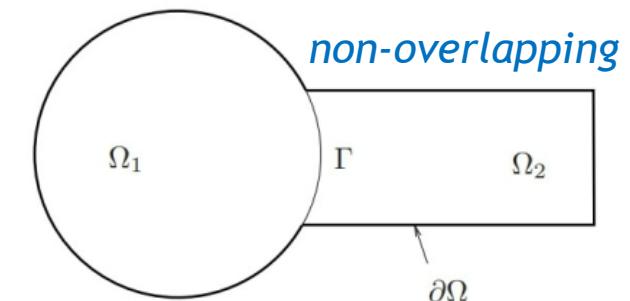
Basic Schwarz Algorithm

Initialize:

- Solve PDE by any method on Ω_1 w/ initial guess for transmission BCs on Γ_1 .

Iterate until convergence:

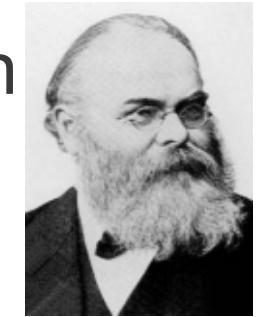
- Solve PDE by any method on Ω_2 w/ transmission BCs on Γ_2 based on values just obtained for Ω_1 .
- Solve PDE by any method on Ω_1 w/ transmission BCs on Γ_1 based on values just obtained for Ω_2 .



Schwarz Alternating Method for Domain Decomposition

- Proposed in 1870 by H. Schwarz for solving Laplace PDE on irregular domains.

Crux of Method: if the solution is known in regularly shaped domains, use those as pieces to iteratively build a solution for the more complex domain.



H. Schwarz (1843-1921)

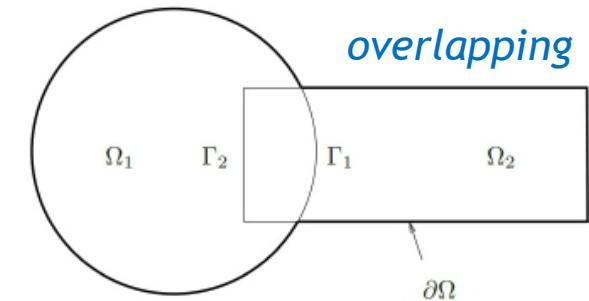
Basic Schwarz Algorithm

Initialize:

- Solve PDE by any method on Ω_1 w/ initial guess for transmission BCs on Γ_1 .

Iterate until convergence:

- Solve PDE by any method on Ω_2 w/ transmission BCs on Γ_2 based on values just obtained for Ω_1 .
- Solve PDE by any method on Ω_1 w/ transmission BCs on Γ_1 based on values just obtained for Ω_2 .



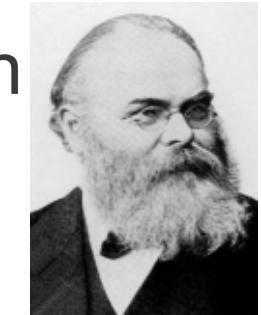
Overlapping Schwarz: convergent with all-Dirichlet transmission BCs¹ if $\Omega_1 \cap \Omega_2 \neq \emptyset$.

¹Schwarz, 1870; Lions, 1988.

9 Schwarz Alternating Method for Domain Decomposition

- Proposed in 1870 by H. Schwarz for solving Laplace PDE on irregular domains.

Crux of Method: if the solution is known in regularly shaped domains, use those as pieces to iteratively build a solution for the more complex domain.



H. Schwarz (1843-1921)

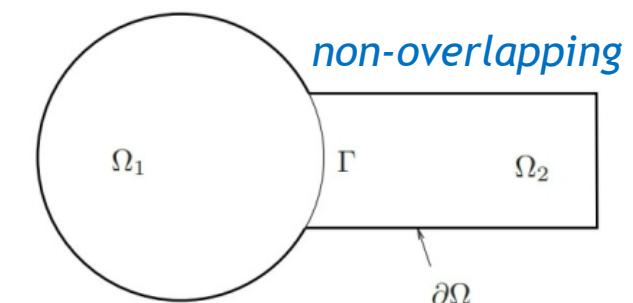
Basic Schwarz Algorithm

Initialize:

- Solve PDE by any method on Ω_1 w/ initial guess for transmission BCs on Γ_1 .

Iterate until convergence:

- Solve PDE by any method on Ω_2 w/ transmission BCs on Γ_2 based on values just obtained for Ω_1 .
- Solve PDE by any method on Ω_1 w/ transmission BCs on Γ_1 based on values just obtained for Ω_2 .



Overlapping Schwarz: convergent with all-Dirichlet transmission BCs¹ if $\Omega_1 \cap \Omega_2 \neq \emptyset$.

Non-overlapping Schwarz: convergent with Robin-Robin² or alternating Dirichlet-Neumann³ transmission BCs.

¹Schwarz, 1870; Lions, 1988. ²Lions, 1990. ³Zanolli *et al.*, 1987.

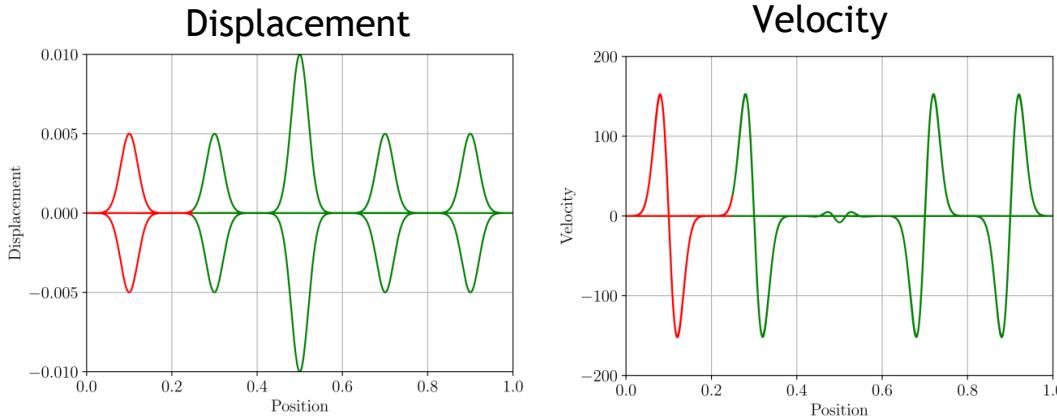
How We Use the Schwarz Alternating Method

AS A ***PRECONDITIONER***
FOR THE LINEARIZED
SYSTEM

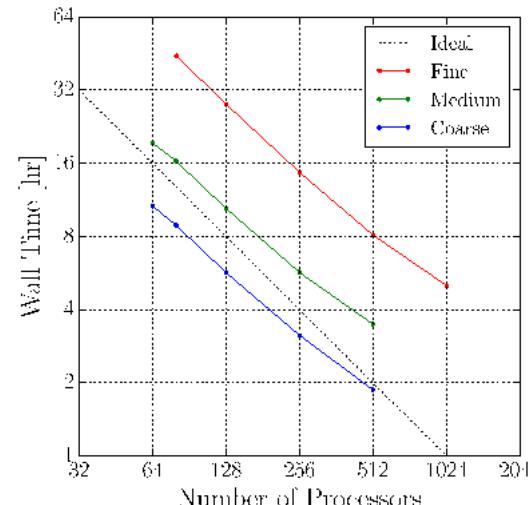
AS A ***SOLVER*** FOR THE
COUPLED
FULLY NONLINEAR
PROBLEM

Overlapping Schwarz for Multi-scale Coupling in Solid Mechanics

The Schwarz alternating method has been developed/implemented for concurrent multi-scale quasistatic & dynamic modeling in Sandia's *Albany/LCM** and *Sierra/SM* codes.



- Coupling is **concurrent** (two-way)
- “**Plug-and-play**” framework: couples different meshes, element types, solvers, integrators
- **No nonphysical artifacts**
- Theoretical convergence properties¹
- **Easy to implement** in existing HPC codes
- **Scalable, fast, robust**



	CPU times	# Schwarz iters
Single Ω	3h 34m	—
Schwarz	2h 42m	3.22

Solid Mechanics Problem Formulation

Kinetic Energy:

$$T(\dot{\varphi}) := \frac{1}{2} \int_{\Omega} \rho_0 \dot{\varphi} \cdot \dot{\varphi} \, dV,$$

Potential Energy:

$$V(\varphi) := \int_{\Omega} A(\mathbf{F}, \mathbf{Z}) \, dV - \int_{\Omega} \rho_0 \mathbf{B} \cdot \varphi \, dV - \int_{\partial_T \Omega} \mathbf{T} \cdot \varphi \, dS,$$

Lagrangian:

$$L(\varphi, \dot{\varphi}) := T(\dot{\varphi}) - V(\varphi),$$

Action Functional:

$$S[\varphi] := \int_I L(\varphi, \dot{\varphi}) \, dt.$$

Euler-Lagrange Equations:

$$\operatorname{Div} \mathbf{P} + \rho_0 \mathbf{B} = \rho_0 \ddot{\varphi} \quad \text{in } \Omega \times I,$$

$$\varphi(\mathbf{X}, t_0) = \mathbf{x}_0 \quad \text{in } \Omega,$$

$$\dot{\varphi}(\mathbf{X}, t_0) = \mathbf{v}_0 \quad \text{in } \Omega,$$

$$\varphi(\mathbf{X}, t) = \chi \quad \text{on } \partial_{\varphi} \Omega \times I,$$

$$\mathbf{P} \mathbf{N} = \mathbf{T} \quad \text{on } \partial_T \Omega \times I.$$

FEM

Semi-Discrete Problem:

$$\mathbf{M} \ddot{\mathbf{u}} + \mathbf{f}_{\text{int}}(\mathbf{u}, \dot{\mathbf{u}}) = \mathbf{f}_{\text{ext}}$$

$$\mathbf{u}(0) = \mathbf{u}_0$$

$$\dot{\mathbf{u}}(0) = \mathbf{v}_0$$

Traditional Solid Mechanics Contact Formulation

Kinetic Energy:

$$T(\dot{\varphi}) := \frac{1}{2} \int_{\Omega} \rho_0 \dot{\varphi} \cdot \dot{\varphi} \, dV,$$

Potential Energy

Augmented with
Contact Constraint:

$$V(\varphi) := \int_{\Omega} A(\mathbf{F}, \mathbf{Z}) \, dV - \int_{\Omega} \rho_0 \mathbf{B} \cdot \varphi \, dV + \boxed{\int_{\Omega} I_{\mathcal{C}}(\varphi) \, dV} - \int_{\partial_{\mathbf{T}} \Omega} \mathbf{T} \cdot \varphi \, dS.$$

Lagrangian:

$$L(\varphi, \dot{\varphi}) := T(\dot{\varphi}) - V(\varphi),$$

Action Functional:

$$S[\varphi] := \int_I L(\varphi, \dot{\varphi}) \, dt.$$

\mathcal{C} :

The set of admissible configurations φ in
which interpenetration does not occur

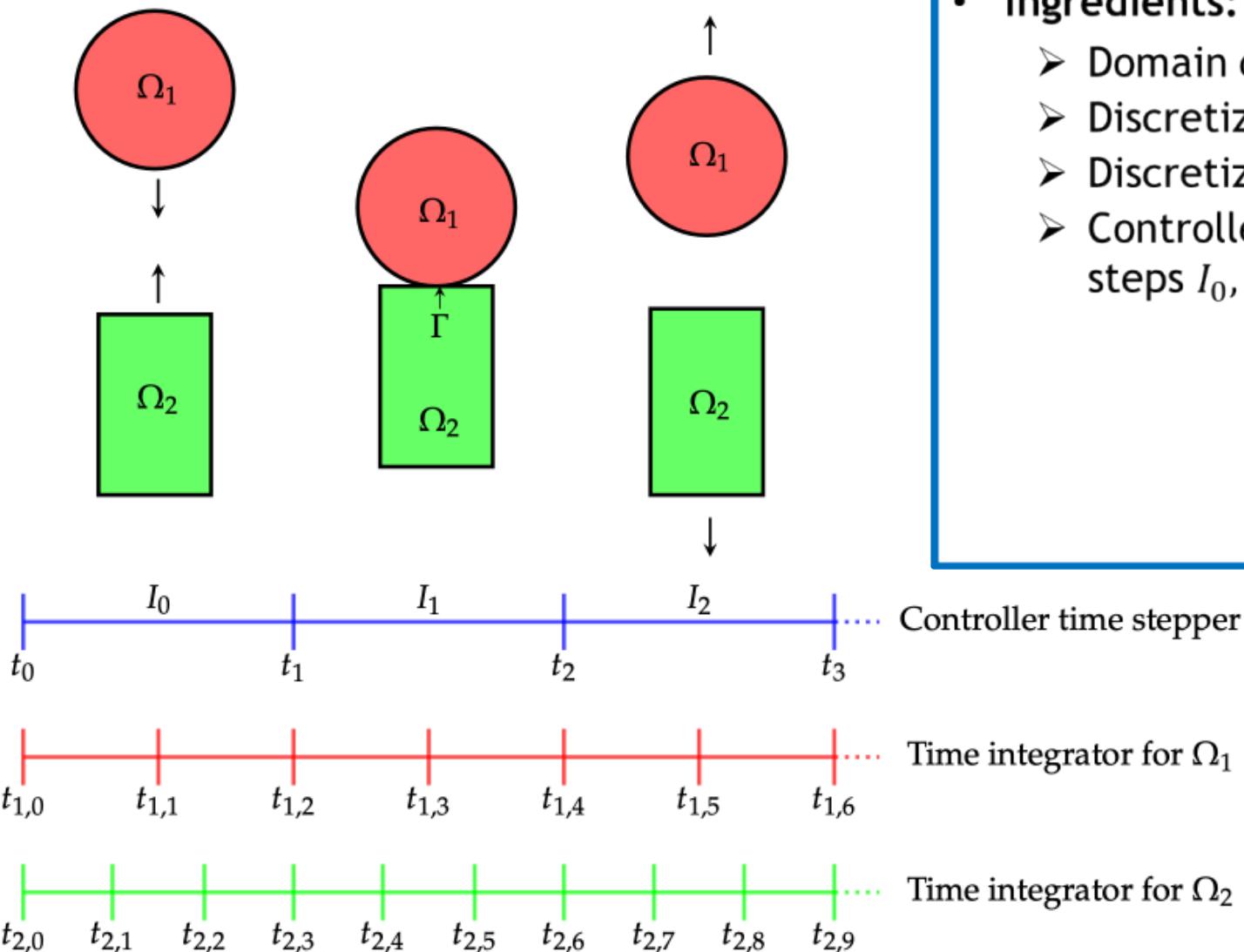
$$I_{\mathcal{C}}(\varphi) := \begin{cases} 0, & \text{if } \varphi \in \mathcal{C}, \\ \infty, & \text{if } \varphi \notin \mathcal{C}, \end{cases}$$

