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Abstract

Crop management involves a series of critical, interdepen-
dent decisions or actions in a complex and highly uncer-
tain environment, with distinct spatial and temporal varia-
tions. Managing resource inputs such as fertilizer and irri-
gation in the face of climate change, dwindling supply and
soaring prices is nothing short of a Herculean task. The ability
of machine learning to efficiently interrogate complex, non-
linear, and high-dimensional datasets can revolutionize de-
cision making in agriculture. In this paper we introduce a
reinforcement learning (RL) environment that leverages the
dynamics in the Soil and Water Assessment Tool (SWAT)
and enables management practices to be assessed and eval-
uated on a watershed-level. This drastically saves time and
resources that would have been otherwise deployed during
a full-growing season. We consider crop management as
an optimization problem where the objective is to produce
higher crop yield while minimizing the use of external farm-
ing inputs (specifically, fertilizer and irrigation amounts). The
model is naturally subject to environmental factors such as
precipitation, solar radiation, temperature, and soil water con-
tent. By using a case study of corn production in central
Texas, we demonstrate the utility of our framework by de-
veloping and benchmarking various decision-making agents
following management strategies informed by standard farm-
ing practice and state-of-the-art RL algorithms.

Introduction

As global demand for agricultural products increases and re-
sources such as land, water, and nitrogen fertilizers become
scarce and costly, farming practices that produce higher
yields on less acreage and input resources have become
more appealing (Alexandratos and Bruinsma 2012; Muller
et al. 2017; Ranganathan et al. 2018). The advent of pre-
cision agriculture, an innovative approach to modern farm-
ing that has been spurred by the rapid development of agri-
cultural technology, has enabled many farmers to maximize
crop yields without having to extend arable land or in-
crease farming inputs (Dutia 2014). Each growing season,
farmers all over the world make decisions critical to maxi-
mizing yields such as crop selection, planting and harvest-
ing scheduling, and application of fertilizers and irrigation.
Complexities are exacerbated by a changing climate and the
need to minimize environmental impacts, while achieving
global food security in the face of increasing populations.

The wide adoption of agricultural technology has pro-
vided many researchers and practitioners in machine learn-
ing with opportunities to aid farmers with crop and resource
management. The creation and availability of large datasets
containing weather, soil, and crop data has made it pos-
sible for machine learning to be applied to tasks ranging
from moisture and crop yield prediction to crop disease de-
tection using satellite image data ((Chlingaryan, Sukkarieh,
and Whelan 2018; Gandhi 2022; Liakos et al. 2018)). Vari-
ous approaches to meet the growing demand of agricultural
products have been proposed. These include increasing crop
production on current arable land, adopting greener farm-
ing practices, and reducing food consumption and wastage
(Muller et al. 2017). We consider the first approach and
make contributions towards optimizing crop yields using
machine learning.

Reinforcement learning (RL) has proven its utility in
decision making across multiple domains such as health-
care, engineering, and games. Agriculture use cases have
focused on optimizing for crop production subject to var-
ious resource constraints such as fertilizer and water us-
age ((Binas, Luginbuehl, and Bengio 2019; Elavarasan and
Vincent 2020; Overweg, Berghuijs, and Athanasiadis 2021;
Wu et al. 2021)). This paper employs RL to autonomously
learn the optimal set and distribution of actions to direct
crop growth cognizant of spatial and temporal variations.
The Soil and Water Assessment Tool (SWAT) (Arnold et al.
1998; Gassman et al. 2007) numerical simulator was used
to generate representative soil-water-plant synthetic data.
Four decision-making agents utilizing different strategies
to maximize crop yields were evaluated on the data. The
aforementioned model incorporates dynamical representa-
tions of economic costs, environmental impacts, and crop
yields, and produces a reward that characterizes the effects
of different agent actions on crop production. We evaluated
the agents and assessed the impact and practicality of the
strategies they pursued. By favoring less frequent and min-
imal amounts of agricultural inputs, it generates a holistic
framework to minimize environmental impact and opera-
tional costs while recovering optimal yields.

