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2 | Motivation
« Stable, accurate and robust methods for simulating mechanical
contact are extremely important in computational solid mechanics

» Example scenarios where contact arises: touching surfaces,
sliding, tightened bolts, impact, ...

Above: gears in contact within MEMS
device. From sandia.gov/media

Below: oblique cylinder impact simulated
using Sandia’s ALEGRA code.
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« I Motivation
« Stable, accurate and robust methods for simulating mechanical
contact are extremely important in computational solid mechanics

» Example scenarios where contact arises: touching surfaces,
sliding, tightened bolts, impact, ...

. . . Above: gears in contact within MEMS
Two-step process to the computational simulation of contact: device. From sandia.gov/media

1. Proximity search: computer science problem, has received much Below: OP“qge ZY'ipd:[Eiggzct S(;mU'ated
. . . . usin andia's coae.
attention due to importance in video game development © ;

2. Contact enforcement step: existing methods (penalty, Lagrange
multiplier, augmented Lagrangian) suffer from poor performance ®

» Long simulation times ®
» Lack of accuracy ®
» Lack of robustness ®

This talk: new approach for simulating multi-scale mechanical
contact using the Schwarz alternating method.

t=240e-05s




7 | Schwarz Alternating Method for Domain Decomposition £

= Proposed in 1870 by H. Schwarz for solving Laplace PDE on irregular domains.

Crux of Method: if the solution is known in regularly shaped domains, use
those as pieces to iteratively build a solution for the more complex domain.

Basic Schwarz Algorithm

Initialize:
= Solve PDE by any method on Q, w/ initial guess for transmission BCs on I}.
Iterate until convergence:

= Solve PDE by any method on Q, w/ transmission BCs on I, based on values
just obtained for (,.

= Solve PDE by any method on Q, w/ transmission BCs on I'; based on values
just obtained for (Q,.
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s | Schwarz Alternating Method for Domain Decomposition £

= Proposed in 1870 by H. Schwarz for solving Laplace PDE on irregular domains.

Crux of Method: if the solution is known in regularly shaped domains, use
those as pieces to iteratively build a solution for the more complex domain. H. Schwarz (1843-1921)

Basic Schwarz Algorithm

Initialize:
= Solve PDE by any method on Q, w/ initial guess for transmission BCs on I}.
Iterate until convergence:

= Solve PDE by any method on Q, w/ transmission BCs on I, based on values .
just obtained for (,. non-overlapping

= Solve PDE by any method on Q, w/ transmission BCs on I'; based on values “"

0 |T 0y

just obtained for (Q,.

o0

Overlapping Schwarz: convergent with all-Dirichlet transmission BCs' if O, N Q, # @.

Non-overlapping Schwarz: convergent with Robin-Robin? or alternating Dirichlet-Neumann?
transmission BCs.

'Schwarz, 1870; Lions, 1988. Z2Lions, 1990. 3Zanolli et al., 1987.



0 I How We Use the Schwarz Alternating Method

AS A PRECONDITIONER
FOR THE LINEARIZED
SYSTEM

AS A SOLVER FOR THE
COUPLED

FULLY NONLINEAR
PROBLEM




n I Overlapping Schwarz for Multi-scale Coupling in Solid

The Schwarz alternating method has been developed/implemented for concurrent multi-
scale quasistatic & dynamic modeling in Sandia’s Albany/LCM* and Sierra/SM codes.

Displacement

0.010

NNV AA

LV VY

Velocity

) /\ ]\
0

L1

(J.“Z (JLl Ujﬁ Ujﬁ
P

osition

1.0

'"Mota et al., 2017; Mota et al., 2022.

Wall L'nine L]

Coupling is concurrent (two-way)

“Plug-and-play” framework: couples different
meshes, element types, solvers, integrators

No nonphysical artifacts

Theoretical convergence properties’
Easy to implement in existing HPC codes
Scalable, fast, robust
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*https://github.com/sandialabs/LCM
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2 I Solid Mechanics Problem Formulation

Kinetic Energy:

Potential Energy:

Lagrangian:

Action Functional:

. 1 L
T(¢) := Efnpw-w dv,

V(o) ::LA(F,Z) dV—/ﬂpr-cp dv —

L(p, ) :=T(¢) — V()

Slp] == /IL(%@) dt.

Euler-Lagrange
Equations:

Div P B=pyp In QXxI,
ivP +pB =po¢ in .