Indicator function for
admissible set \mathcal{C} :

**Contact constraint can be enforced
strictly or approximately**

- *Strict enforcement:* Lagrange multiplier methods
- *Approximate enforcement:* penalty methods

Non-Overlapping Schwarz Contact Formulation

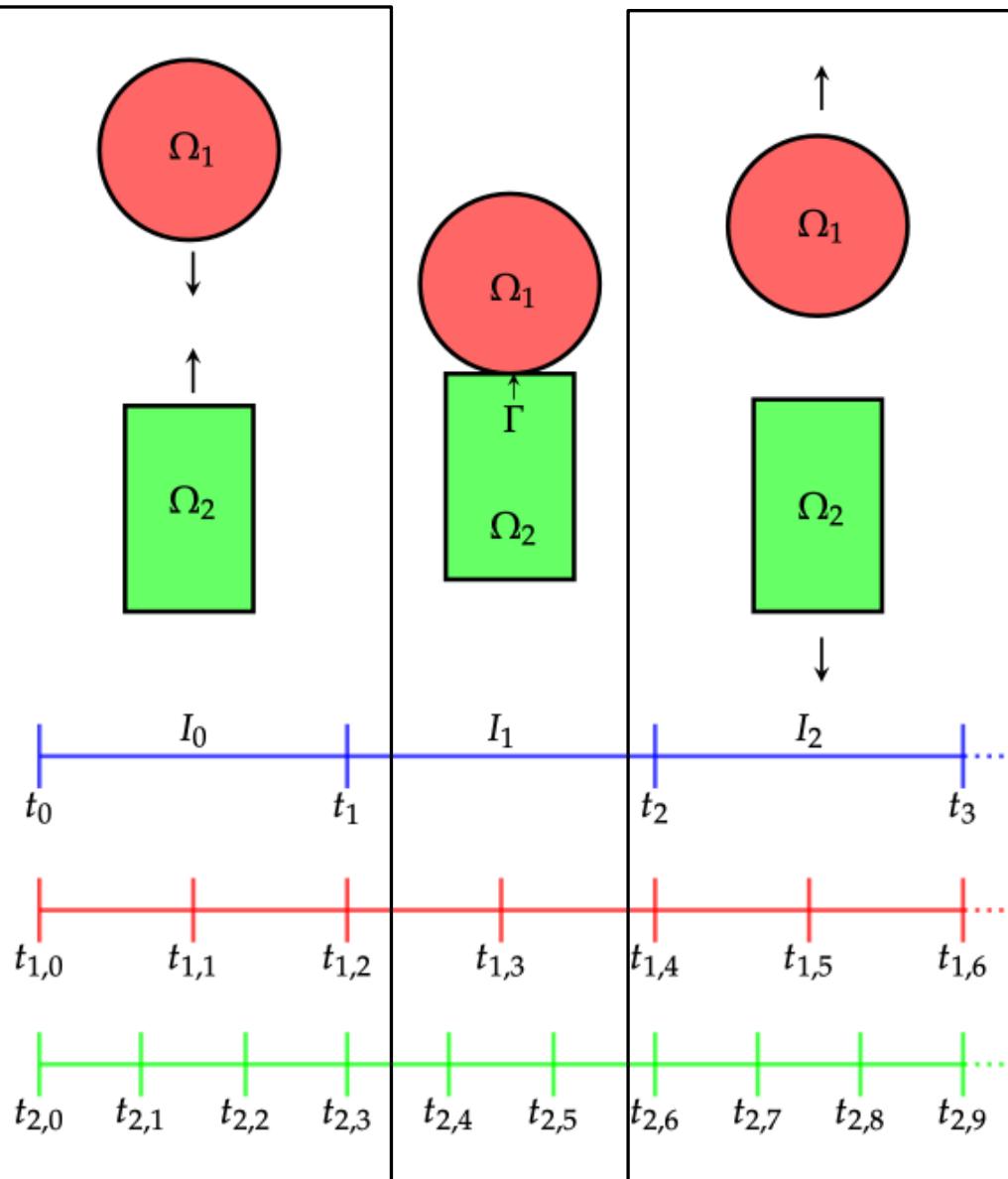


- **Ingredients:**

- Domain decomposition
- Discretization and time-stepper in Ω_1 (red)
- Discretization and time-stepper in Ω_2 (green)
- Controller time-stepper (blue): defines global time-steps I_0, I_1, \dots at which subdomains are synchronized

Can use *different integrators* with *different time steps* within each domain!

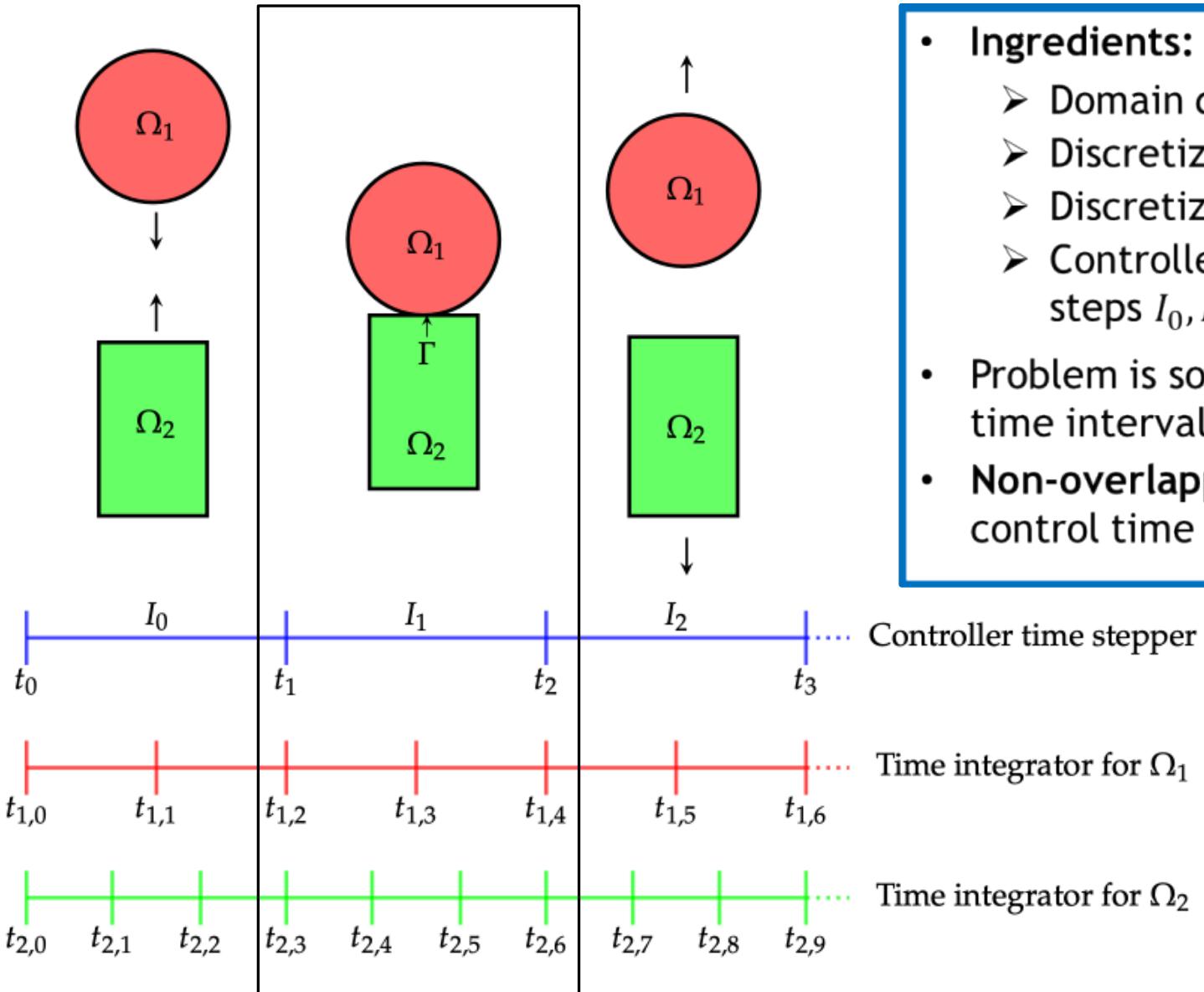
Non-Overlapping Schwarz Contact Formulation



- **Ingredients:**
 - Domain decomposition
 - Discretization and time-stepper in Ω_1 (red)
 - Discretization and time-stepper in Ω_2 (green)
 - Controller time-stepper (blue): defines global time-steps I_0, I_1, \dots at which subdomains are synchronized
- Problem is solved **without any Schwarz iteration** in time intervals I_0 and I_2 , as there is no contact.

Can use ***different integrators*** with ***different time steps*** within each domain!

Non-Overlapping Schwarz Contact Formulation



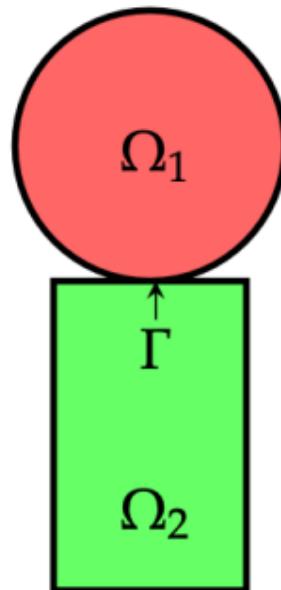
- **Ingredients:**
 - Domain decomposition
 - Discretization and time-stepper in Ω_1 (red)
 - Discretization and time-stepper in Ω_2 (green)
 - Controller time-stepper (blue): defines global time-steps I_0, I_1, \dots at which subdomains are synchronized
- Problem is solved **without any Schwarz iteration** in time intervals I_0 and I_2 , as there is no contact.
- **Non-overlapping Schwarz algorithm only applied** in control time interval I_1 , when **contact is detected**.

Contact criteria

- **Overlap:** interpenetration of subdomains
- **Compression:** positive normal traction
- **Persistence:** was in contact previous step

Non-Overlapping Schwarz Contact Formulation

- **Key idea:** a contact problem can be viewed as **coupled problem** while 2+ bodies are in contact
 - **Alternating Dirichlet-Neumann (traction) Schwarz iteration** is applied once interpenetration has been detected, to correct the **interpenetration**.



$$\left\{ \begin{array}{lcl} \text{Div} \mathbf{P}^{(n)} + \rho_0 \mathbf{B} & = & \rho_0 \ddot{\varphi}^{(n)}, & \text{in} & \Omega_1 \times I_k, \\ \varphi^{(n)}(\mathbf{X}, t) & = & \chi, & \text{on} & \partial_\varphi \Omega_1 \times I_k, \\ \varphi^{(n)}(\mathbf{X}, t) & = & P_{\Omega_2 \rightarrow \Gamma}[\varphi^{(n-1)}(\Omega_2, t_k)], & \text{on} & \Gamma \times I_k, \\ \mathbf{P}^{(n)} \mathbf{N} & = & \mathbf{T}, & \text{on} & [\partial_T \Omega_1 \cup \Gamma] \times I_k, \end{array} \right.$$

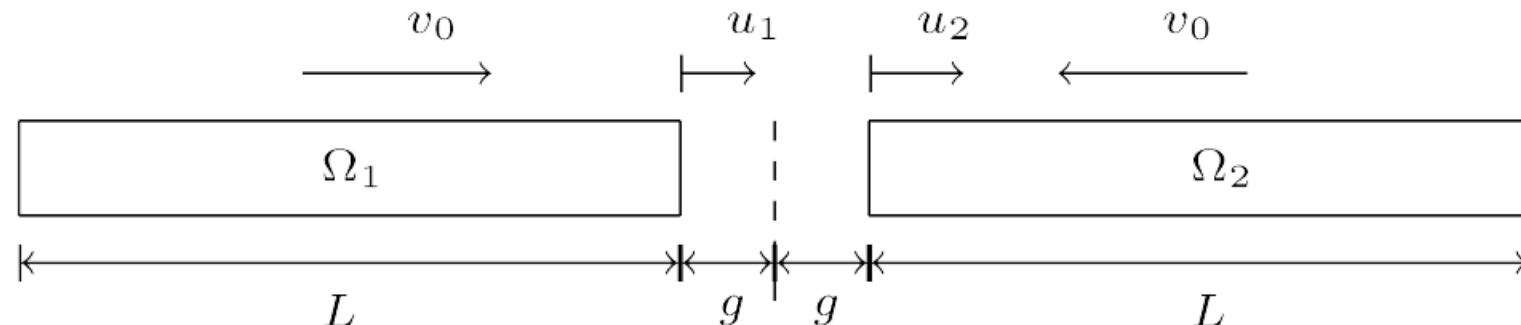
$$\left\{ \begin{array}{lcl} \text{Div} \mathbf{P}^{(n)} + \rho_0 \mathbf{B} & = & \rho_0 \ddot{\varphi}^{(n)}, & \text{in} & \Omega_2 \times I_k, \\ \varphi^{(n)}(\mathbf{X}, t) & = & \chi, & \text{on} & [\partial_\varphi \Omega_2 \cup \Gamma] \times I_k, \\ \mathbf{P}^{(n)} \mathbf{N} & = & \mathbf{T}, & \text{on} & \partial_T \Omega_2 \times I_k, \\ \mathbf{P}^{(n)} \mathbf{N} & = & P_{\Omega_1 \rightarrow \Gamma}[\mathbf{T}^{(n)}(\Omega_1, t_k)], & \text{on} & \Gamma \times I_k, \end{array} \right.$$

There are no contact constraints!

Contact constraints replaced with BCs applied iteratively at contact boundaries.