Contributions In this paper, we propose the SWATGym
environment, an open-source reinforcement learning envi-
ronment modeled after the widely used Texas A&M SWAT
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model (Arnold et al. 2012). As our key contributions, we

1. formulate crop management as a decision-making prob-
lem characterized by an episodic Markov Decision Pro-
cess

2. provide SWATGym, an OpenAl Gym environment that
simulates crop growth and incorporates geographic and
weather data to model the complex soil-water-plant-
atmosphere system as described by the Texas A&M
SWAT model

3. evaluate state of the art RL-based strategies and provide
a simple API to apply and evaluate custom crop manage-
ment strategies

4. highlight some promising research directions in this
environment, e.g. fine-tuning it to capture the spatial-
temporal variability of the seasons.

Background and Related Work

Nitrogen and water are the most limiting factors for crop
production. Small amounts of each may lead to less produc-
tion and excess amounts are not only costly but can lead to
environmental harms downstream. Applying correct levels
of nitrogen fertilizer and irrigation amounts can optimize
yield and profit while reducing the amount of excess nu-
trients washing away to local groundwater sources, rivers,
and lakes. However, determining the input application rates
and schedules that meet environmental and economic goals
of farming is not easy. It is complicated by uncertainties
such as weather, resource availability and costs, among other
factors. As a result, techniques that can inform crop man-
agement under such conditions are pivotal. Moreover, con-
trolling for the environmental and financial impacts of crop
management is central to the tenets of sustainable agricul-
ture.

Excessive nitrogen fertilizer application elevates nitrate
levels in soil, which aided by percolating irrigation water
may leach down to groundwater. High nitrate levels are con-
sidered harmful to humans and livestock. has been found to
affect water quality and excess irrigation washes away fer-
tilizer and other potentially harmful substances into rivers
and streams. For sustainability efforts, models that consider
long-term impact of management practices on water quality
are pivotal.

Reinforcement Learning for Crop Management Rein-
forcement learning (RL) involves a decision making agent
interacting with an environment in order to learn a reward-
maximizing strategy. At each discrete time step ¢ and given
a state s € S, the agent selects an action a € A informed
by its policy 7 : S — A. The agent then receives a reward r
and a new observation of the environment s’. The reinforce-
ment learning objective is to find the optimal policy 7* that
maximizes the cumulative reward.

RL has only recently been applied to crop management
with notable works including (Binas, Luginbuehl, and Ben-
gio 2019) which explores applying RL to sustainable agri-
culture as well as (Ashcraft and Karra 2021) and (Overweg,
Berghuijs, and Athanasiadis 2021) which optimizes for crop
yield subject to irrigation and fertilizer management actions.

Crop Growth models Simulated environments are fast
becoming the key to the creation of state-of-the-art algo-
rithms for various learning tasks as evidenced by the success
of RL algorithms in games such as Go (Silver et al. 2016)
and in robotics. Most existing environments are designed
for managing either irrigation operations or fertilizer oper-
ations. The most notable environment is the Python Crop
Simulation Environment (de Wit 2018) which houses vari-
ous crop models such as WOFOST (Van Diepen et al. 1989)
and LINTULS3 (Shibu et al. 2010) and has inspired environ-
ments such as CropGYM model (Overweg, Berghuijs, and
Athanasiadis 2021). One drawback of PCSE is that it re-
quires one to provide parameters for the various model com-
ponents (soil, crop, weather) as well as specify the agroman-
agement activities that will take place on the field to be sim-
ulated.

The CropGym environment simulates winter wheat
growth in the Netherlands, with a particular focus on fertil-
izer management. Other seminal models only focus on irri-
gation management and include the SIMPLE model (Zhao
et al. 2019), implemented as an OpenAl environment in
(Ashcraft and Karra 2021) and applied to potato growth sim-
ulation in Washington State, as well as the paddy rice simu-
lation environment described in (Chen et al. 2021).

SWAT The Texas A&M Soil and Water Assessment Tool
was developed to simulate physical processes such as crop
growth, soil water balance, and nutrient cycling in a wa-
tershed (Arnold et al. 1998; Gassman et al. 2007). SWAT
primarily considers two production levels: potential produc-
tion, which represents estimated growth under optimal con-
ditions, and actual production, which is limited by factors
such as temperature stress, nutrient and water availability.
SWAT uses a simplified version of the EPIC crop model
(Williams et al. 1989) to compute most of the crop-related
variables.

