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Nomenclature

X = {x(i)}N
i=1: training dataset of size N, X ∈ RN×D

x = [x1, . . . , xD ]: training input of D dimensionality

Xm : derivative inducing points, Xm ∈ Rm×D

y: noisy observation y(x) = f(x) + ε, ε ∼ N (0, σ2)

f: noiseless output f(x)
f′: first derivative of f
x∗: testing input
f ∗: testing output
N: number of data points
M: number of inducing data points for derivatives
D: input dimensionality
i, j: dummy data point index

d, g, h: dummy dimensionality index
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Classical GP
Assume a zero-mean GP,

f|X ∼ N (0,Kf,f), (1)

with covariance matrix defined by the squared exponential kernel

Cov
[
f (i), f (j)

]
= K(x(i), x(j)) = η2 exp

[
−
1

2

D∑
d=1

(x(i)
d − x(j)

d )2

ρ2d

]
, (2)

Assume observations are Gaussian

y|f ∼ N (f, σ2I), (3)

then the testing distribution is also Gaussian

E [f ∗|x∗, y,X, θ] = K∗,f[Kf,f + σ2I]−1y,
V [f ∗|x∗, y,X, θ] = K∗,∗ − K∗,f[Kf,f + σ2I]−1Kf,∗.

(4)

Trained by maximizing log likelihood

log p(y|X, θ) = −
1

2
y>[Kf,f + σ2I]−1y −

1

2
log |Kf,f + σ2I| −

N
2

log (2π) (5)
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Classical GP: What about derivatives?

Derivative is a linear operator

E

[
∂f (i)

∂x(i)
d

]
=

∂E
[
f (i)]

∂x(i)
d

, (6)

Cov
[
∂f (i)

∂x(i)
d

, f (j)
]
=

∂

∂x(i)
d

Cov
[
f (i), f (j)

]
, (7)

and

Cov
[
∂f (i)

∂x(i)
d

,
∂f (j)

∂x(j)
g

]
=

∂2

∂x(i)
d ∂x(j)

g
Cov

[
f (i), f (j)

]
. (8)
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Classical GP: What about derivatives?
. . . plug-in the squared exponential kernel

Cov
[
∂f (i)

∂x(i)
g

, f (j)
]

= −η2 exp
(
− 1

2

∑D
d=1 ρ

−2
d (x(i)

d − x(j)
d )2

)
ρ−2

g
(
(x(i)

g − x(j)
g )

)
,

(9)

and

Cov
[
∂f (i)

∂x(i)
d

, ∂f (j)

∂x(j)
h

]
= η2 exp

(
− 1

2

∑D
d=1 ρ

−2
d (x(i)

d − x(j)
d )2

)
ρ−2

g
(
δgh − ρ−2

h (x(i)
g − x(j)

g )(x(i)
h − x(j)

h )
)
,

(10)

respectively. The derivatives are analytical:

E

[
∂f ∗

∂x∗
d

]
=

∂K∗,f

∂x∗
d

[Kf,f + σ2I]−1y, (11)

and
V
[
∂f ∗
∂x∗d

]
=

∂2K∗,∗
∂x∗d ∂x∗d

− ∂K∗,f
∂x∗d

[Kf,f + σ2I]−1 ∂Kf,∗
∂x∗d

. (12)
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Classical GP: Binary classification

f : (−∞,+∞) → (0, 1)

linear logistic regression: f (x) = 1
1+exp (−x)

linear probit regression: standard normal cdf: f (x) =
∫ x
−∞ N (z|0, 1)dz
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Classical GP: A Bayesian perspective

A conditional of a Gaussian is also Gaussian.

Figure: Photo courtesy of from Lawrence 2016.

If
P(f, f∗) = N

([
µf
µf∗

]
,

[
A C

C> B

])
(13)

then by Bayes’ rule
P(f|f∗) = N (µf + CB−1

(f ∗ − µf∗ ), A − CB−1C>
) (14)

(cf. App. A, Quiñonero-Candela and Rasmussen 2005).
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Monotonic Gaussian process: Formulation

Monotonic GP
Jaakko Riihimäki and Aki Vehtari (2010). “Gaussian processes with monotonicity
information”. In: Proceedings of the thirteenth international conference on artificial
intelligence and statistics. JMLR Workshop and Conference Proceedings, pp. 645–652

Main ideas:
augment covariance matrix with block structure (closely related to multi-fidelity
and gradient-enhanced GP)

Kjoint =

[
Kf,f Kf,f′
Kf′,f Kf′,f′

]
(15)

the augmentation constrains the derivatives w.r.t. certain variables
binary (and numerically) classify the derivatives of whether monotonic or not
with probit likelihood Φ(·)

9



Monotonic Gaussian process: Formulation
monotonicity is imposed at M inducing locations Xm ∈ RM×D .

at location x(i) ∈ Xm , derivative of f is non-negative w.r.t. input dimension di . assume a probit likelihood
at the location x(i) as

p

m(i)
di

∣∣∣∣∣ ∂f (i)