Numerical Results: 1D Impact Problem¹

- Impact of two 1D identical linear elastic prismatic rods discretized using $N_x = 200$ linear elements with exact analytic solution [Carpenter *et al.*, 1991]

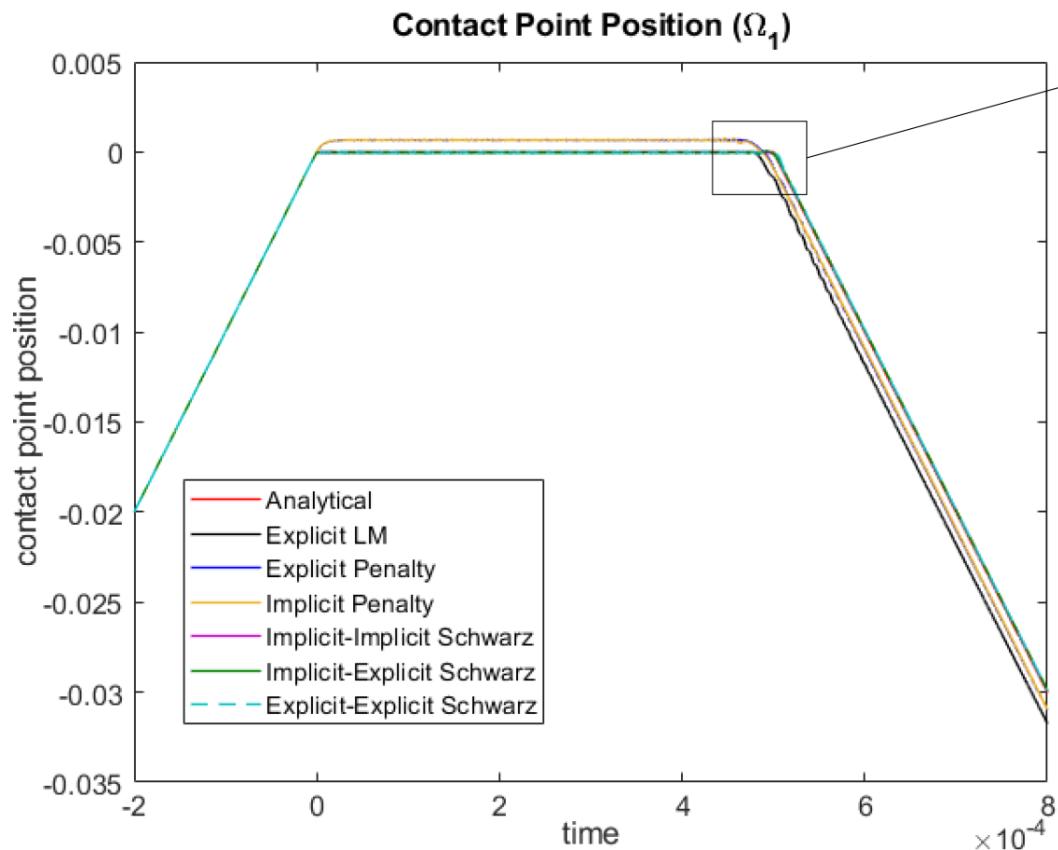
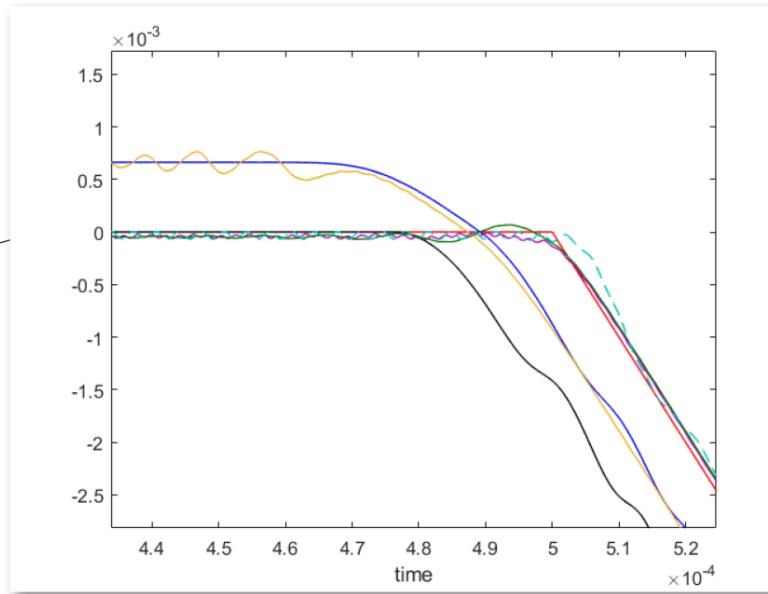


- Schwarz alternating method compared to three conventional contact algorithms with a zero gap contact constraint
 - Implicit and explicit penalty method with penalty parameter $\tau = 7.5 \times 10^4$
 - Forward increment (explicit) Lagrange multiplier (LM) method [Carpenter *et al.*, 1991]
- Time stepper: Newmark-beta
 - Schwarz couplings included Explicit-Explicit, Implicit-Explicit and Implicit-Implicit
 - $\Delta t = 1.0 \times 10^{-7}$ used for all methods except Implicit-Explicit Schwarz, which uses $\Delta t = 1.0 \times 10^{-8}$ in explicit domain.

¹Hoy *et al.*, 2021; Mota *et al.*, 2022 (under review).

Numerical Results: 1D Impact Problem¹

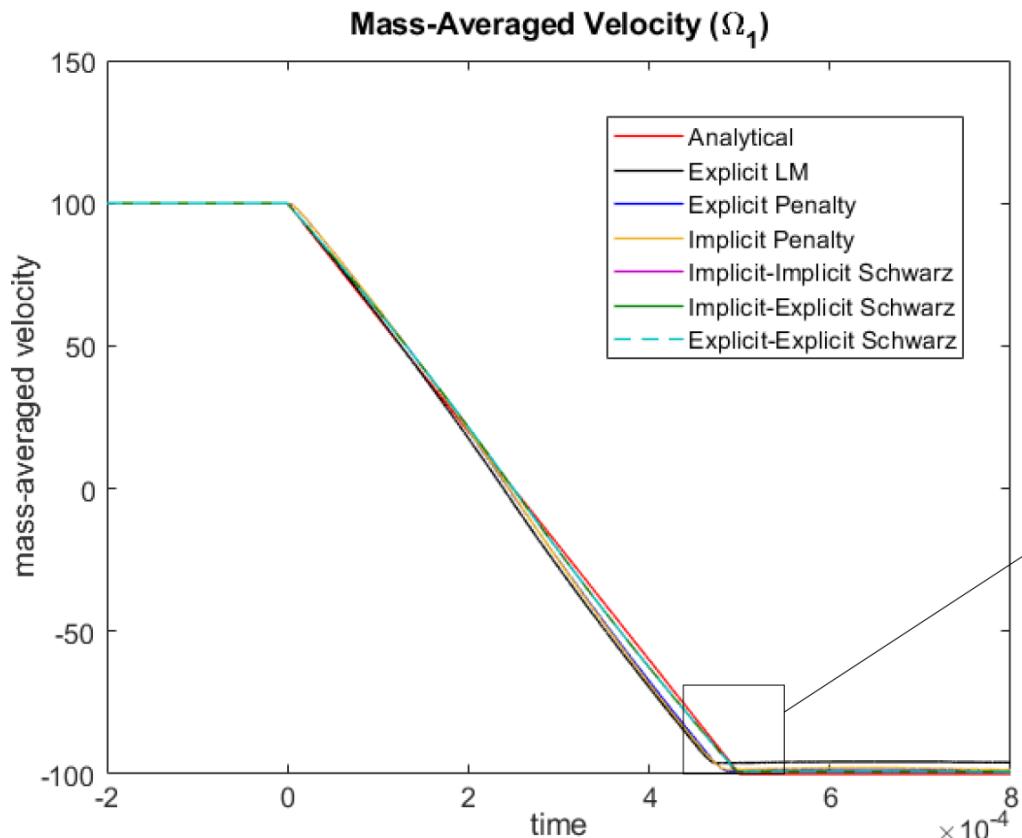
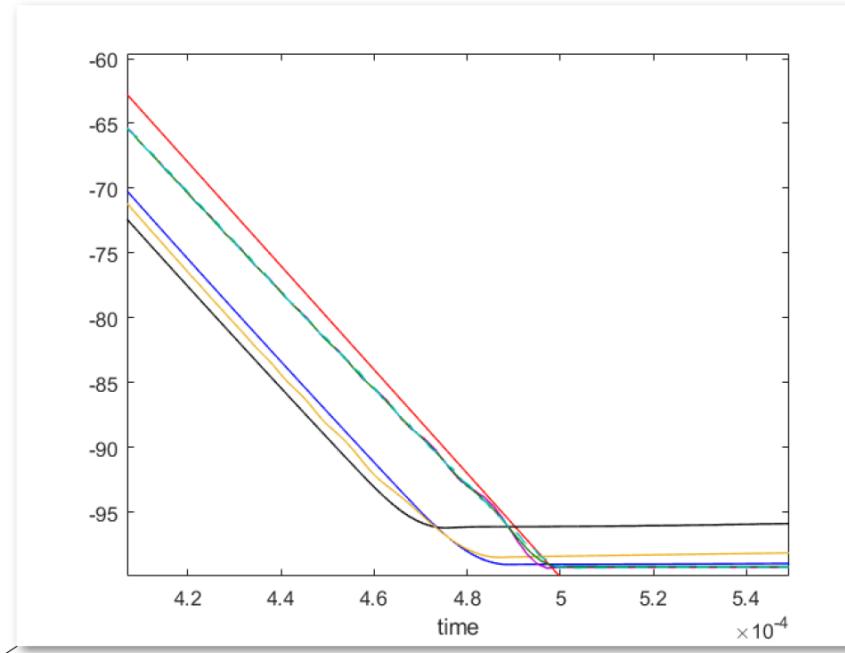
Contact point position: of the right-most node of left bar (Ω_1) as a function of time



- Penalty methods **overpredict** contact point location between impact and release times
- Explicit LM method **under-predicts release time**
- Schwarz methods capture **release time** to an accuracy of $\approx 0.1\%$.

Numerical Results: 1D Impact Problem¹

Mass-averaged velocity: of the left bar (Ω_1) as a function of time

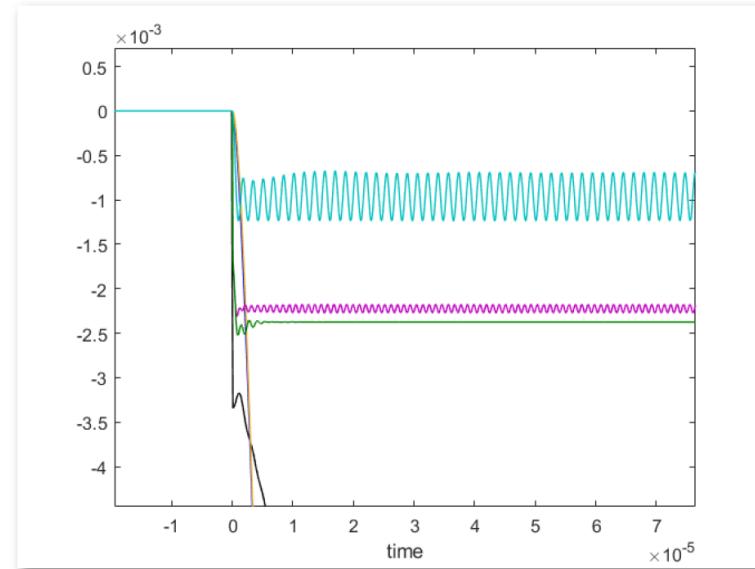


- **Similar conclusions** can be drawn from mass-averaged velocity
- Schwarz variants calculate mass-averaged velocity to a **sufficiently greater accuracy** than any of the conventional methods, especially near the time of release

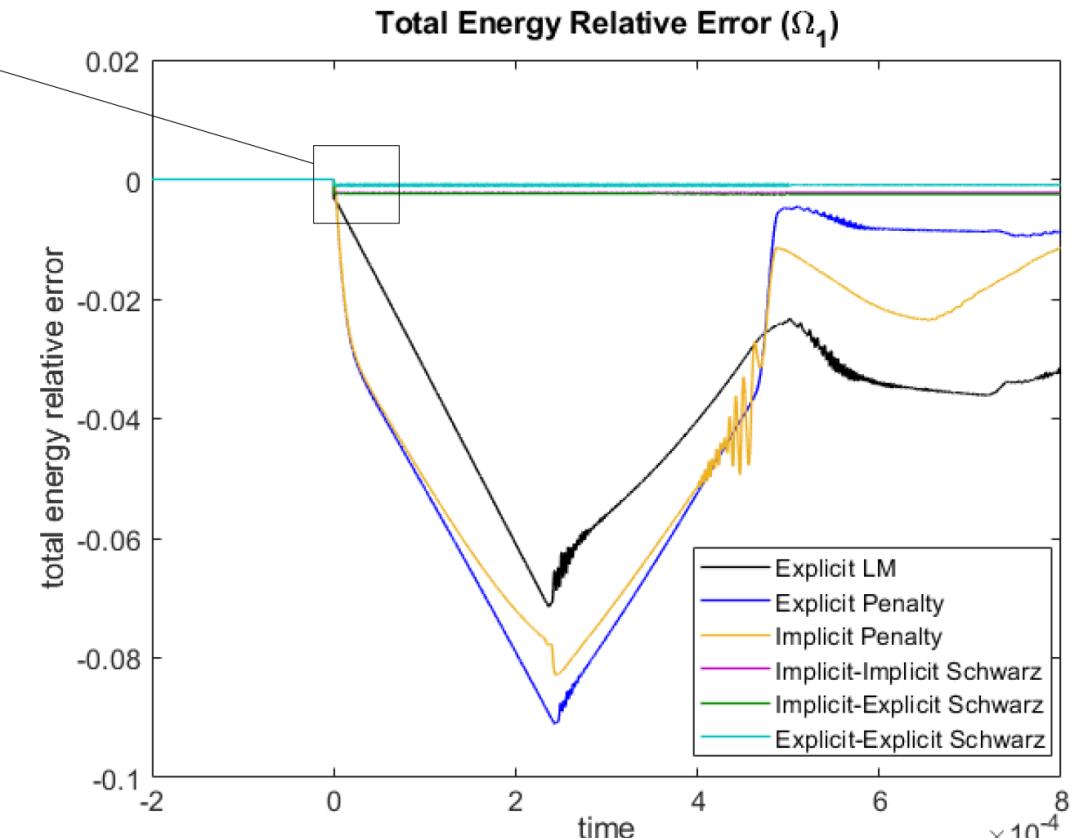
Numerical Results: 1D Impact Problem¹

Total energy relative error: for the left bar (Ω_1) as a function of time

- Total energy error is **negative** for all 6 methods \Rightarrow all methods are **stable**.
- All three conventional methods exhibit **total energy loss** of up to 9% following contact.
- Unlike conventional contact methods, **Schwarz** achieves an error of **at most 0.25%** in the total energy!
 - Explicit-Explicit Schwarz gives most accurate total energy, followed by Implicit-Implicit Schwarz and Implicit-Explicit Schwarz