T-p dS,

a0

(X, tg) =29 in Q,
"P(Xr tU) = 0 in (),
PN =T on opQXxI.

Semi-Discrete

Problem:

Mu + fint(ur u) - fext
u(0) = u,
u(0) = v,




i3 I Traditional Solid Mechanics Contact Formulation

Kinetic Energy:

Potential Energy
Augmented with
Contact Constraint:

Lagrangian:

Action Functional:

C:

Indicator function for
admissible set C:

. 1 L
I(¢) =5 prwp dv,

V(o) :=/QA(F,Z) dV—/ﬂpr-cp dV+/OIC(tp) avl- [ T-¢ds.

L(p, ) :=T(¢) — V()

Slp] == /IL(%@) dt.

The set of admissible configurations ¢ in
which interpenetration does not occur

0, ifped,
, ifp&C,

o0

Ie(p) := {

9 Q)

Contact constraint can be enforced
strictly or approximately

» Strict enforcement: Lagrange
multiplier methods

« Approximate enforcement:
penalty methods




14 I Non-Overlapping Schwarz Contact Formulation

* Ingredients:
» Domain decomposition
» Discretization and time-stepper in Q (red)
» Discretization and time-stepperin (0, (green)

» Controller time-stepper (blue): defines global time-
steps Iy, I, ... at which subdomains are synchronized

(9)] O, 0,
}
I b I h I = I ... Controller time stepper
to t ta t3
| | | | | | . Tire inteaator for O Can.use c.iifferent integrators
| | | | | | | gratorforih with different time steps
t1,0 t1,1 t1,2 t1,3 t14 t15 t1,6

within each domain!

Time integrator for (),
tho ta1 2o ta3 faa tas fae b2y t2g 29



5 I Non-Overlapping Schwarz Contact Formulation

(@)

| Io | L | . ..

I I | I

to tq ta t3

I I | | I | ..

| | | | | | |
t1,0 t11 t1,2 t1,3 t1,4 t1,5 t1,6
tho tan1 t2o fta3| f2a tas 2 l2y t2s 29

* Ingredients:

» Domain decomposition
» Discretization and time-stepper in Q (red)
» Discretization and time-stepperin (0, (green)

» Controller time-stepper (blue): defines global time-
steps Iy, I, ... at which subdomains are synchronized

* Problem is solved without any Schwarz iteration in
time intervals I, and I,, as there is no contact.

-} Controller time stepper

Can use different integrators
with different time steps
within each domain!

Time integrator for ()

Time integrator for (),



i I Non-Overlapping Schwarz Contact Formulation

* Ingredients:

» Domain decomposition
» Discretization and time-stepper in Q (red)
» Discretization and time-stepperin (0, (green)

» Controller time-stepper (blue): defines global time-
steps Iy, I, ... at which subdomains are synchronized

* Problem is solved without any Schwarz iteration in
time intervals I, and I,, as there is no contact.

« Non-overlapping Schwarz algorithm only applied in
control time interval I;, when contact is detected.

0
I I I

I 0 I 1 I 2 I ... Controller time stepper
to 31 ta t3

I I I I I I I ---- Time integrator for ()
t1,0 11 t1,2 t1,3 t1,4 t1,5 t1,6

- Time integrator for (),

tho ta1 b2 |t23 faa tas fae| l2y t2s 29

Contact criteria
Overlap: interpenetration of
subdomains
Compression: positive normal traction

Persistence: was in contact previous
step




17 I Non-Overlapping Schwarz Contact Formulation

» Key idea: a contact problem can be viewed as coupled problem while 2+ bodies are in contact

» Alternating Dirichlet-Neumann (traction) Schwarz iteration is applied once
interpenetration has been detected, to correct the interpenetration.

[ DivP(" 4+ pyB = pop™, in 0y x I,
< oM (X,t) = X, on 09y X Ii,
(P(n) (X, t) = PQg—)I'[‘P(n_l) (02: tk)]r on I x I,
PN = T, on [0pQ UT] x I,
[ DivP" 4+ poB = oo™, in 0 x I,
) eM(X,t) = 7 on [0,0,UT] x I,
0 PN = T, on  9pQy x I,
2 PN = Po,or[T™M(Qy, )], on I'x I,

There are no contact constraints!

Contact constraints replaced with BCs
applied iteratively at contact boundaries.