The SWATGym Environment

The main contribution of our paper is SWATGym, a rein-
forcement learning environment based on SWAT that simu-
lates a crop’s phenological development, growth, and yield
on a daily basis by taking into account the effects of fac-
tors such as nutrient cycling, water availability, and temper-
ature. We simulate crop growth and yield as a function of
soil conditions, climatic data, and agricultural input man-
agement strategies.

SWATGym is the first Python-based implementation of
SWAT, which is primarily written in FORTRAN and is not
readily available for reinforcement learning applications.
Our environment is built on top of OpenAl Gym framework,
the gold standard framework for developing reinforcement
learning environments (Brockman et al. 2016). The environ-
ment has a continuous state space comprising of 14 state
variables describing various processes related to weather,
soil, crop, and hydrology dynamics (see Table 2). It also has
a continuous multidimensional action space. At time ¢, the
action is given by a; = [F}, I;], where F' and I represent
fertilizer and irrigation amounts applied at that time.
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Table 1: Comparison of crop growth reinforcement learning environments.
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Figure 1: The SWATGym environment is the first SWAT-
based reinforcement learning environment. Agents interact
with the environment to learn crop management strategies
in simulation

Reward Function

SWATGym incorporates dynamical representations of crop
yields and corresponding economic costs of input resources
as well as their environmental impact. It produces a reward
that characterizes the effect of different choices of actions
on crop production.

The reward at each time step is then computed as

ry = yldy — oy — BI, (D

where yld is the estimated crop yield on a particular day
and « and § are penalty terms associated with the cost of
applying fertilizer I and irrigation /. In our case, a = 2.43
and 8 = 0.16.

Crop Growth Simulation

SWATGym simulates crop growth for a full growing sea-
son (120 days). Users have the option to specify the location
and simulation start date, otherwise default locale values for
Temple, Texas, and a season start date of April 15, 2021,
will be used. The simulation starts with crop emergence and
ends with harvest.

The environment operates on a daily time step. An
episode begins on the specified/default simulation date or
when the environment is reset, and ends after the speci-
fied/default duration of the growing season (harvest day).
The environment also has the option to save all relevant data
about the current growing season, including weather obser-
vations, crop states, soil and hydrology balances, as well as
actions taken and yield achieved to date. This feature en-
ables the collection of expert data, which can be used for

other tasks including offline learning. Below we show a plot
of precipitation observed during one simulation run.
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Figure 2: Temperature variation during one growing sea-
son, along with the crop-specific base temperature i.e., tem-
perature at or below which crop growth ceases, and opti-
mal temperatures for corn production. Ty = 8°C and
Topt = 25°C

State-space dynamics

SWATGym has several major modules such as hydrology,
weather, soil temperature, crop growth, and agricultural
management (Arnold et al. 1998). It includes state variables
describing time evolution of hydrological, soil, and crop
variables. At time (day) ¢, the plant state variables are de-
scribed by

Zp(t) = [LAI, BIOa Eaa Nstrsa Wstrsa Tstrs], (2)
and the soil state variables by
2s(t) = [SW,RCN,DN, Nyy). 3)

LAI is the leaf area index, BIO 1is the cumulative
biomass, E, is the actual evapotranspiration rate, and
Ngirs, Weirs, and Ty, are growth factors related to stress
caused by nitrogen, water, and temperature on the plant. For
soil state z,, SW is the available soil water content, RCN
is the daily surface runoff curve number, DN is the denitri-
fication rate, and N, is the nitrogen uptake.