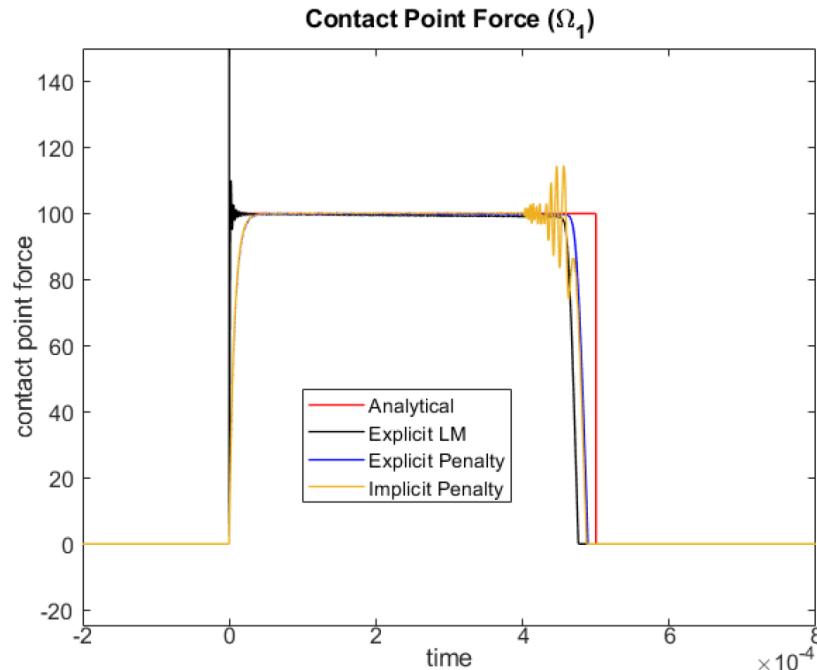
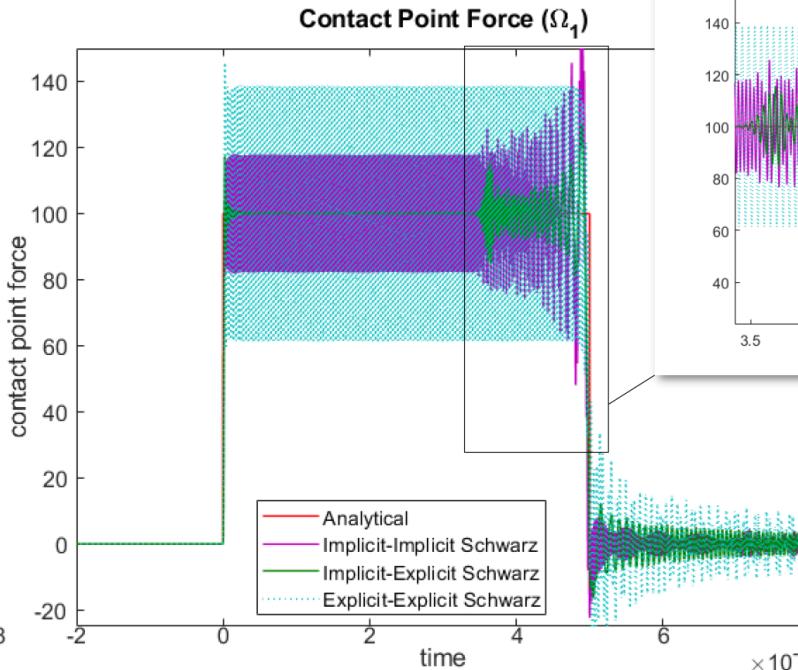
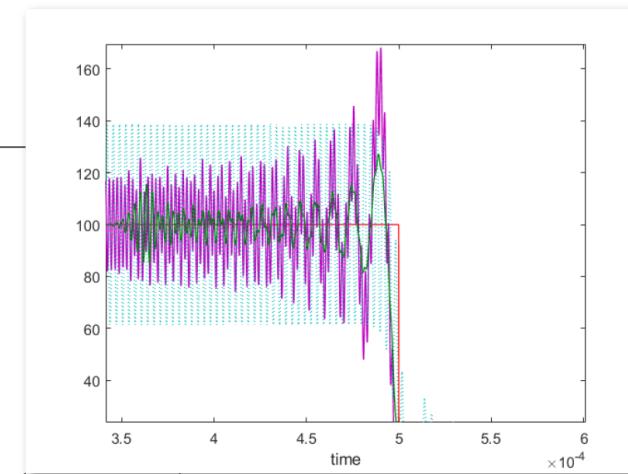
Total energy should be **conserved** for this problem



Numerical Results: 1D Impact Problem¹

¹Hoy *et al.*, 2021; Mota *et al.*, 2022 (under review).

Contact point force: for the left bar (Ω_1) as a function of time

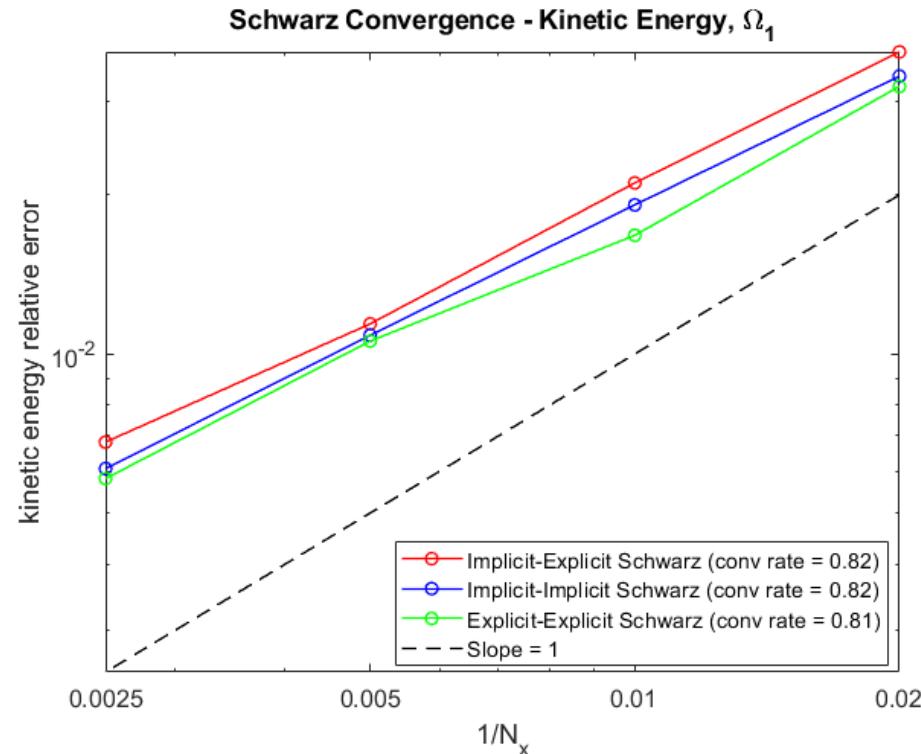


WIP: mitigating chatter problem.

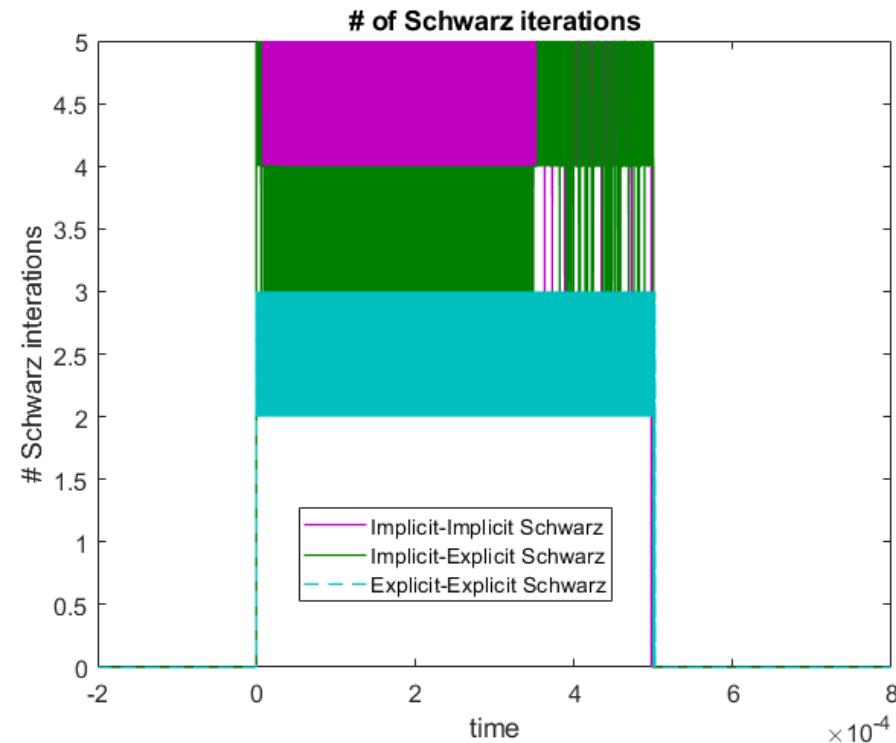
- Three conventional methods exhibit some **undesirable artifacts** in contact point force but deliver in general a **smooth solution**
- Schwarz solutions exhibit **oscillations** following instantiation of contact → “**chatter**” problem
 - Schwarz method with **largest total energy loss** (Implicit-Explicit) exhibits **least amount of chatter**
 - **Energy dissipation** is necessary for establishment of persistent contact [Solberg *et al.*, 1998]
 - ❖ Chatter problem can likely be mitigated through addition of **numerical dissipation**

Numerical Results: 1D Impact Problem¹

Convergence of Schwarz methods



Mesh convergence of kinetic energy for left bar (Ω_1) when $\Delta t = 1.0 \times 10^{-8}$



Schwarz iterations required for convergence ($N_x = 200$, $\Delta t = 1.0 \times 10^{-7}$)

- **Convergence rates** are comparable to published results [Tezaur *et al.*, 2021]
- At most **5 Schwarz iterations** are needed for convergence
 - Explicit-Explicit Schwarz variant requires fewest # iterations for convergence

¹Hoy *et al.*, 2021; Mota *et al.*, 2021 (under review).

Summary & Future Work

Summary:

- The Schwarz alternating method has shown promise as a **novel technique** for simulating **multi-scale mechanical contact**
 - Contact constraints are replaced with **transmission BCs** applied iteratively on contact boundaries
 - Schwarz method delivers **substantially more accurate solution** than conventional contact approaches in contact point displacement, mass-averaged velocity, impact time, release time, and kinetic, potential total energies
 - An unfortunate consequence of the method's ability to **conserve energy so well** appears to be the introduction of **chatter** in contact point velocity and force.

Ongoing/future work:

- Introduction of **dissipation** and/or **numerical relaxation** to mitigate chatter problem.
- **Robin-Robin transmission condition** formulation of non-overlapping Schwarz.
- Introduction of **additional or alternate contact conditions** into Schwarz formulation
- Implementation/evaluation of the Schwarz alternating method in **multi-D**
 - Requires the development of operators for **consistent transfer** of contact traction BCs using concept of prolongation/restriction

References

- H. Schwarz, Über einen Grenzübergang durch alternierendes verfahren, *Vierteljahrsschrift der Naturforschenden Gesellschaft in Zurich*, 15 (1870), pp. 272-286.
- P.L. Lions. “On the Schwarz alternating method I.” In: 1988, First International Symposium on Domain Decomposition methods for Partial Differential Equations, SIAM, Philadelphia.
- P. L. Lions, On the Schwarz alternating method III: A variant for nonoverlapping subdomains, in *Third International Symposium on Domain Decomposition Methods for Partial Differential Equations*, T. F. Chan, R. Glowinski, J. P'eriaux, and O. B. Widlund, eds., Society for Industrial and Applied Mathematics, 1990, pp. 202-223
- P. Zanolli, Domain decomposition algorithms for spectral methods, *CALCOLO*, 24 (1987), pp. 201-240.
- [A. Mota, I. Tezaur, and C. Alleman, The Schwarz alternating method, *Comput. Meth. Appl. Mech. Engng.*, 319 \(2017\), pp. 19-51.](#)
- [A. Mota, I. Tezaur, and G. Phlipot, The Schwarz alternating method for transient solid dynamics, *Int. J. Numer. Meth. Engng.* 1-35, 2022.](#)
- N. J. Carpenter, R. L. Taylor, and M. G. Katona, Lagrange constraints for transient finite element surface contact, *International journal for numerical methods in engineering*, 32 (1991), pp. 103-128.
- [J. Hoy, I. Tezaur, A. Mota. The Schwarz alternating method for multi-scale contact mechanics. CSRI Summer Proceedings 2021.](#)
- [A. Mota, I. Tezaur, J. Hoy. The Schwarz alternating method for multi-scale contact mechanics. Mathematical & Computational Applications \(MCA\) \(under review\).](#)
- J. M. Solberg and P. Papadopoulos, A finite element method for contact/impact, *Finite Elements in Analysis and Design*, 30 (1998), pp. 297-311.
- I. Tezaur, T. Voth, J. Niederhaus, J. Robbins, and J. Sanchez, An extended finite element method (XFEM) formulation for multi-material Eulerian solid mechanics in the Alegra code (in preparation).

Start of Backup Slides

Motivation

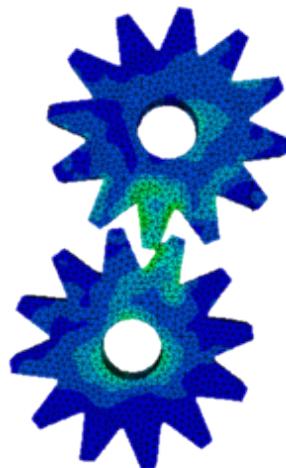
- **Large scale structural failure** frequently originates from **small scale** phenomena (e.g, defects, microcracks, inhomogeneities), which grow quickly in unstable manner
 - **Concurrent multiscale methods** are essential to capture correctly the multiscale behavior!
 - Stable, accurate and robust methods for simulating **mechanical contact** (touching surfaces, sliding, tightened bolts, impact) are equally important!

Above: roof failure of Boeing 737 aircraft due to fatigue cracks. From imechanica.org

Two-step process to the computational simulation of contact:

1. **Proximity search:** computer science problem, has received much attention due to importance in video game development 😊
2. **Contact enforcement step:** existing methods (penalty, Lagrange multiplier, augmented Lagrangian) suffer from poor performance 😞
 - Long simulation times 😞
 - Lack of accuracy 😞
 - Lack of robustness 😞

This talk.

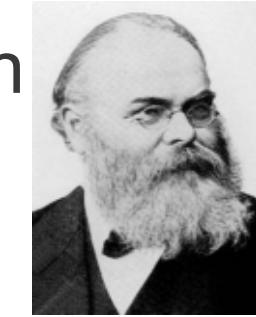


Above: gears in contact within MEMS device. From sandia.gov/media

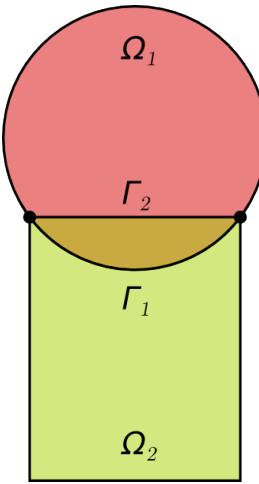
Schwarz Alternating Method for Domain Decomposition

- Proposed in 1870 by H. Schwarz for solving Laplace PDE on irregular domains.

Crux of Method: if the solution is known in regularly shaped domains, use those as pieces to iteratively build a solution for the more complex domain.