∂x(i)
di

 = Φ

 ∂f (i)

∂x(i)
di

1

ν

 , (16)

where

Φ(z) =
1

2

[
1 + erf

( z
√
2

)]
=

∫ z

−∞
N (t|0, 1)dt, small ν = 10

−6
(

lim
ν→0

Φ = Heavyside function
)

(17)
joint prior for f and its derivatives f′ is given by

p(f, f′|X, Xm) = N
(
fjoint|0, Kjoint

)
, fjoint =

[
f
f′
]
, Kjoint =

[
Kf,f Kf,f′
Kf′,f Kf′,f′

]
. (18)

by Bayes’ rule, the joint posterior is

p(f, f′|y, m) =
1

Z
p(f, f′|X, Xm)p(y|f)p(m|f′), p(m|f′) =

M∏
i=1

Φ

 ∂f (i)

∂x(i)
di

1

ν

 . (19)
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Monotonic Gaussian process: Formulation

Expectation propagation
“best Gaussian by moment matching”: Thomas P Minka (2001). “Expectation
propagation for approximate Bayesian inference”. In: UAI’01, pp. 362–369

the posterior is analytically intractable, local likelihood approximations are given by the expectation
propagation (EP) algorithm, allowing the approximation of the posterior distribution

p(f, f′|y, m) ≈ q(f, f′|y, m)

= 1
ZEP

p(f, f′|X, Xm)p(y|f)
∏M

i=1 ti (Z̃i , µ̃i , σ̃
2
i ),

(20)

where ti (Z̃i , µ̃i , σ̃
2
i ) = Z̃iN (f ′i |µ̃i , σ̃

2
i ) are local likelihood approximations with site parameters

Z̃i , µ̃i , σ̃ from the EP algorithm.
approximate posterior is analytically tractable as a product of Gaussian distributions and can be simplified
to

q(f, f′|y, m) = N (fjoint|µ,Σ), (21)

µ = ΣΣ̃
−1
jointµ̃joint, Σ = [K−1

joint + Σ̃
−1
joint]

−1
, µ̃joint =

[
y
µ̃

]
, Σ̃joint =

[
σ2I 0

0 Σ̃

]
, (22)

why approximate? reduce cost complexity for computing moments of posterior from O
(
2N+M

)
to

O(N + M)

how? minimize KL divergence from the approximate to the true – similar to variational inference 11



Monotonic Gaussian process: Formulation

Training the monotonic Gaussian process with O
(
(N + M)3

)
:

log ZEP = − 1
2

log |Kjoint + Σ̃joint| − 1
2
µ̃>

joint[Kjoint + Σ̃joint]−1µ̃joint

+
∑M

i=1
(µ−i−µ̃i )

2

2(σ2
−i+σ̃2

i )
+

∑M
i=1 logΦ

 µ−i

ν

√
1+σ2

−i
ν2


+ 1

2

∑M
i=1 log(σ2

−i + σ̃2
i ),

(23)

Predictions:
E [f ∗|x∗, y,X,m,Xm] = K∗,joint[Kjoint + Σ̃joint]

−1µ̃joint (24)

and
V [f ∗|x∗, y,X,m,Xm] = K∗,∗ − K∗,joint[Kjoint + Σ̃joint]

−1K∗,joint. (25)
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Numerical example 1

y =
1

1 + e−x + ε, (26)

large homoscedastic noise
ε ∼ N (0, 0.12)

x ∈ [−3, 3]

10 samples
true / test
monotonic GP
classical GP

better approximation by the monotonic GP over the
classical GP.
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Semi-numerical example 2
Hall-Petch by CPFEM: smaller grain is stronger

σY = 16.47 + ε(d)
+ 0.0000288 1

(10−6·d)1.3
(27)

large heteroscedastic noise
ε(d) ∼ N (0, 2.2 · 1010 · d3)

d ∈ [15µm, 350µm]

Tran and Wildey 2020 JOM

Hall-Petch relationship

constrain GP to physics
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Fatigue life prediction under multiaxial loading

dataset from Karolczuk and
Słoński Karolczuk and Słoński
2022; Karolczuk and Kluger
2020
12 training data points
13 testing data points
(extrapolatory)
SN-curve

log Nexp = A − B logσa, (28)

Monotonic GP can extrapolate (in short range).
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Kinetic Monte Carlo for grain growth simulations
(SNL/SPPARKS)

Grain growth simulation via kinetic Monte Carlo

(SPPARKS).

comparable performance between classical and

monotonic GPs.
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ε̇-dependent σ − ε with crystal plasticity FEM

σ − ε compilation as a function of D and ε̇

comparable performance between classical and

monotonic GPs.
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Conclusion

In this talk, we
summarize the monotonic GP formulations( Riihimäki and Vehtari 2010)
demonstrate with 2 numerical examples + 3 engineering models

Monotonic GP:
works well for sparse + (very) noisy dataset,
performs (slightly) worse with already monotonic dataset,
might be useful for short-range extrapolation if physics support.
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Thank you for listening.
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