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Throughout this work, we are developing a proxy of a high-fidelity model ROMs are often utilized for design and quantifying the impact of uncertainty Frictionless contact of a rigid indenter with hyperelastic substrate Our UQ-BT-ROM 1illustrates that the error in the ROM
(FOM) that represents contact problems with finite deformation. Kadeethum in parameter space on model predictions [4]. However, little attention has The weak form of mechanical equilibrium equations in the reference decreases with increasing the training data, and so
et al. [ 1] 1llustrate two essential 1ssues associated with the nonlinear been given to quantifying the epistemic uncertainty in model predictions configuration 1s does the uncertainty estimate (variance of
compression framework: (1) the nonlinear compression could not exceed the introduced by using ROMs 1n place of FOM. Methods that quantify the approximation). This framework helps us understand
level of its linear counterpart's accuracy for problems that naturally lie amount of training data (knowledge) on the accuracy and uncertainty in penalty term Piola Kirchhoft stress tensor  body force the effects of knowledge (amount of training data) for
within linear manifolds, and (2) although the nonlinear approach excels 1n ROM predictions are needed [5]. Estimates of epistemic uncertainty are l ) 1 ROM construction on model performance (1.¢.,
highly nonlinear problems, it relies on convolutional operators, hindering its needed to engender trust in ROMs (trustworthy Al) and can be used for Kpen [) . (—gn)oun dS + /Q P V(ou)dV — 0 B -oudV — [) T'-0udS =0 g¢curacy and confidence). From two contact
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application for unstructured meshes and limiting this approach to less active learning strategies to improve ROM robustness and accuracy for a T | | T | f examples, model accuracy sharply increases with
practical problems. Very recently, Kadeethum et al. [2] developed Barlow fixed budget [6]. normal displacement - displacement traction force increasing training data to 1600, followed by a small
Twins ROM (BT-ROM) that possess either linear or nonlinear low- improvement from 1600 to 2500. Based on this, one
dimensional manifolds. This outstanding result derives from the use of BT (a) Data compression To solve this system of equation, we use a continuous Galerkin could pick an optimal training set as 1600. While we
self-supervised learning [3], which maximizes the information content of the o : approximation of the first order and PETSc SNES as a nonlinear solver and only demonstrated our methodology on contact
. . ’ o~ . . encoders projector . . . )
embedding with the latent space through a joint embedding architecture, X, () - . [X Xy X MUMPS as a linear solver problems, the non-intrusive data-driven ROM
resulting in an improved information structure of reduced manifolds; | zi Newd Zf} ¢ - BT RR approach proposed in this work applies to many other
consequently, a better prediction capability. X, g(pu) ~ X X Results: Accuracy comp arisons linear and nonlinear problems in computational
: : — decoders We showcase our framework using (a) Example 1: Poisson's ratio and mechanics and physics.
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encourage the current encoder to learn a set of training samples that 2 5 3
Easily applicable for complex geometries previous encoders fail to encode, and (2) by ensemble the approximation of 1o — S " | 0.12
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