H. Schwarz (1843 - 1921)



Basic Schwarz Algorithm

Initialize:

- Solve PDE by any method on Ω_1 w/ initial guess for Dirichlet BCs on Γ_1 .

Iterate until convergence:

- Solve PDE by any method (can be different than for Ω_1) on Ω_2 w/ transmission BCs on Γ_2 that are the values just obtained for Ω_1 .
- Solve PDE by any method (can be different than for Ω_2) on Ω_1 w/ transmission BCs on Γ_1 that are the values just obtained for Ω_2 .

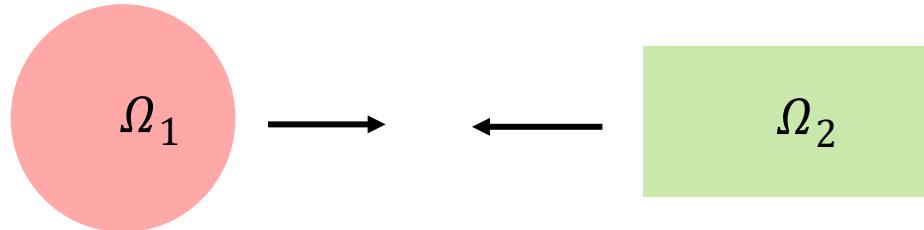
- Schwarz alternating method most commonly used as a *preconditioner* for Krylov iterative methods to solve linear algebraic equations.

Novel idea: using the Schwarz alternating as a *discretization method* for solving multi-scale partial differential equations (PDEs).

Non-Overlapping Schwarz Contact Formulation

Non-Overlapping Schwarz Contact Formulation

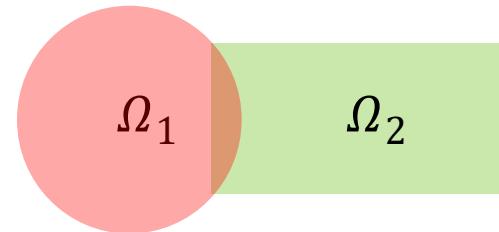
Before contact: simulation proceeds as usual



Key idea: a contact problem can be viewed as **coupled problem** while 2+ bodies are in contact

Detection of contact: proximity search and application of contact conditions to determine contact

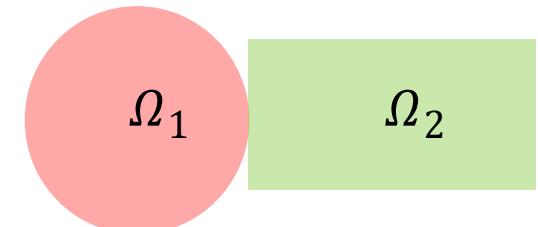
- **Overlap condition:** triggered when two or more objects/domains have begun to overlap/penetrate each other
- **Compression condition:** positive normal traction
- **Persistence condition:** contact occurred in the previous step



Enforcement of contact: alternating Schwarz iteration with Dirichlet-Neumann transmission BCs

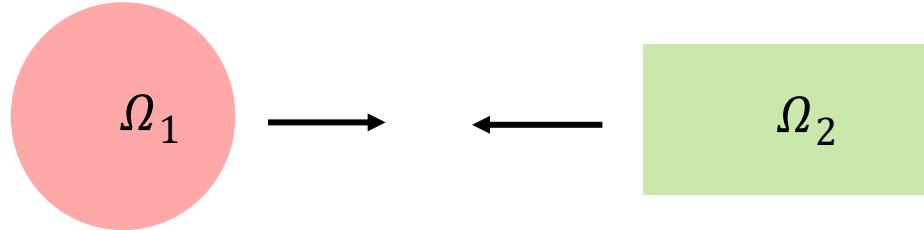
$$\begin{cases} M_1 \ddot{u}_1^{n+1} + f_1^{\text{int};n+1} = f_1^{\text{ext};n+1} \\ \varphi_1^{n+1} = \chi, \text{ on } \partial_\varphi \Omega_1 \setminus \Gamma, \\ \varphi_1^{n+1} = \varphi_2^n, \text{ on } \Gamma, \end{cases}$$

$$\begin{cases} M_2 \ddot{u}_2^{n+1} + f_2^{\text{int};n+1} = f_2^{\text{ext};n+1} \\ \varphi_2^{n+1} = \chi, \text{ on } \partial_\varphi \Omega_2 \setminus \Gamma, \\ T_2^{n+1} = T_1^{n+1}, \text{ on } \Gamma \end{cases}$$



Non-Overlapping Schwarz Contact Formulation

Before contact: simulation proceeds as usual

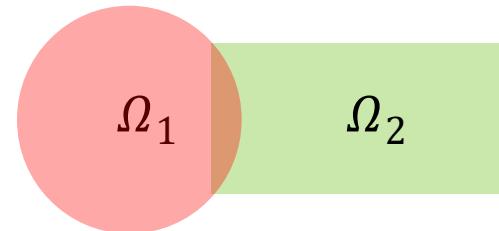


There are no contact constraints!

Contact constraints replaced with BCs applied **iteratively** at contact boundaries.

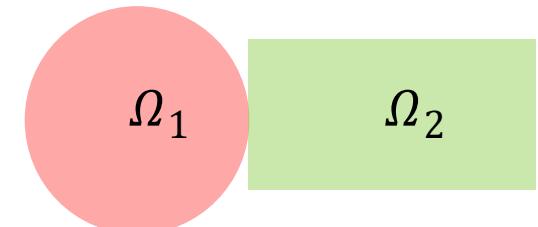
Detection of contact: proximity search and application of contact conditions to determine contact

- **Overlap condition:** triggered when two or more objects/domains have begun to overlap/penetrate each other
- **Compression condition:** positive normal traction
- **Persistence condition:** contact occurred in the previous step

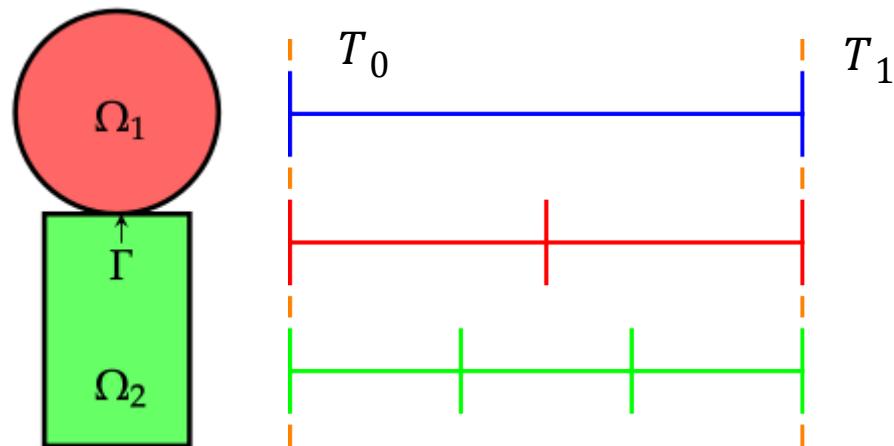


Enforcement of contact: alternating Schwarz iteration with Dirichlet-Neumann transmission BCs

$$\left\{ \begin{array}{l} M_1 \ddot{u}_1^{n+1} + f_1^{\text{int};n+1} = f_1^{\text{ext};n+1} \\ \varphi_1^{n+1} = \chi, \text{ on } \partial_\varphi \Omega_1 \setminus \Gamma, \\ \varphi_1^{n+1} = \varphi_2^n, \text{ on } \Gamma, \end{array} \right. \quad \left\{ \begin{array}{l} M_2 \ddot{u}_2^{n+1} + f_2^{\text{int};n+1} = f_2^{\text{ext};n+1} \\ \varphi_2^{n+1} = \chi, \text{ on } \partial_\varphi \Omega_2 \setminus \Gamma, \\ T_2^{n+1} = T_1^{n+1}, \text{ on } \Gamma \end{array} \right.$$



Enforcement of Contact via Alternating Schwarz



Controller time stepper

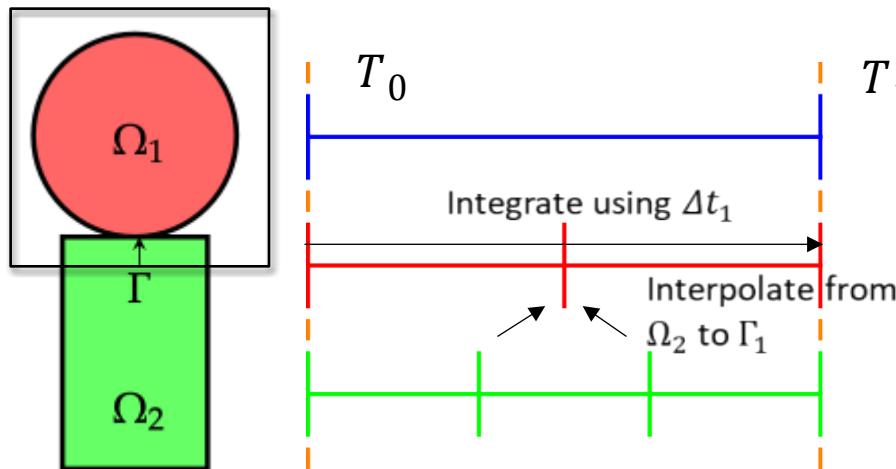
Time integrator for Ω_1

Time integrator for Ω_2

Key idea: a contact problem can be viewed as **coupled problem** while 2+ bodies are in contact

Step 0: Initialize $i = 0$ (controller time index).

Enforcement of Contact via Alternating Schwarz



Controller time stepper

Time integrator for Ω_1

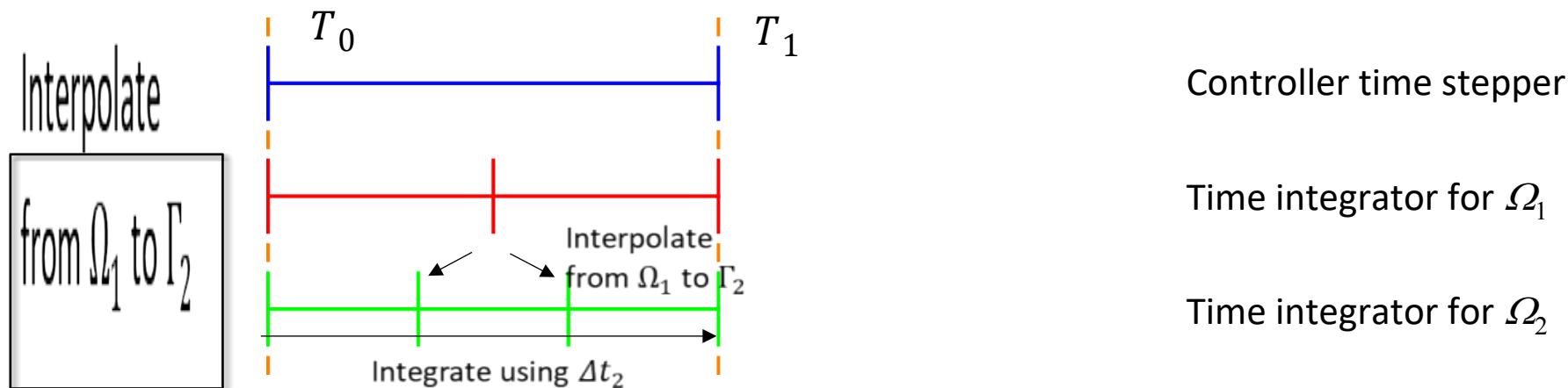
Time integrator for Ω_2

Key idea: a contact problem can be viewed as **coupled problem** while 2+ bodies are in contact

Step 0: Initialize $i = 0$ (controller time index).

Step 1: Advance Ω_1 solution from time T_i to time T_{i+1} using time-stepper in Ω_1 with time-step Δt_1 , using solution in Ω_2 interpolated to Γ at times $T_i + n\Delta t_1$ to apply Dirichlet BC.

Enforcement of Contact via Alternating Schwarz



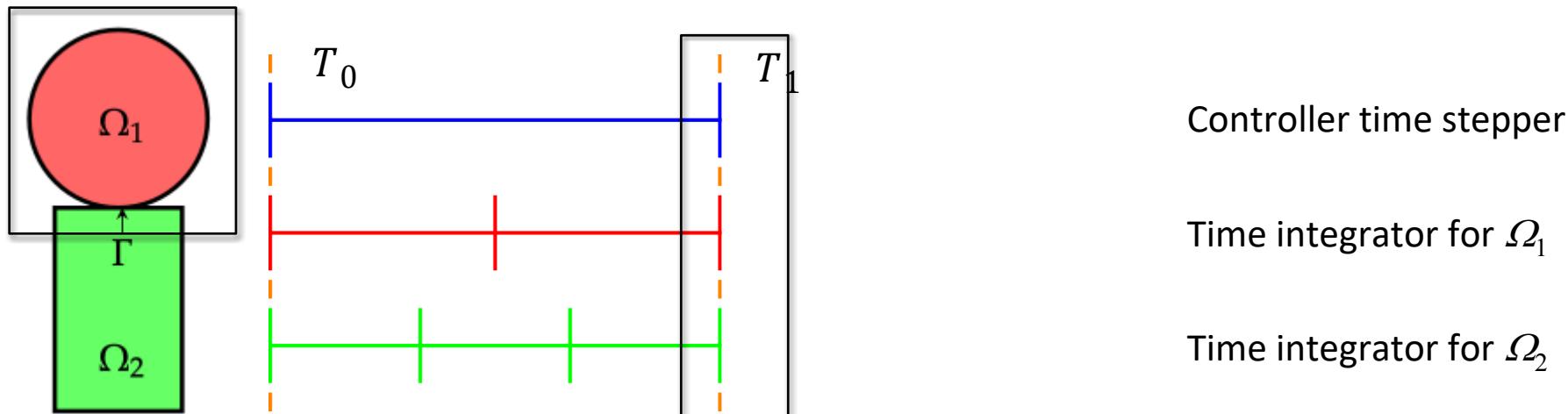
Key idea: a contact problem can be viewed as **coupled problem** while 2+ bodies are in contact

Step 0: Initialize $i = 0$ (controller time index).

Step 1: Advance Ω_1 solution from time T_i to time T_{i+1} using time-stepper in Ω_1 with time-step Δt_1 , using solution in Ω_2 interpolated to Γ at times $T_i + n\Delta t_1$ to apply Dirichlet BC.

Step 2: Advance Ω_2 solution from time T_i to time T_{i+1} using time-stepper in Ω_2 with time-step Δt_2 , using solution in Ω_1 interpolated to Γ at times $T_i + n\Delta t_2$ to apply Neumann (traction) BC.

