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Abstract

Climate change, population growth, and associated water
scarcity present unprecedented challenges for agriculture.
Consequently, climate smart agriculture demands efficient us-
age of resources to optimize crop production. This project
aims to forecast soil moisture using domain knowledge and
machine learning, which in turn can be used for crop man-
agement decisions that enable sustainable farming. Tradi-
tionally, hydrological response features, such as soil mois-
ture, are predicted by dividing fields into small response units
and solving physics-based and empirical hydrological mod-
els, which require significant computational time and over-
sight from domain experts. Recent work has implemented
machine learning models as a tool to forecast hydrologi-
cal response features. These machine learning models ne-
glect a crucial component of traditional hydrological model-
ing: that spatially close units can have vastly different hydro-
logical responses. In traditional hydrological modeling, units
with similar hydrological properties are grouped together and
share model parameters regardless of their spatial proxim-
ity. Inspired by this domain knowledge, we construct a novel
domain-inspired temporal graph convolution neural network.
Our approach consists of the following steps: (1) cluster-
ing units based on their time-varying hydrological properties,
(2) constructing graph topologies for each cluster based on
similarity using dynamic time warping and, (3) forecasting
soil moisture for each unit using graph convolutions and a
gated recurrent neural network. We train, validate and test our
method on field-scale time series data consisting of 99K hy-
drological response units spanning 40 years in a case study
in North-East of the US. Comparison with existing models
for soil moisture forecast illustrates the effectiveness of us-
ing domain-inspired clustering with time series graph neural
networks. The framework is currently being deployed as part
of a pro bono social impact program which leverages tech-
nologies such as hybrid cloud and Al to enhance and scale
non-profit and government organizations. The trained mod-
els are being deployed in a series of small-holding farms in
Central Texas.

Introduction

Machine learning has changed much of our world in the past
decade. However, its impact in some of the most critical ar-
eas have been negligible. A prominent example is quantify-
ing and forecasting ground- and surface- water availability
to inform agricultural practices. While water plays a funda-
mental role, characterizing these resources involves distinct

temporal and spatial processes that must consider historical
and future precipitation volumes, surface and groundwater
runoff from heterogeneous sources, and evapotranspiration
and other water sinks or losses. The huge landmasses, and
high spatial and temporal variability makes it infeasible to
collect sufficient density of observation data to implement
IoT-backed decision support systems.

Traditionally, engineers have relied on physics-based
models that represent hydrological processes as a set of
partial differential equations that are further constrained
by heuristics, empirical relationships, and expert intuition.
While these allowed greater insight into spatial and temporal
evolution of water over land, the associated complexity and
uncertainty places a heavy burden on the expert user. Fur-
ther, these models can not readily be deployed across differ-
ent locations without a cumbersome calibration and valida-
tion effort. A prominent example in this regard is the Soil &
Water Assessment Tool (Gassman et al. 2007) that has been
widely-used to simulate the quality and quantity of both sur-
face and ground water processes, and inform agriculture,
land use, and land management practices. A corresponding
body of research has developed around parameterizing and
evaluating these models with prominent examples being the
parameter estimation toolbox (PEST) and SWAT Calibration
and Uncertainty Program (Doherty 2003; Abbaspour 2013).

The use of machine learning in hydrology has shown
promising results for tasks such as, stream-flow prediction,
flood forecasting, and rainfall-runoff prediction (Young, Liu,
and Wu 2017; Kratzert et al. 2019a; Nearing et al. 2020;
Kratzert et al. 2019b). However, these successes typically
occur in regions with well developed environmental mon-
itoring programs and relatively plentiful observation data
to train on. Further, most previous research has focused
on surface flow prediction, and do not resolve the more
agriculturally-important subsurface flows. These subsurface
and soil moisture processes dictate many critical ecosystem
services such as carbon storage of soils, physical, chemical
and biological soil health, and crop growth dynamics.

Precision agriculture approaches (Zhang, Wang, and
Wang 2002) have developed over the past four decades by
combining models, satellite, and sensor data to improve de-
cision making. Success in precision agriculture is related to
how well it can be applied to assess, manage, and evalu-
ate the space-time continuum in crop production (Pierce and
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Nowak 1999). Climate change introduces a completely dif-
ferent set of challenges that require drastically more granular
data, and more holistic decision making, to enable an en-
vironmentally and economically sustainable response. The
negative impacts of climate change are already being felt,
in the form of increasing temperatures, weather variability,
shifting agroecosystem boundaries, invasive crops and pests,
and more frequent extreme weather events (Calzadilla et al.
2013). On farms, climate change is reducing crop yields, the
nutritional quality of major cereals, and lowering livestock
productivity (Bank 2016). These stressors particularly im-
pact water constrained regions, resulting in groundwater de-
pletion, soil erosion, and crop failures.

