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Why is fully-automated meshing and simulation model building important?
Why Voronoi meshes (and what are they)?

A shale geological model

Tracer transport in the subsurface

Results of uncertainty simulations

Conclusions and future work
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GeologY wu=p odel
Sensitivity Analysis and *
Uncertainty Quantification :
(SA/UQ) can require hundreds or Meshlng
thousands of model iterations *
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Why Automate? m
Y Structural

Uncertainty in geological Uncertainty

structure and numerical error Propagation

introduced by the mesh are often

neglected because model and

mesh building are difficult and . ] .
human-time intensive Uncertain Simulations

. parameters
Yet geological structure can have

a first-order impact on
subsurface flow and transport
processes

Sensitivity
Analysis |



Why VO ronoi meshes? Gas saturation around a heat source in an unsaturated

model using a flexed hexahedral mesh.

They rigorously honor complex
geometries...

..without introducing non-orthogonal
fluxes in simulations
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Equilibration of an unsaturated heterogeneous model with (LaForce et al., 2021)
infiltration using a refined hexahedral mesh.




| Why Voronoi meshes?

Grid refinement or flexing can bias flow Fluxes are perpendicular to grid cell faces using
directions Voronoi polyhedral cells

Non-orthogonal fluxes cause errors in two Solvers using two point flux approximation
point flux approximation simulations (TOUGH2/PFLOTRAN/FEHM) get accurate results

Fluid or W Fluid or

heat heat

source (NN ¢ ﬁu rce
‘/ By Balu Ertl - Own work, CC BY-SA 4.0,

https://commons.wikimedia.org/w/index.php?curid=38534275
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VoroCrust-Meshing Voronoi Meshes

* Accepts as input « Surface mesh is triangular
* Any water-tight set of volumes

* Desired monitoring points

«  Mesh refinement locations *  Mesh is randomly generated so each
VoroCrust run gives a new mesh

* Interior elements are polyhedral

 Fully automated mesh generation

Bimba

CAD model Surface spheres Medial axis Surface mesh Volumetric mesh
(LaForce et al. 2022a)




Shale Geological Framework Model

« Single realization of a Pierre
Shale Geological Framework

Model (GFM) 69 x 83 km
GFM at 10x vertical exaggeration

*  Pseudo-uncertain models are
generated by clipping 7 x 2.5 ST~ e
km sub-models from GFM Sy o -

* All models must have:

]
H - Y g LA b, TN ) > ‘ 0
-+ Atleast 15 m dip downward U e = T |

. o . . -500
in positive x-direction

» Surface sediment present
over entire model

-1,000

Stratigraphy

Il Overburden

- Host Shale
|:|Silty Shale
-Underlying Shale
[ Limestone Aquifer
[ Lower Shale

« 87 prospective geological
models created

* 10 models will be randomly
sampled in Dakota and
populated with parameters (Sevougian et al, 2019;
LaForce et al. 2022b)



| Meshing and Simulating Realization 1

Create model volumes (LaGriT) \

/ Clip surfaces from GFM (Python3)
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Fully-automated (Python3)
7/ Create mesh (VoroCrust-Meshing)

Create and run simulation (PFLOTRA
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Material ID
1. 2 3 4

(LaForce et al. 2022Db) M
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\  Partially-automated (Python3)
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o | Steps to Automate

—

« Convert

« LaGriT stereolithography (.stl) output file to Wavefront object (.obj) file
VoroCrust-Meshing input file

« VoroCrust-Meshing output file (.vcg) to PFLOTRAN explicit unstructured — Trivial
mesh file (.uge) format
« Add monitoring points to PFLOTRAN simulation input file _

* Running VoroCrust-Meshing and PFLOTRAN flow and transport o ReqU|r.es
simulations queueing
«  Meshing took 3-15 hours on workstation = system for
« Simulations took 1-3 hours on super-computer multiple
— realizations