Enforcement of Contact via Alternating Schwarz



Key idea: a contact problem can be viewed as **coupled problem** while 2+ bodies are in contact

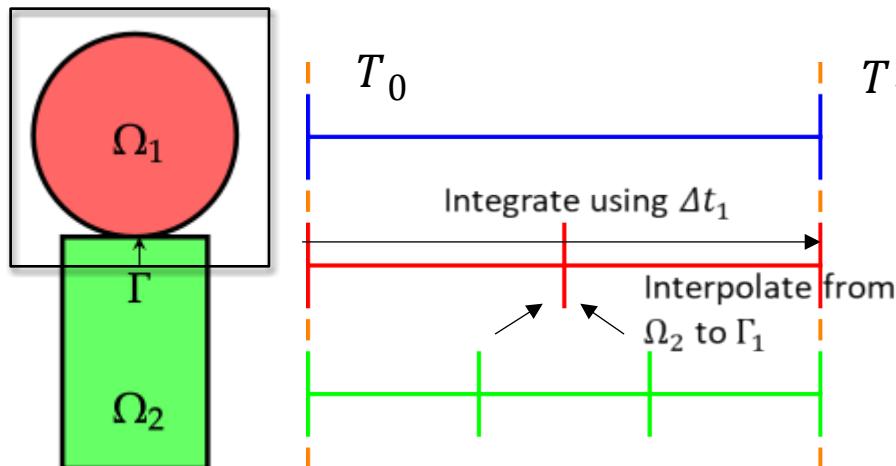
Step 0: Initialize $i = 0$ (controller time index).

Step 1: Advance Ω_1 solution from time T_i to time T_{i+1} using time-stepper in Ω_1 with time-step Δt_1 , using solution in Ω_2 interpolated to Γ at times $T_i + n\Delta t_1$ to apply Dirichlet BC.

Step 2: Advance Ω_2 solution from time T_i to time T_{i+1} using time-stepper in Ω_2 with time-step Δt_2 , using solution in Ω_1 interpolated to Γ at times $T_i + n\Delta t_2$ to apply Neumann (traction) BC.

Step 3: Check for convergence at time T_{i+1} .

Enforcement of Contact via Alternating Schwarz



Controller time stepper

Time integrator for Ω_1

Time integrator for Ω_2

Key idea: a contact problem can be viewed as **coupled problem** while 2+ bodies are in contact

Step 0: Initialize $i = 0$ (controller time index).

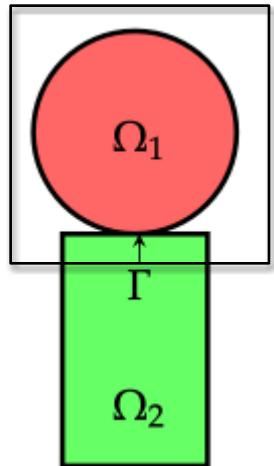
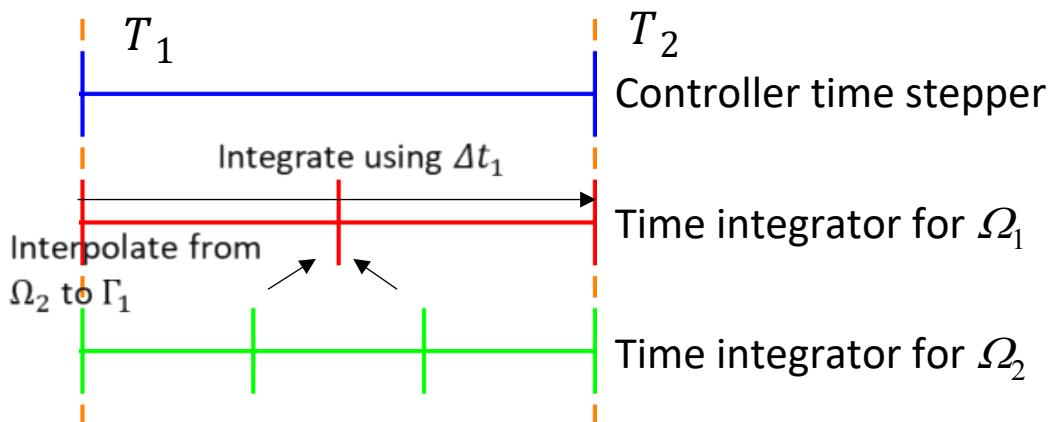
Step 1: Advance Ω_1 solution from time T_i to time T_{i+1} using time-stepper in Ω_1 with time-step Δt_1 , using solution in Ω_2 interpolated to Γ at times $T_i + n\Delta t_1$ to apply Dirichlet BC.

Step 2: Advance Ω_2 solution from time T_i to time T_{i+1} using time-stepper in Ω_2 with time-step Δt_2 , using solution in Ω_1 interpolated to Γ at times $T_i + n\Delta t_2$ to apply Neumann (traction) BC.

Step 3: Check for convergence at time T_{i+1} .

➤ If unconverged, return to Step 1.

Enforcement of Contact via Alternating Schwarz



Key idea: a contact problem can be viewed as **coupled problem** while 2+ bodies are in contact

Step 0: Initialize $i = 0$ (controller time index).

Step 1: Advance Ω_1 solution from time T_i to time T_{i+1} using time-stepper in Ω_1 with time-step Δt_1 , using solution in Ω_2 interpolated to Γ at times $T_i + n\Delta t_1$ to apply Dirichlet BC.

Step 2: Advance Ω_2 solution from time T_i to time T_{i+1} using time-stepper in Ω_2 with time-step Δt_2 , using solution in Ω_1 interpolated to Γ at times $T_i + n\Delta t_2$ to apply Neumann (traction) BC.

Step 3: Check for convergence at time T_{i+1} .

- If unconverged, return to Step 1.
- If converged, set $i = i + 1$ and return to Step 1.

Schwarz Algorithm for Contact


```

1:  $k \leftarrow 0$ 
2: repeat
3:   Check contact criteria
4:   if contact detected then
5:      $\varphi(\Omega, t_k) \leftarrow$  solution of Algorithm 2 in  $\Omega \times I_k$ 
6:   else
7:      $\varphi(\Omega, t_k) \leftarrow$  solution of (9) in  $\Omega \times I_k$ 
8:   end if
9:    $k \leftarrow k + 1$ 
10:  until  $k = N$ 

```

▷ controller time stepper
▷ defined in Section 3.1

▷ contact enforcement
▷ no contact

▷ N is the total number of steps

Algorithm 1: Full simulation workflow with Schwarz-based contact enforcement for the specific case of two subdomains.

Contact criteria:

- **Overlap:** interpenetration of subdomains
- **Compression:** Positive normal traction
- **Persistence:** Was in contact previous step

```

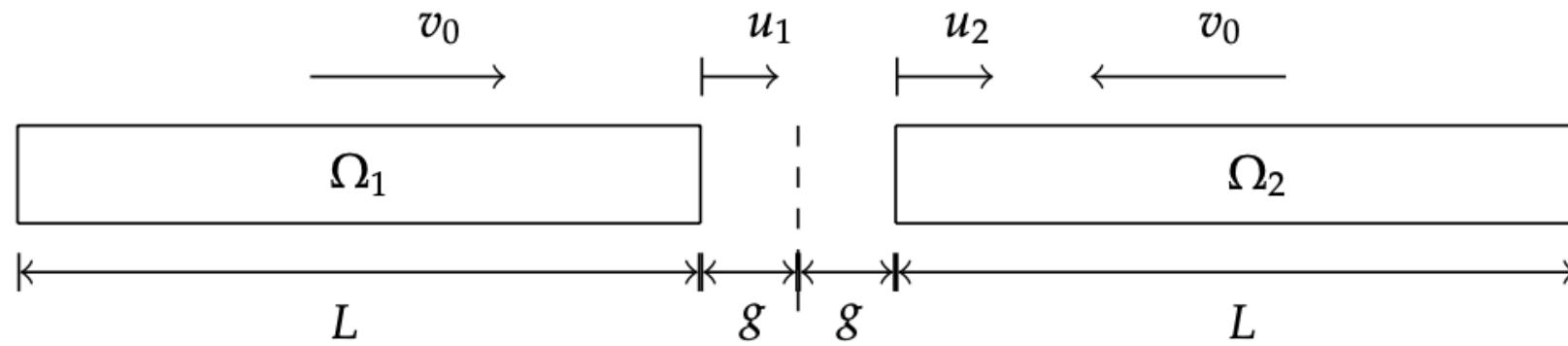
1:  $n \leftarrow 1$ 
2: repeat
3:   for  $i$  from 1 to 2 do
4:      $\varphi^{(n)}(\Omega_i, t_k) \leftarrow \mathbf{x}_k^{(i)}$ 
5:      $\dot{\varphi}^{(n)}(\Omega_i, t_k) \leftarrow \mathbf{v}_k^{(i)}$ 
6:     if  $i = 1$  then
7:        $\varphi^{(n)}(\partial\varphi\Omega_1, I_k) \leftarrow \chi$ 
8:        $\varphi^{(n)}(\Gamma, I_k) \leftarrow P_{\Omega_2 \rightarrow \Gamma}[\varphi^{(n-1)}(\Omega_1, I_k)]$ 
9:        $\mathbf{P}\mathbf{N} \leftarrow \mathbf{T}$  on  $[\partial_T\Omega_1 \cup \Gamma] \times I_k$ 
10:       $\varphi(\Omega_1, I_k) \leftarrow$  solution of (14)
11:    else
12:       $\varphi^{(n)}([\partial\varphi\Omega_2 \cup \Gamma], I_k) \leftarrow \chi$ 
13:       $\mathbf{P}\mathbf{N} \leftarrow \mathbf{T}$  on  $\partial_T\Omega_2 \times I_k$ 
14:       $\mathbf{P}\mathbf{N} \leftarrow P_{\Omega_1 \rightarrow \Gamma}[\mathbf{T}^{(n)}(\Omega_2, t_k)]$ 
15:       $\varphi(\Omega_2, I_k) \leftarrow$  solution of (15)
16:    end if
17:   end for
18:    $n \leftarrow n + 1$ 
19: until converged

```

▷ Schwarz loop
▷ subdomain loop
▷ position IC
▷ velocity IC
▷ first subdomain
▷ regular Dirichlet BC
▷ Schwarz Dirichlet BC
▷ regular traction BC
▷ solve dynamic problem in $\Omega_1 \times I_k$
▷ second subdomain
▷ regular Dirichlet BC
▷ regular traction BC
▷ Schwarz traction BC
▷ solve dynamic problem in $\Omega_2 \times I_k$

Algorithm 2: The Schwarz alternating method for contact enforcement during a controller time interval I_k for the specific case of two subdomains.

A Canonical 1D Problem – 2 Colliding Elastic Bars



Position and velocity of left contact point:

$$x(t) = \begin{cases} -g + v_0(t - t_0), & t < t_{\text{imp}}, \\ 0, & t_{\text{imp}} \leq t \leq t_{\text{rel}}, \\ -v_0(t - t_{\text{rel}}), & t > t_{\text{rel}}, \end{cases} \quad v(t) = \begin{cases} v_0, & t < t_{\text{imp}}, \\ 0, & t_{\text{imp}} \leq t \leq t_{\text{rel}}, \\ -v_0, & t > t_{\text{rel}}, \end{cases}$$

Impact & release times:

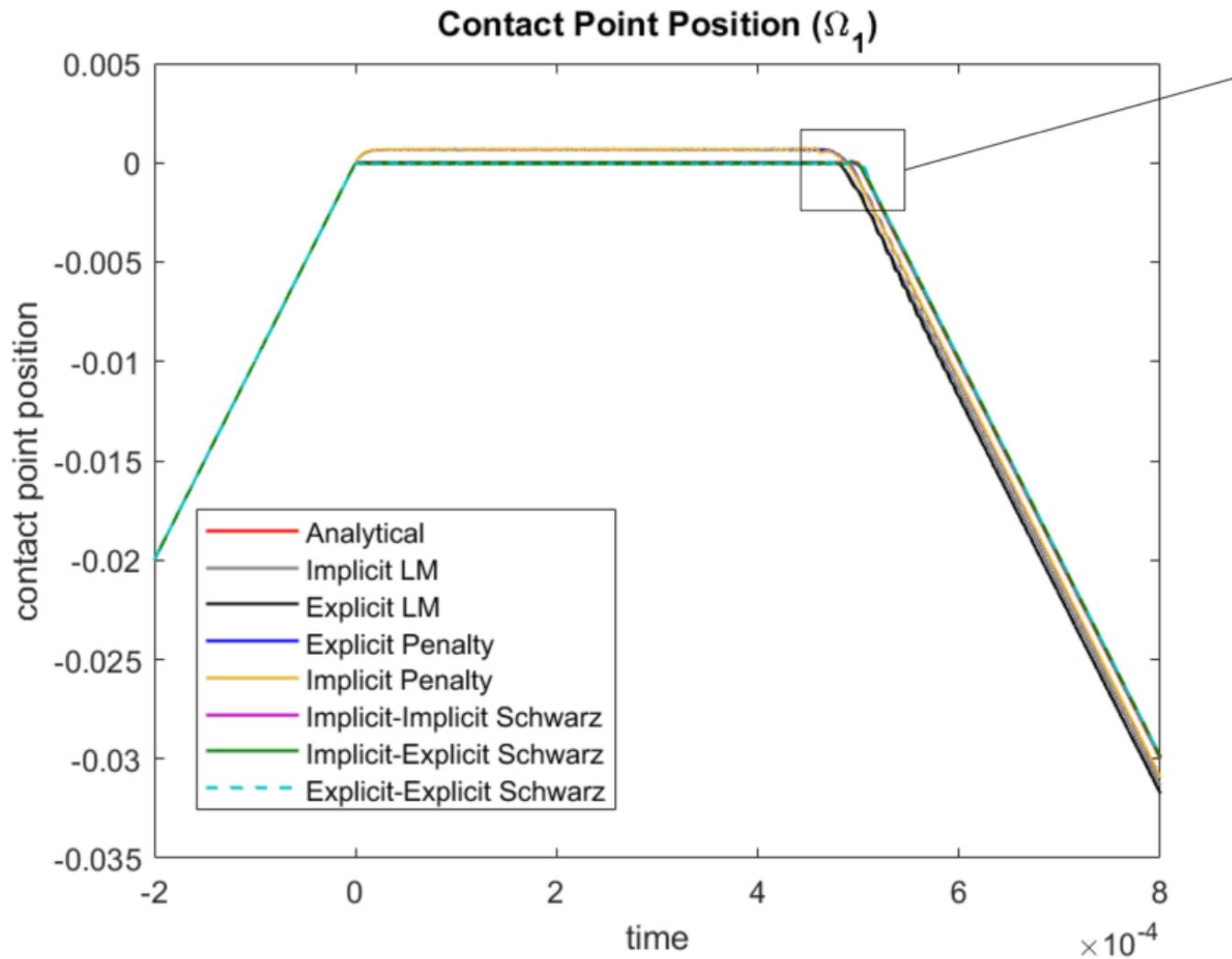
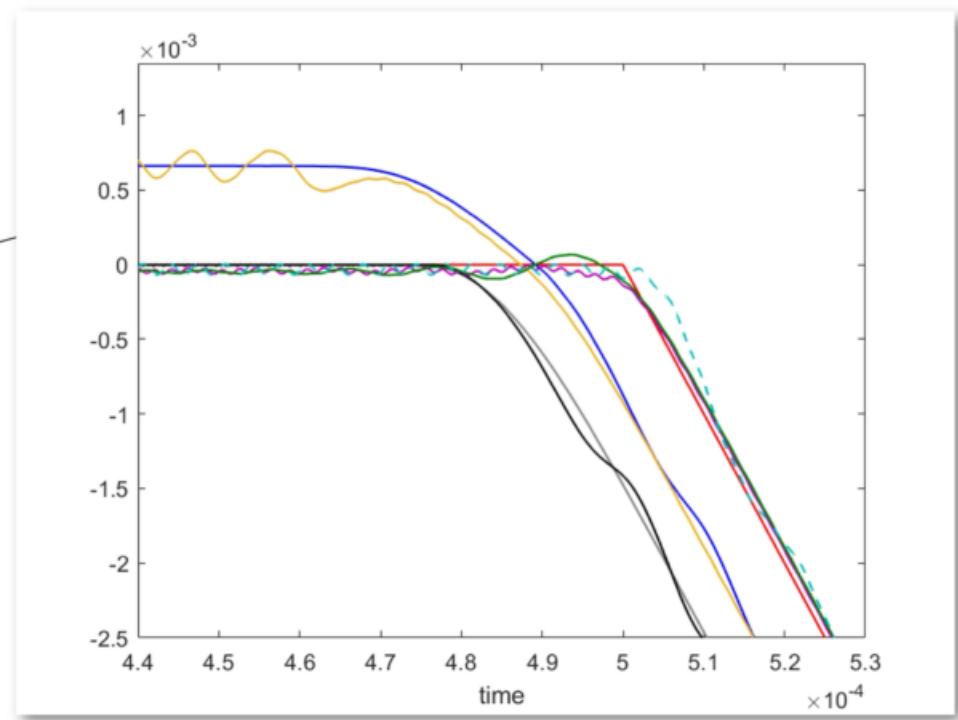
$$t_{\text{imp}} = t_0 + \frac{g}{v_0}, \quad t_{\text{rel}} = t_{\text{imp}} + 2L\sqrt{\frac{\rho}{E}},$$