I I Em B



18 I Numerical Results: 1D Impact Problem’

L ]

Impact of two 1D identical linear elastic prismatic rods discretized using N,, = 200 linear
elements with exact analytic solution [Carpenter et al., 1991]
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« Schwarz alternating method compared to three conventional contact algorithms with a zero gap

contact constraint

» Implicit and explicit penalty method with penalty parameter 7 = 7.5 x 104
» Forward increment (explicit) Lagrange multiplier (LM) method [Carpenter et al., 1991]

Time stepper: Newmark-beta

» Schwarz couplings included Explicit-Explicit, Implicit-Explicit and Implicit-Implicit
» At = 1.0 x 1077 used for all methods except Implicit-Explicit Schwarz, which uses At = 1.0 x

1078 in explicit domain.

"Hoy et al., 2021; Mota et al., 2022 (under review).



19 I Numerical Results: 1D Impact Problem’

Contact point position: of the right-most node of left bar (©2,) as a function of time

Contact Point Position (Q1)

0.005 .
A\
t'f \ \
-0.005 /
c .;f
0 /
3 001/
o ;
a /
< /
5-0.015 /
o /
— /
@ 0.02F Analytical
g ' Explicit LM
< Explicit Penalty
-0.025 Implicit Penalty
— Implicit-Implicit Schwarz
— Implicit-Explicit Schwarz
0.03 1 |- — —Explicit-Explicit Schwarz
-0.035 : : ' :
-2 0 2 . 4 6 8
time 107

'Hoy et al., 2021; Mota et al., 2022 (under review).

151

4.4 4.5 4.6 4.7 4.8 4.9 5 5.1 52
time «10™

Penalty methods overpredict contact point location
between impact and release times

Explicit LM method under-predicts release time

Schwarz methods capture release time to an accuracy
of =0.1%.
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Mass-averaged velocity: of the left bar (©2,) as a function of time

Mass-Averaged Velocity (91)

150

Analytical

Explicit LM

Explicit Penalty

Implicit Penalty

— Implicit-Implicit Schwarz
— Implicit-Explicit Schwarz
— — —Explicit-Explicit Schwarz

100 ==~

%)
o
T

mass-averaged velocity
[’
T

501

AN

-100
-2

'Hoy et al., 2021; Mota et al., 2022 (under review).

<107

-60 F

4.2 4.4 4.6 4.8 5 5.2 5.4
time <10

» Similar conclusions can be drawn from mass-averaged
velocity

» Schwarz variants calculate mass-averaged velocity to
a sufficiently greater accuracy than any of the
conventional methods, especially near the time of
release
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Total energy relative error: for the left bar (Q,) as a function of time

« Total energy error is
negative for all 6
methods = all sl
methods are stable. af

« All three
conventional methods |
exhibit total energy
loss of up to 9% 1 \ S
following contact. R R

* Unlike conventional contact methods, Schwarz achieves an
error of at most 0.25% in the total energy!

» Explicit-Explicit Schwarz gives most accurate total
energy, followed by Implicit-Implicit Schwarz and
Implicit-Explicit Schwarz

'Hoy et al., 2021; Mota et al., 2022 (under review).

0.02

total energy relative error

-0.08 |

-0.1

Total energy should
be conserved for
this problem

Total Energy Relative Error (91)

-0.02 |

-0.04

-0.06 |

Explicit LM

Explicit Penalty
Implicit Penalty
—— Implicit-Implicit Schwarz ||
— Implicit-Explicit Schwarz

Explicit-Explicit Schwarz
1

time «10™



2 | Numerical Results: 1D Impact Problem?

Contact point force: for the left bar (Q,) as a function of time

Contact Point Force (£2,)

Contact Point Force (£2,)

'Hoy et al., 2021; Mota et
al., 2022 (under review).

140 4 140

120 1 120

100 , o 4 100t
® f o)
o o
LS 80 18 801 40t
= <
o o
Q- 60 412 60F 35
3] ©
o] o]
€ 40 Analytical 1% 40
o — Explicit LM o

Explicit Penalty
20 Implicit Penalty 20
|_ Analytical
0 0 Implicit-Implicit Schwarz
Implicit-Explicit Schwarz
20k . . | . 20+ . e Explif:it—EpricitSchwzlarz .
- 0 2 4 6 - 0 2 4 6

time

=10

4

time

<107

WIP: mitigating

chatter problem.