10 | Mesh 1 Statistics

« Largest cell: 3.15 x 107 m3 in Lower Shale

 Smallest cell: 0.478 m3 in Overburden

* 1.5 million cells

. Material ID
v . 2 3 4 5 6 7

— Y N f——

Relative
Meshed Volume difference

Model Region Input Volume (m3) Number of Grid Cells

(m3) abs(Vin—Vp)
Vin

Overburden (ID 5) 6.8390 x 108 6.8353 x 108 5.40 x 104 295,696

Host Shale (ID 4) 8.2916 x 107 8.2912 x 107 4.28 x 10 642,293
Silty Shale (ID 3) 1.2143 x 10° 1.2142 x 10° 9.88 x 10~ 94,481

Underlying Shale (ID 2) 6.2624 x 109 6.2619 x 109 7.82 x 10
Limestone (ID 1) 1.3601 x 10° 1.3600 x 10° 9.56 x 10°
Lower Shale (ID 7) 1.6878 x 1010 1.6872 x 1010 3.08x10¢* N
Repository (ID 6) 3.7515 x 107 3.7509 x 107 1.65 x 104
3.4727 x 1010 3.4721 x 1010 1.92 x 10




11 | PFLOTRAN Simulation Model

« 7,000 x 2,500 x ~1,200 m

* Geological realization ID: 72

« Four additional sampled parameters Material ID

.2 3 4 5 6 7
 Tracer source is hypothetical waste

— |
repository Model Region Permeability (m?)

«  Dimensions are 1640 x 1525 x 15 m Overburden (ID 5) 1.65 x 1015 *
*  Depth: 250 m to 400 m

]

L5

E

Porosity

Host Shale (ID 4) and
Underlying Shale (ID 2)

Silty Shale (ID 3) 1.56 x 1017 *

1.00 x 10-1° 0.196 *

« Tracer properties
* Released attime t =0 years
« Properties representative of 129 Lower Shale (ID 7) 1.00 x 10-20
« Decay and adsorption neglected

Limestone (ID 1) 2.18 x 1016 *

« Simulations are fully saturated and

H -20
isothermal (GENERAL MODE) Repository (ID 6) 10010

*sampled |




> 1 Monitoring Locations

« Groundwater flow in x-direction with head gradient 0.0021 m/m

« Tracer concentration is monitored at blue points shown
- Three monitoring points 5 km downstream of the repository in potential flow intervals

«  One monitoring point is in the center of the repository

« Average tracer concentration in the repository volume is also monitored
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Flow — 7
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|
3 1 Mesh 1 Tracer Transport Results m

Tracer concentrations above 1x10-!* (M) are overlain on the full model colored according to Material ID
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14 | Probabilistic Results: Downstream
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5 | Probabilistic Results: In the Repository

Repository Concentration Repository Mass
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« Meshes were generated and simulations run on 10 stochastically-generated
realizations of a geological model for tracers released from a hypothetical waste
repository

- Simulated tracer concentration downstream and in the repository is produced for all
realizations

« Most of the process is automated:
« Sampling realizations
« Clipping geological surfaces to realization, building volumes to mesh
« Creating simulation input decks for each mesh populated with 4 sampled flow parameters
* Creating meshing input deck and creating mesh from input volumes

I
Conclusions m
I

« Some pieces require additional work:
« Easy: File conversions, adding monitoring points to simulation
*  More Challenging: queueing system for multiple realizations in parallel I



Immediate future:

= QOpen-source version of the meshing software so entire workflow utilizes free and open-
source software

Medium term:
= Full automation using Sandia’s Next Generation Workflow

= Complete uncertainty quantification and sensitivity analysis including
= Thermal and two-phase flow effects
= Impact of mesh realization/discretization
= Geological uncertainty

Longer term:
= Mesh repository features in detail
= Mesh faults that terminate within the model
= Anisotropic meshing to reduce element numbers

I
Future work m
I
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