Contact force: $f_{\text{contact}} = v_0\sqrt{E\rho}A$,

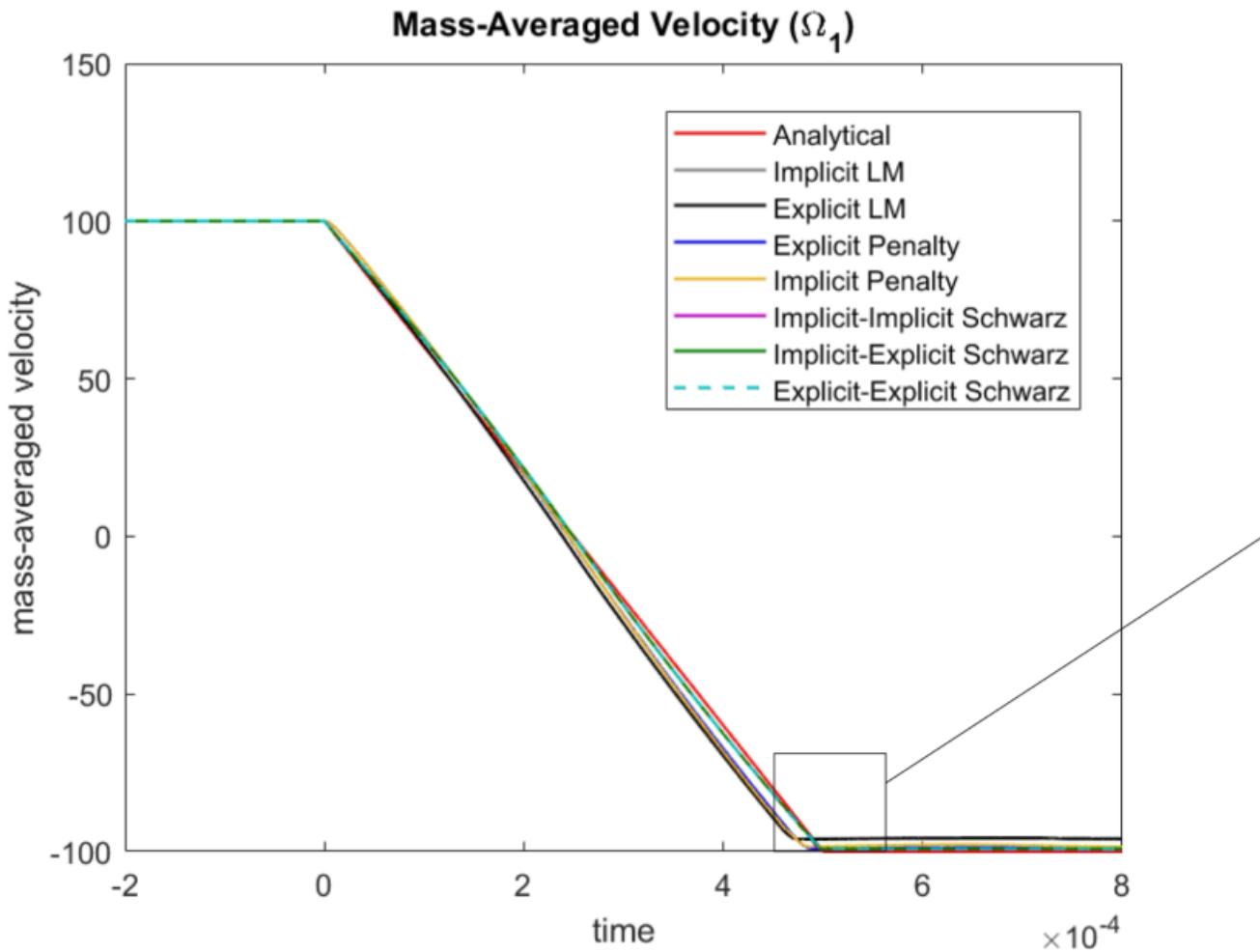
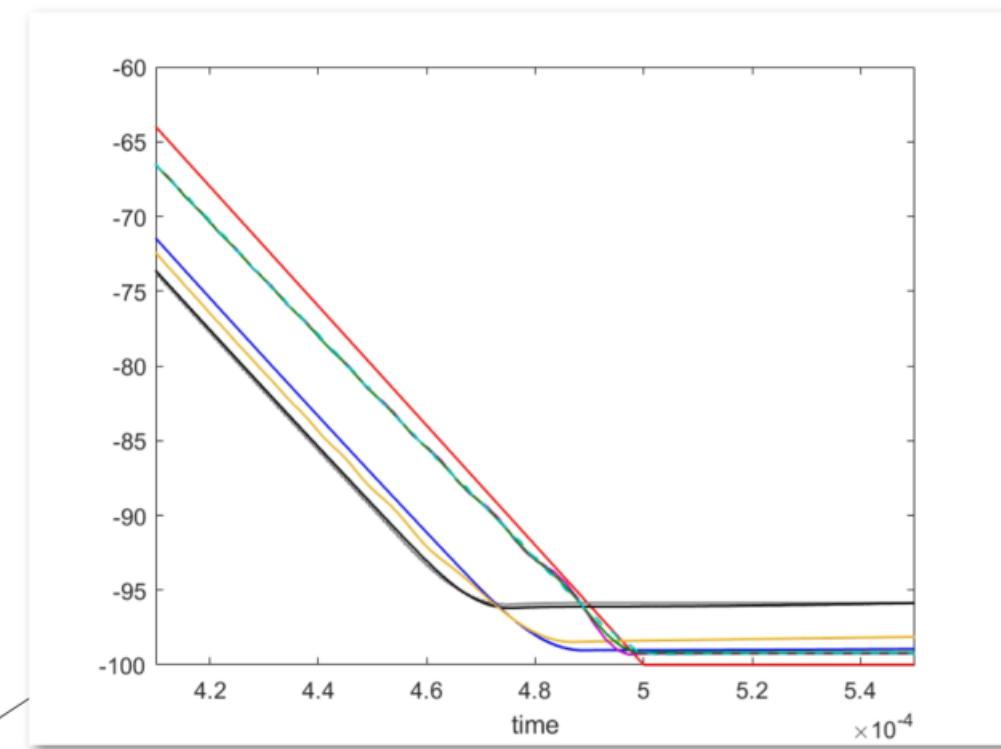
Comparison of Results

- Analytic solution
- Lagrange multiplier method with implicit time integration
- Lagrange multiplier method with explicit time integration
- Penalty method with implicit time integration
- Penalty method with explicit time integration
- Schwarz method with implicit-implicit integration
- Schwarz method with implicit-explicit time integration
- Schwarz method with explicit-explicit time integration

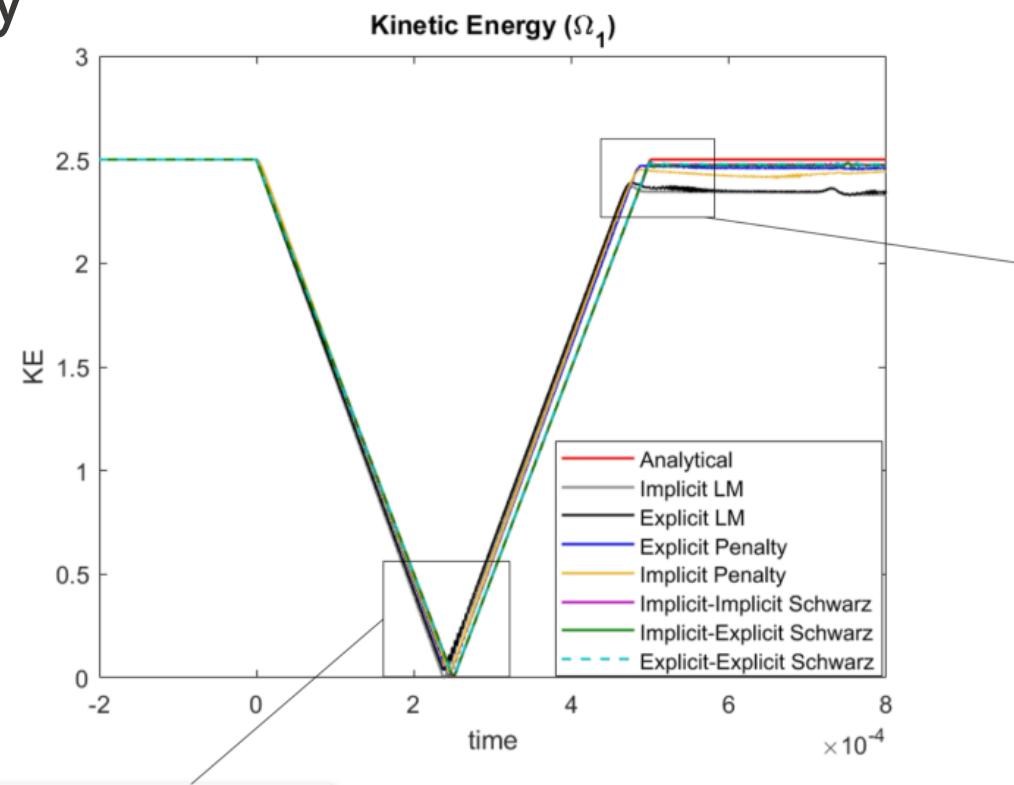
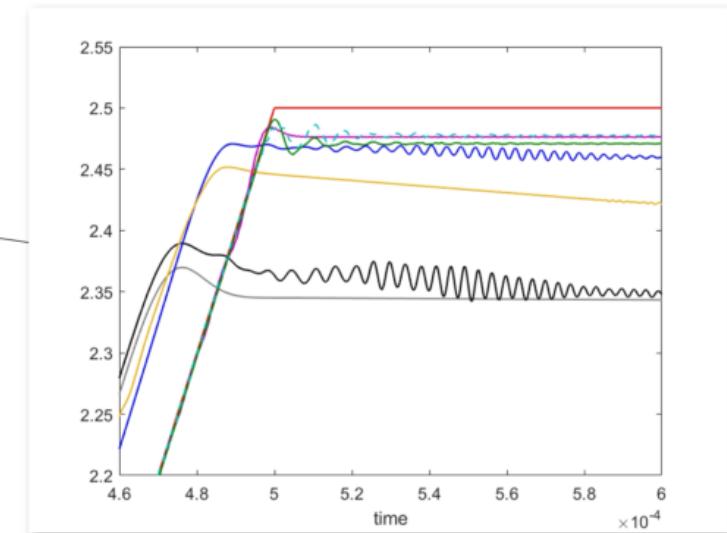
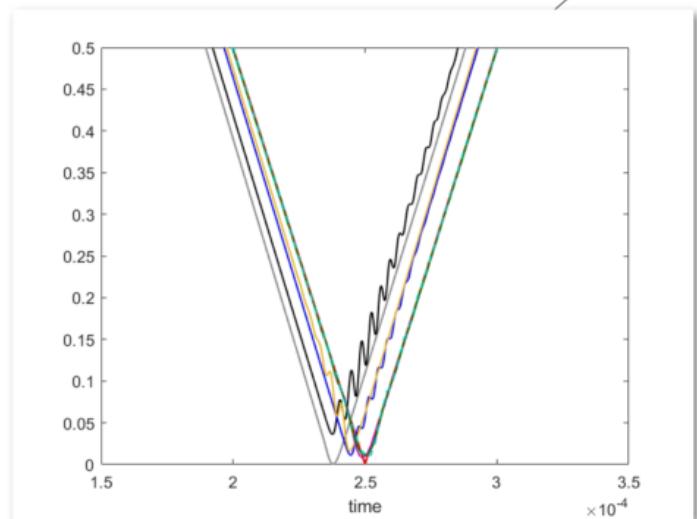
Contact Point Position