« Three conventional methods exhibit some undesirable artifacts in contact point force but deliver in

general a smooth solution

« Schwarz solutions exhibit oscillations following instantiation of contact — “chatter” problem
» Schwarz method with largest total energy loss (Implicit-Explicit) exhibits least amount of chatter
» Energy dissipation is necessary for establishment of persistent contact [Solberg et al., 1998]
+ Chatter problem can likely be mitigated through addition of numerical dissipation
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Convergence of Schwarz methods

Schwarz Convergence - Kinetic Energy, €2,

kinetic energy relative error

< —S— Implicit-Explicit Schwarz (conv rate = 0.82)

Py —&— Implicit-Implicit Schwarz (conv rate = 0.82)

7 —&— Explicit-Explicit Schwarz (conv rate = 0.81)

-7 — — —Slope =1
~ I T
0.0025 0.005 0.01 0.02
1/N
X

Mesh convergence of kinetic energy for left bar

(Q,) when At = 1.0 x 1078

# Schwarz interations

25T

# of Schwarz iterations

Implicit-Implicit Schwarz
— Implicit-Explicit Schwarz
— — —Explicit-Explicit Schwarz

0 2 4
time

6 8
«10™

# Schwarz iterations required for
convergence (N, =200, At = 1.0 x 1077)

« Convergence rates are comparable to published results [Tezaur et al., 2021]

« At most 5 Schwarz iterations are needed for convergence
» Explicit-Explicit Schwarz variant requires fewest # iterations for convergence

'Hoy et al., 2021; Mota et
al., 2021 (under review).



2 I Summary & Future Work

Summary:

 The Schwarz alternating method has shown promise as a novel technique for simulating multi-scale
mechanical contact

» Contact constraints are replaced with transmission BCs applied iteratively on contact boundaries

» Schwarz method delivers substantially more accurate solution than conventional contact approaches in
contact point displacement, mass-averaged velocity, impact time, release time, and kinetic, potential
total energies

» An unfortunate consequence of the method’s ability to conserve energy so well appears to be the
introduction of chatter in contact point velocity and force.

Ongoing/future work:

* Introduction of dissipation and/or numerical relaxation to mitigate chatter problem.
* Robin-Robin transmission condition formulation of non-overlapping Schwarz.

» Introduction of additional or alternate contact conditions into Schwarz formulation
« Implementation/evaluation of the Schwarz alternating method in multi-D

» Requires the development of operators for consistent transfer of contact traction BCs using concept of
prolongation/restriction
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27 | Motivation

« Large scale structural failure frequently originates from small scale
phenomena (e.g, defects, microcracks, inhomogeneities), which
grow quickly in unstable manner

» Concurrent multiscale methods are essential to capture
correctly the multiscale behavior!

» Stable, accurate and robust methods for simulating mechanical Above: roof failure of Boeing 737 aircraft |
contact (touching surfaces, sliding, tightened bolts, impact) are  dueto fatigue cracks. From imechanica.org
equally important!

Two-step process to the computational simulation of contact:

1. Proximity search: computer science problem, has received much
attention due to importance in video game development ©

2. Contact enforcement step: existing methods (penalty, Lagrange
multiplier, augmented Lagrangian) suffer from poor performance ®

» Long simulation times ®
> LaCk Of accuracy @ Above: gears in contact within MEMS
> Lack of robustness ® This talk. device. From sandia.gov/media

I I Em B




» | Schwarz Alternating Method for Domain Decomposition £ _3

P

= Proposed in 1870 by H. Schwarz for solving Laplace PDE on irregular domains. sy
&
Crux of Method: if the solution is known in regularly shaped domains, use ‘
those as pieces to iteratively build a solution for the more complex domain. H. Schwarz (1843 - 1921)

Basic Schwarz Algorithm

Initialize:
= Solve PDE by any method on Q; w/ initial guess for Dirichlet BCs on I};.
Iterate until convergence:

= Solve PDE by any method (can be different than for Q) on Q, w/ transmission BCs on
I, that are the values just obtained for ;.

= Solve PDE by any method (can be different than for Q,) on Q; w/ transmission BCs on
Q, I that are the values just obtained for ,.

= Schwarz alternating method most commonly used as a preconditioner for Krylov iterative
methods to solve linear algebraic equations.