We also define a vector of climatic inputs,

&(t) = [P, Et,Ta, Rd], 4)

where P is the precipitation received on that day, Et is the
reference evapotranspiration rate, T'a is average daily air
temperature, Rd is daily solar radiation. Therefore, the plant



state at time ¢ 4 1 is given explicitly as a nonlinear function
of the state and the input climatic variables at time ¢:

2p(t+ 1) = fy (z(0), 26(0),£(1)) , £ € [0,T], 2,(0) =@

(&)

where, for a given initial state x, z,(t) is the vector with the

plant state variables at time ¢, z,(t) is the vector with the soil

state variables; and £(¢) is the vector of the climatic inputs

provided by PCSE (de Wit 2018) for a specific location and
day.

Excluding daily weather data, most of the state variables
are propagated by equations provided in the SWAT2009
Theory Documentation (Neitsch et al. 2011). Below we
highlight a few of the state variables:

1. Phenology: Similar to the original SWAT model, we ex-
press crop growth/phenological development in term of
heat units, which are driven by daily mean temperature.
Growth is accelerated at or above the optimal tempera-
ture for the crop, T,,;, and is slowed or stopped at or
below the base temperature 7T}, s.. A crop’s phenological
development is based on daily heat unit accumulation,
given by

HU; =T, — Tyase, Vi€l,...,T, T>1 (6)

where HU is the value of heat units and 7j is the average
air temperature in °C on day .

The fraction of potential heat units accumulated for a
given day d is given by

_ Y HU
freau = PHU

where PHU is the total number of heat units required for
a plant to reach maturity. This is often calculated from
planting date to harvest date (on the last day T) if not
known beforehand.

(N

2. Potential Growth: Other factors related to plant growth
that are modeled by SWATGym include leaf area devel-
opment, light interception, and a plant-specific radiation
use efficiency metric (which measures conversion of in-
tercepted light into biomass).

(a) Leaf Area Development: The leaf area index (LAI) is
the area of green leaf per unit area of land. It is com-
puted as a function of crop canopy height by

ALAL = K; <1 _ 65*<LA“71*LA"~LM)) (8)

where Kf = LAImaw(fTLAIma:E,i - fTLAImaw,i—l)
and LAIy = 0.

LAI; = LAI;, 1+ ALAI; 9
where h. is the canopy height. For corn, LAl 4, =
3 and frpgu, sen = 0.9 (Arnold et al. 2012).

(b) Light Interception: Using Beer’s law, the amount of
daily solar radiation intercepted by the plant is com-
puted as

Hipposyn = 0.5Hgqy (1 — exp(—k,LAI)) (10)

where Hppogyn 1s the amount of intercepted photosyn-
thetically active solar radiation (M J/ m?), Hg,y is in-
cident total solar, &y is light extinction coefficient and
LAI is leaf area index.

(c) Biomass Production: Radiation Use Efficiency (RUE)
is defined for each plant species and is independent of
the plant’s growth stage. The potential increase in total
plant biomass on a given day is given by

Abio = RUE - Hphosyn (11)
The total plant biomass on a given day d is subse-
quently given by
d
bio =Y Abio;, d<T (12)
i=1

3. Crop Yield: SWATGym computes crop yield as the
product of a plant’s above ground biomass (and its roots,
if they a harvest-able product) and harvest index, which is
defined as the fraction of above-ground plant dry biomass
removed as dry economic yield (with values typically be-
tween 0 and 1). HI, the potential harvest index for a
given day in the plant’s growing season is computed us-
ing the following relationship:

100frPHU
1OOfTPHU + e:vp(lll - ]-OfTPHU)

where H I, is the potential harvest index at time of ma-
turity, and frpygy is the fraction of potential heat units
accumulated for the plant on a given day in the grow-
ing season. If needed, the actual harvest index can be de-
rived from Equation 13 by taking water deficiency into
account.

HI = Hlyy

; (13)
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Figure 3: Potential harvest index for corn production during
one growing season

Overall, estimated yield is given by

biogHI, forHI <1
yld = . HI
bio <

—) ,  otherwise, 14

HI+1

where yld is the crop yield (kg/ha), bio,g is the above-
ground biomass (kg/ha), H is the harvest index, and bio



is the total plant biomass on the day of harvest. bio,g is
computed as follows,

bioag = (1 — frroot) bio, (15)

where frio = 0.4 — 0.2 frpyy is the fraction of total
biomass in the roots on harvest day and frpyy is the frac-
tion of potential heat units accumulated for the plant on
a given day in the growing season.