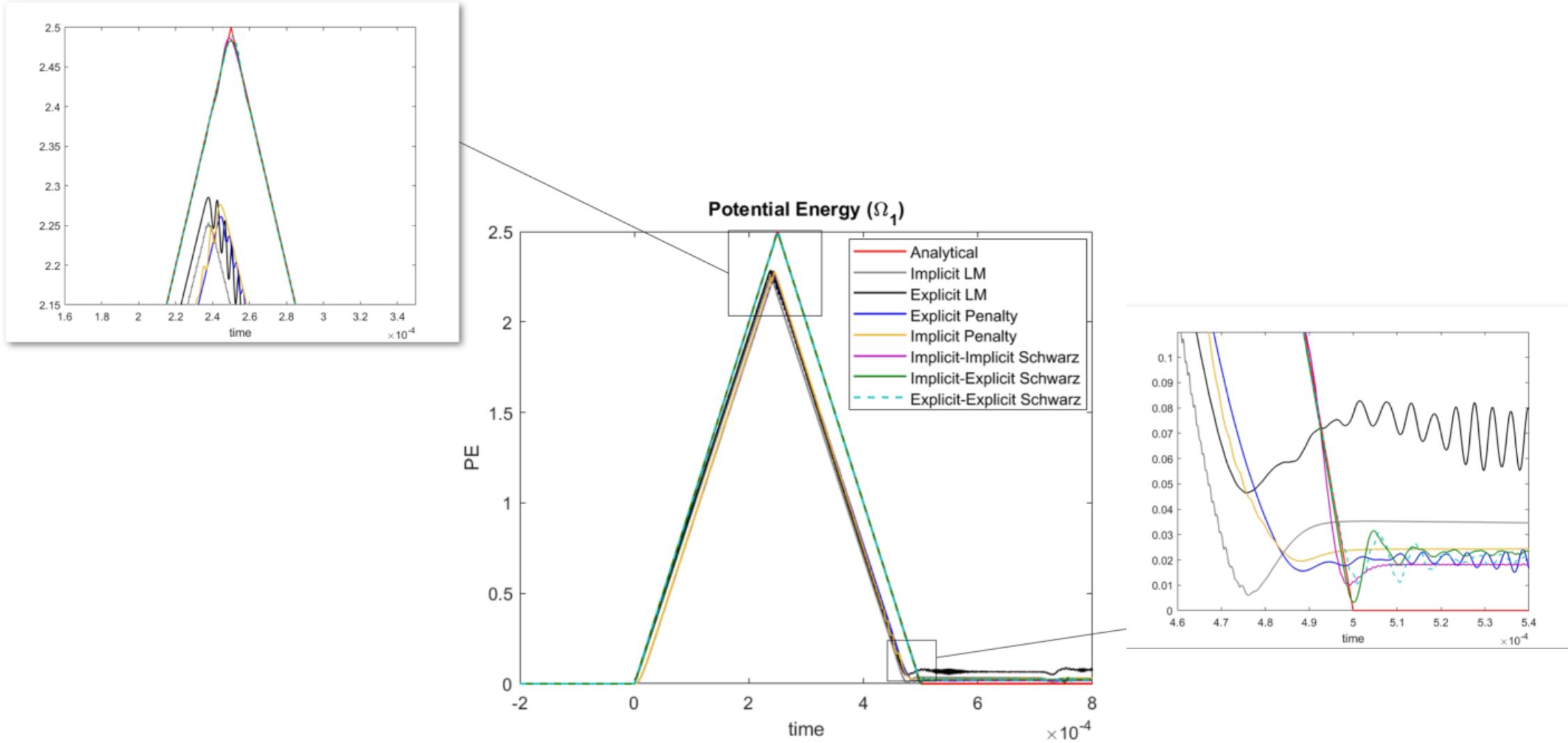
Mass-Averaged Velocity



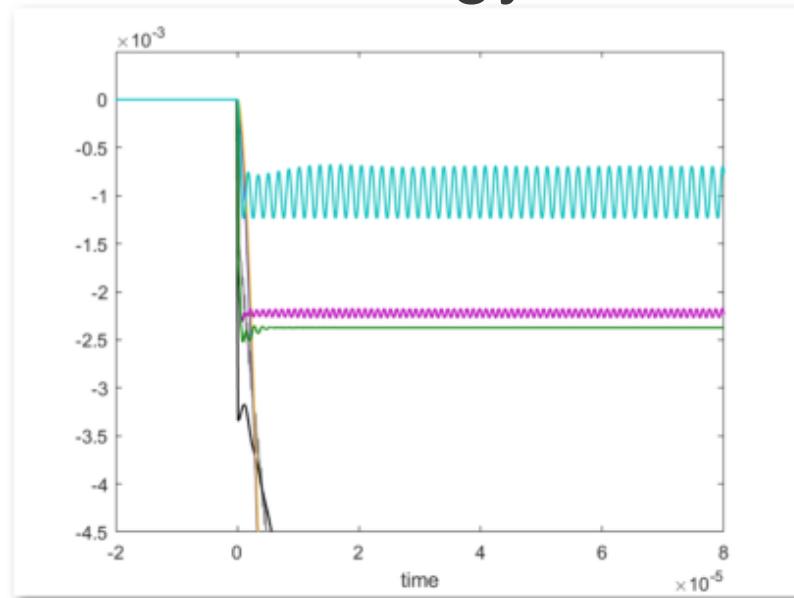
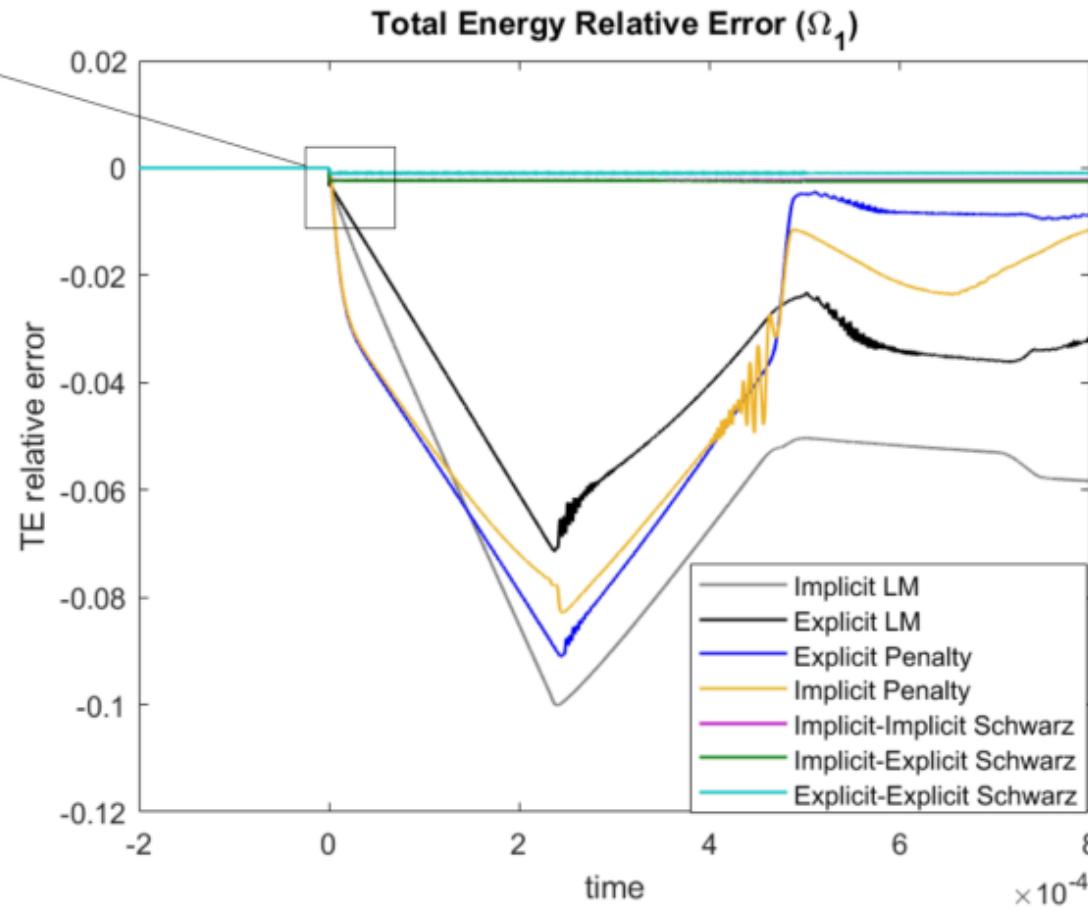
Kinetic Energy



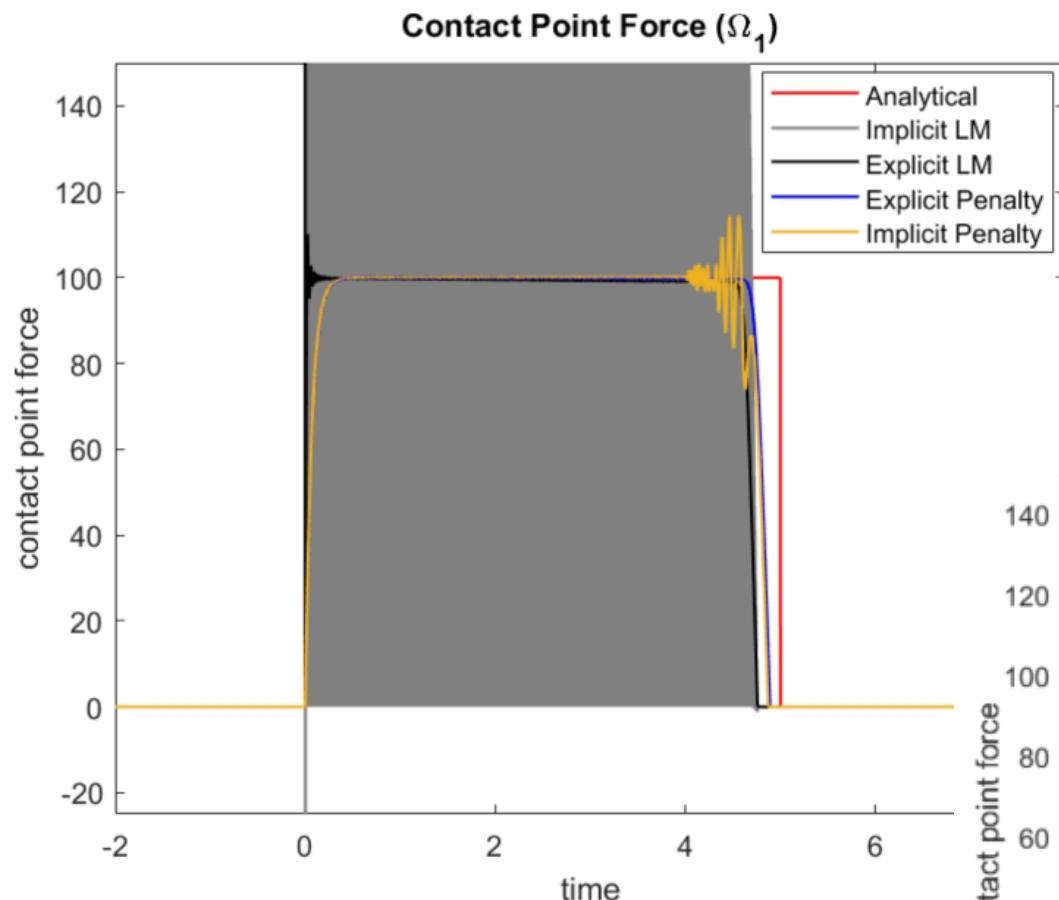
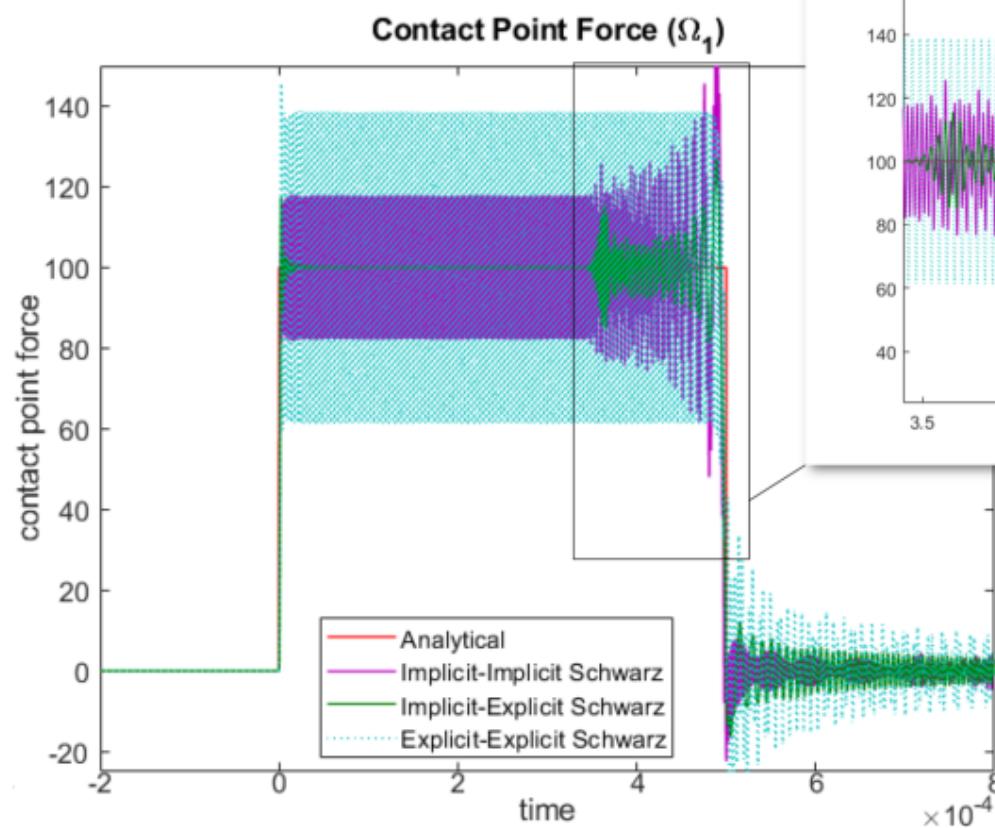
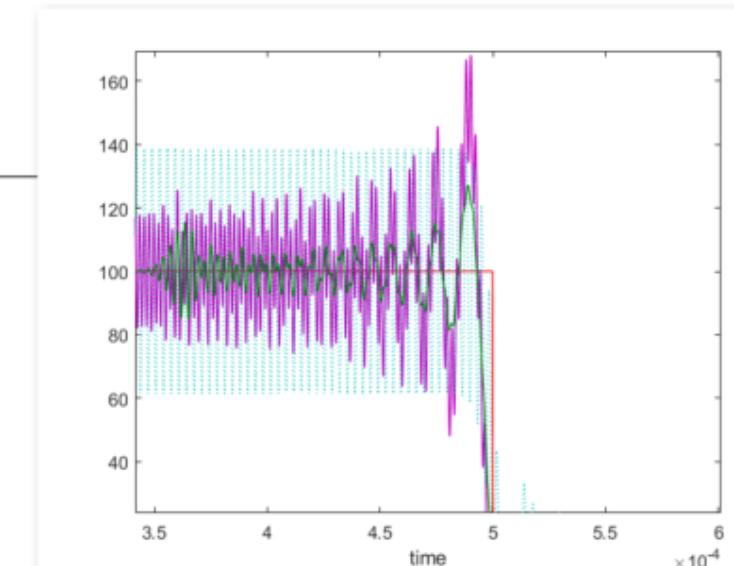
Potential Energy



Total Energy



Contact Force



Contact Velocity