Novel idea: using the Schwarz alternating as a discretization method for
solving multi-scale partial differential equations (PDEs).
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0 I Non-Overlapping Schwarz Contact Formulation

Before contact: simulation proceeds as usual

Key idea: a contact problem can be viewed as

coupled problem while 2+ bodies are in
] —  — 1, contact

Detection of contact: proximity search and application of contact conditions to determine contact

« Overlap condition: triggered when two or more objects/domains have begun to
overlap/penetrate each other

« Compression condition: positive normal traction 0, Q,

» Persistence condition: contact occurred in the previous step

Enforcement of contact: alternating Schwarz iteration with Dirichlet-Neumann transmission BCs

41 int;n4+1  pextin+1 -1 int:n+1  pextin+41
My, ™ + f =1 Mou, " + f, =I5

P =x. on DM\ ey =x, on 9,0\T,

Pt =y, on T, T, =T onT

24 2,



31 1 Non-Overlapping Schwarz Contact Formulation

Before contact: simulation proceeds as usual -
There are no contact constraints!

Contact constraints replaced with BCs
2y — @ — 2, applied iteratively at contact boundaries.

Detection of contact: proximity search and application of contact conditions to determine contact

« Overlap condition: triggered when two or more objects/domains have begun to
overlap/penetrate each other

« Compression condition: positive normal traction 0, Q,

» Persistence condition: contact occurred in the previous step

Enforcement of contact: alternating Schwarz iteration with Dirichlet-Neumann transmission BCs

41 int;n4+1  pextin+1 -1 int:n+1  pextin+41

SOTH = X. on Jp\T', QDS'H = X, on Jp\T',

Pt =y, on T, T, =T onT

24 2,



2 | Enforcement of Contact via Alternating Schwarz

Step 0: Initialize i = 0 (controller time index).

Controller time stepper

Time integrator for (2,

Time integrator for (2,

Key idea: a
contact problem
can be viewed as
coupled problem

while 2+ bodies are
in contact




13 | Enforcement of Contact via Alternating Schwarz

)}

Ty

IT1

Integrate using At,

Step 0: Initialize i = 0 (controller time index).

Interpolate
AT Iﬂz to T}

Controller time stepper

Time integrator for (2,

Time integrator for (2,

Key idea: a
contact problem
can be viewed as
coupled problem

while 2+ bodies are
in contact

Step 1: Advance (, solution from time T; to time T;,, using time-stepper in (2, with time-step 4t;, using
solution in ), interpolated to I' at times T; + n4t, to apply Dirichlet BC.
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T T,

il o, e

[
>

Integrate using At,

Step 0: Initialize i = 0 (controller time index).

Controller time stepper

Time integrator for £2,

Time integrator for (2,

Key idea: a
contact problem
can be viewed as
coupled problem

while 2+ bodies are
in contact

Step 1: Advance ; solution from time T; to time T;,; using time-stepper in (; with time-step 4t,, using
solution in (), interpolated to I" at times T; + n4t, to apply Dirichlet BC.

Step 2: Advance ), solution from time T; to time T;,, using time-stepper in (), with time-step 4t,, using

solution in (), interpolated to I' at times T; + n4t, to apply Neumann (traction) BC.



i3 | Enforcement of Contact via Alternating Schwarz

0)) I |

Step 0: Initialize i = 0 (controller time index).

Controller time stepper

Time integrator for £2,

Time integrator for (2,

Key idea: a
contact problem
can be viewed as
coupled problem

while 2+ bodies are
in contact

Step 1: Advance (; solution from time T; to time T;,; using time-stepper in (; with time-step 4t,, using
solution in (), interpolated to I" at times T; + n4t, to apply Dirichlet BC.

Step 2: Advance ), solution from time T; to time T;,, using time-stepper in (), with time-step 4t,, using

solution in €, interpolated to I' at times T; + n4t, to apply Neumann (traction) BC.

Step 3: Check for convergence at time T}, .

I I Em B
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)}

Ty

IT1

Integrate using AL,

Step 0: Initialize i = 0 (controller time index).

Interpolate
AN 0,0l

Controller time stepper

Time integrator for £2,

Time integrator for (2,

Key idea: a
contact problem
can be viewed as
coupled problem

while 2+ bodies are
in contact

Step 1: Advance (1, solution from time T; to time T;,, using time-stepper in (), with time-step 4t,, using
solution in (), interpolated to I" at times T; + nA4t, to apply Dirichlet BC.

Step 2: Advance ), solution from time T; to time T;,, using time-stepper in (1, with time-step 4t,, using

solution in (), interpolated to I' at times T; + nAt, to apply Neumann (traction) BC.

Step 3: Check for convergence at time T;, ;.