4. Growth Constraints: Plant growth may be affected by
insufficient or excess water, nutrients, and extreme tem-
peratures. Stress factors are typically 0 under normal
conditions and approach 1 as growth conditions veer
from the optimal. Equations propagating these factors are
provided in (Neitsch et al. 2011).
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Figure 4: Growth related stress factors during one growing
season

Sample Usage

The SWATGym complies with the OpenAl Gym framework.
Below we show a sample code that runs a random agent on
SWATGym but can be configured for any custom crop man-
agement strategy.

1 from swat_env import SWATGym

2

3 env = SWATGym /()

4 4 initialize the env

5 state, reward, done, info = env.reset ()
6 while not done:

7 action = env.action_space.sample ()
8 observation, reward, done, info = \
9

env.step (action)

Source Code

SWATGym is released as a free and open-source environ-
ment under the terms of the MIT License. The latest version
of the code is publicly available at https://github.com/ and
includes a detailed setup process as well as reproducibility
steps.

While SWAT accounts for a variety of crop species and
environmental processes, we primarily consider corn pro-
duction (in the central Texas region) as proof of concept and
in order to utilize existing crop parameters in our formula-
tion. We further limit ourselves to key processes such as sur-
face runoff, water balance, and denitrification. For a detailed

description of the physiological processes, refer to (Neitsch
etal. 2011).

We provide a simplified implementation of SWAT that
makes the following assumptions:

* all climatic and agromanagement inputs are applied uni-
formly and daily, over a single growing season (typically
120 days for corn).

* all soil layers (except the surface layer, top 10mm) have
largely the same characteristics i.e. homogeneous soil
profile.

* no/negligible percolation and bypass flow exiting the soil
profile at the bottom; no lateral and base flow (which
means soil water content is computed as SW; = SWy +
Z§=1 (Raay — Qsury — Ea), where Rgq, is precipitation
in mm, Qgury is surface runoft, and Ea is actual crop
evapotranspiration).

* no growth-reducing factors such as weeds and pests and
negligible growth impact of all other nutrients besides
nitrogen.

Experiments

In addition to the SWATGym environment, we also evaluate
a selection of crop management strategies on the environ-
ment to demonstrate that reinforcement learning agents can
learn useful crop management strategies. We benchmark the
following agents:

* Deep Deterministic Policy Gradient (DDPQG) - is a state
of the art reinforcement learning algorithm for continu-
ous control tasks (Lillicrap et al. 2015). DDPG has been
widely successful in data rich applications.

* Twin Delayed Deep Deterministic policy gradient algo-
rithm (TD3) (Fujimoto, Hoof, and Meger 2018) builds
on DDPG and applies various modification to improve
its stability and learning performance.

We also provide performance measurements of three
baseline agents

* Random Agent - this is a dynamics-agnostic agent which
selects random amounts of fertilizer and irrigation to ap-
ply at each time step.

o Standard Practice Agent - applies predetermined
amounts of inputs on scheduled days during the early,
mid, and late stage of the growing season. This corre-
sponds to traditional farming methods of applying inputs
during different phases of the crop’s growth.

» Reactive Agent - applies high concentrations of fertilizer
and irrigation whenever soil water content is below a cer-
tain threshold and nitrogen levels are depleted.

Evaluation

We train each agent for a full corn growing season, equiva-
lent to 120 days, with evaluations done every 7 days. Each
evaluation consists of 10 episodes. We provide for compar-
ison the means and standard deviation values of all algo-
rithms across 5 repetitions of the experiment.

Each method was evaluated as follows. An episode starts
when the environment resets to an initial starting state and



Observation Unit
Mean air temperature °C
Precipitation mm
Reference Evapotranspiration mm
Solar Radiation M J/mm?
Mean Vapor Pressure hPa
Actual Evapotranspiration mm
Water balance mm
Daily runoff curve number -
Leaf area index -
Nitrogen Uptake kg/ha
Denitrification kg/ha

Nitrogen stress factor
Temperature stress factor
Water stress factor

Table 2: Environment’s observations include weather inputs, plant state variables and soil state variables.