» If unconverged, return to Step 1.

|
|
|
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T, T, Key idea: a I
1
|
"

Controller time stepper contact problem
| Integrate using At, | can be viewed as
Interpolate from Time integrator for £2, cqupled prqblem
0, teT, AT | while 2+ bodies are
0, I I Time integrator for £2, in contact

Step 1: Advance (), solution from time T; to time T;,, using time-stepper in (), with time-step 4t,, using

Step 0: Initialize i = 0 (controller time index). |
solution in (1, interpolated to I" at times T; + ndt; to apply Dirichlet BC.

Step 2: Advance ), solution from time T; to time T;,, using time-stepper in (1, with time-step 4t,, using
solution in (), interpolated to I" at times T; + n4t, to apply Neumann (traction) BC.

» If unconverged, return to Step 1.

]
]
Step 3: Check for convergence at time T, . ‘
» |If converged, set i = i + 1 and return to Step 1. L



38 ‘ Schwarz Algorithm for Contact

1. k+0 Ln«1
2; repeat > controller time stepper 2: repeat B SChWﬂFZ loop
3 Check contact criteria > defined in Section 3.1 3 forifromlto2do > subdomain loop
4: if contact detected then 4: @M (O, 1) a:}(;} &> position IC
5: p(Q), t;) « solution of Algorithm 2 in Q) x I; > contact enforcement 5 S (O 1) vf} > velocity IC
6: else Lo . .
7: (Q), t) < solution of (9) in () x [, > no contact o if i =1 then > first subdomain
. endﬁf ook ' k 7: c,o{”}(ag,ﬂl,lk} —x > regular Dirichlet BC
9; ke kol 8: (T, L) « Pnz_}r[cp(”‘” (), I)] > Schwarz Diricl'}let BC
10: untilk = N > N is the total number of steps % PN + T on [aT[_—ll UT] x I > regular traction BC
10: ¢(0)4, I}) + solution of (14) &> solve dynamic problem in (0; x I;
Algorithm 1: Full simulation workflow with Schwarz-based contact enforcement for the 11: else b second subdomain
specific case of two subdomains. 12: 0" ([0 UT], I) + x > regular Dirichlet BC
13: PN « T ondpQy x I &> regular traction BC
14: PN « Po,r [T(”} (O, )] > Schwarz traction BC
15: w(Q3, Iy) + solution of (15) &> solve dynamic problem in (); x I
Contact criteria: 6 endif
17: end for
. . . 18: n+<—n+1
* Overlap: interpenetration of subdomains 19: until converged
Algorithm 2: The Schwarz alternating method for contact enforcement during a con-
o Compression * Positive normal traction troller time interval I}, for the specific case of two subdomains.

» Persistence: Was in contact previous step



1 I A Canonical 1D Problem — 2 Colliding Elastic Bars
0 Uuq Us [y}
— <
01 : 9))
25 >:< K 3
L g8 L

Position and
velocity of left
contact point:

Impact &
release times:

'—g +oo(t —to), t < timp,
x(t) =40, timp < £ < trel, v(t)

\ _Uﬂ(t - trel)x t > trel;

=140,

00, t < timp;
timp St < trel,
t > trelr

\ — 00,

Uiﬂ, trel = timp + 2L 4 / %, Contact force: feontact = Voy/ EPA,

I I Em B



w0 I Comparison of Results

* Analytic solution

« Lagrange multiplier method with implicit time integration
* Lagrange multiplier method with explicit time integration
* Penalty method with implicit time integration

* Penalty method with explicit time integration

« Schwarz method with implicit-implicit integration

« Schwarz method with implicit-explicit time integration

« Schwarz method with explicit-explicit time integration



41 ‘ Contact Point Position

x 107

Contact Point Position (91)
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P ‘ Mass-Averaged Velocity

-60
-65
Mass-Averaged Velocity {511}
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Analytical 75
Implicit LM
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time 10



43

Kinetic Energy

0.5

Kinetic Energy (52,)
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44 ‘ Potential Energy

25
245
2.4
235
23
Potential Energy (£2,)
2 25 ; . : :
Analytical
- Implicit LM
218 . . Explicit LM
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e x10% — Implicit Penalty
Implicit-lmplicit Schwarz
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Ll
[
1 L -
05 ]
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,_(_,_)_,f—”‘”'f time %10
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0
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s | Total Energy

0

A

05|
At
15T

21

Total Energy Relative Error (52,)
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46 ‘ Contact Force

contact point force

Contact Point Force (2 1)
140 + - Ana!y!ical -
~—— Implicit LM
Explicit LM
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7 ‘ Contact Velocity

Contact Point Velocity {91}
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