Method  Performance
Random

Standard 2
Reactive 3
DDPG 4
TD3 5

Table 3: Average return + one standard deviation across 5
repetitions of the experiment for one full growing season

Method Performance
Random —4547.152 4 146.386
Standard 4396.402 4+ 13.116
Reactive 279.121 £ 32.234
DDPG 22217.155 4+ 4628.495
TD3 3263.175 £ 2295.258

Table 4: Average return =+ one standard deviation over 17
policy evaluations ran across 5 repetitions of the experiment.
Each evaluation has 10 episodes.

ends when the environment terminates, which happens when
the growing season completes.

Results

First, we show the performance of the baseline methods
over one growing season. Figure 5 shows that the standard
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Figure 5: Performance of baseline methods on one full grow-
ing season

approach obtains the best performance overall compared
to that of the Random agent and Reactive agent. We then
benchmark this against the RL strategies and observe the
following:

Beyond highlighting the potential of reinforcement learn-
ing strategies in facilitating sustainable crop management,
our preliminary results demonstrate the value of SWATGym
as a benchmark framework.

Our results are presented in Table and learning curves in
Figure . Mean and 95% confidence interval computed over
5 seeds are reported.
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Figure 6: Performance of best baseline method against RL
methods on one full growing season

Discussion and Research Directions

In this section we outline key challenges in modeling crop
growth and briefly describe social challenges such as adop-
tion of RL-based crop management strategies.

Challenges in crop modelling Accurately modeling crop
growth is a key and active research problem. SWATGym has
lots of room for improvement to increase its fidelity. Yet, one
also has to balance simplicity. Future releases of the environ-
ment will extend the dynamics to include more processes
such as groundwater seepage and to other applications such
as offline reinforcement learning.

Seasonal spatial-temporal variability Most crops that
are simulated are short-season crops. Regardless of the sea-
son duration, it is important to capture the spatial-temporal
variability of the season. For example, evapotranspiration is
higher in the summer than winter, so the crop management
algorithm should apply more irrigation to match water loss
during that period. Likewise, surface runoff could be higher
in the spring or rain season (e.g. when snow melts/after it
rains). So, the best strategy might be to apply less fertilizer
to avoid leaching and waste or to apply it early in the grow-
ing season before runoff affects it.

Reality Gap SWATGym simulates crop growth daily and
allows agents to select inputs on any given day. In practice,
such operations are done over a week or more, depending
on the size of the field and type of equipment used to irri-
gate or fertilize. Furthermore, the environment can be fur-
ther constrained to limit the total amounts of inputs applied
throughout the growing season and terminate whenever this
threshold is reached.

Social Impact Through a pro bono social impact program
which leverages technologies such as hybrid cloud and Al
to enhance and scale non-profit and government organiza-
tions, plans are underway to deploy this framework in small-
holding farms in central Texas. The goal is to help farm-
ers make better decisions with regards to crop management
and offer a platform where they can easily evaluate different

strategies in order to optimize crop production. This high-
lights a challenging aspect of this work, reinforcement learn-
ing, and digital solutions to real-world problems: adoption.
RL has widely been used in simulated environments but ever
so rarely in real-world applications. Working with small-
holding farmers will present unique opportunities to learn
how to translate research ideas into useful real-world prod-
ucts.

Conclusion

Evaluating and comparing different crop management
strategies in the real world is a costly and time-consuming
task. Simulated environments offer a compelling solution
and enable multiple strategies to be benchmarked simultane-
ously and without much of the cost overhead of the former
approach. To this end, we introduced SWATGym, a rein-
forcement learning environment designed to make it easy to
simulate crop growth and evaluate crop management strate-
gies. SWATGym models crop growth processes from emer-
gence to harvest and can be used to benchmark crop manage-
ment strategies, which in turn can inform decision-makers
towards sustainable agriculture practices. We hope that the
framework introduced in this paper facilitates follow-up
work and encourages researchers and practitioners in both
reinforcement learning and agriculture to collaborate on de-
veloping better crop management strategies and contribute
towards promoting sustainable agriculture.
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