Adapting to these challenges require the adoption of
climate-smart agriculture practices that minimize resource
consumption and environmental impacts, while simultane-
ously ensuring food security for growing populations. Glob-
ally, large farms increasingly digitize operations to en-
hance sustainability, small-holding farmers lack the skills
and resources to leverage Al and IoT informed decision
making. This led the World Economic Forum to posit
that “agriculture and farming will be redefined within a
decade with the adoption of Al-driven autonomous tools”
(Itzhaky 2021). However democratization of these solutions
to small-holding and disadvantaged farmers requires scal-
able, spatially-aware machine learning models that can be
informed by publicly-available datasets and sparse low-cost
(less accurate) sensor data.

This paper describes a novel domain-inspired framework
to forecast soil moisture. The proposed framework uses
graph convolutional neural networks (GNN) to resolve com-
plex hydrological response in a domain consisting of 3000
watersheds. While previous research has explored a GNN
approach to represent spatial patterns by superimposing a
graph topology over the physical streamflow network, our
approach instead generates the topology based on the degree
of physical and hydrological similarity between individual
watersheds. This provides a more physically representative
framework that is informed by the concept of group re-
sponse units (GRUs), a well-established hydrological mod-
eling technique, introduced by (Kouwen et al. 1993). GRU
is composed of groups of HRUs that have similar hydrolog-
ical characteristics and have more comparable hydrological
response than neigboring units which might have different
characteristics (e.g. crop versus livestock farming). The pro-
posed framework is applied to forecasts of soil moisture in a
case study application in NorthEast of the US.

The contributions of this paper are as follows:

* Describes a novel domain-inspired temporal graph con-
volution neural network. Analogous to GRUs, a cluster-
ing algorithm based on dynamic time warping (DTW)
clusters together HRUs with similar features regardless
of their spatial proximity. For each cluster, the graph
topology is extracted from a set of similarity metrics that
encompass static and dynamic hydrological catchment
attributes.

* Presents experimental results that compare models using
our novel GNN framework against state of the art for

time series forecasting, an LSTM model. These experi-
ments demonstrate the increased gain from using hydro-
logical feature information to inform prediction.

* Finally, we discuss further research opportunities to ap-
ply machine learning to improve agriculture management
and environmental sustainability. In particular, the poten-
tial to use the approach to inform regions with sparse sets
of monitoring datasets.

Related Work

Recent advancements in machine learning has led to
widespread interest amongst hydrologists and environmen-
tal scientists as a solution to address the challenges that per-
sist with streamflow and run-off forecasting. While previ-
ous works have approached performance levels of state-of-
the-art physics-based methods (Hsu, Gupta, and Sorooshian
1995; Kratzert et al. 2019b; Nearing et al. 2020), the chal-
lenge remains whether it can generalize to finer scales and if
it can perform in regions with limited training data.

Physics- or empirical-based hydrological models are well
established in the literature, with research in the space re-
ceiving significant impetus with the US Clean Water Act of
1977. In these systems, the hydrological processes of wa-
ter movement are represented by finite difference equations
that are resolved over defined spatial and temporal ranges.
Data inputs to resolve streamflow processes include meteo-
rological forcing and a large number of parameters describ-
ing the physical characteristics of the catchment (soil prop-
erties, initial water depth, topography, topology, runoff curve
number, etc.) (Devia, Ganasri, and Dwarakish 2015). Popu-
lar modelling systems include SWAT (Arnold et al. 2012),
MIKE SHE (Graham and Butts 2005), WRF-Hydro (Lin
et al. 2018) and the VIC framework (Gao et al. 2010). On
the SWAT model alone, there are over 4,500 peer-reviewed
journal articles describing its application to different hydrol-
ogy studies (Srinivasan and Balmer 2021).

More recently, extensive research efforts have focused on
the potential of deep learning (DL) for hydrology studies
(Shen 2018; Shamshirband et al. 2020). In particular, re-
search has focused on the potential of recurrent networks
and LSTMs to resolve the complex, nonlinear, spatiotempo-
ral relationship between meteorological forcing, soil mois-
ture and streamflow (Kratzert et al. 2019b). In a provocative
recent paper, (Nearing et al. 2021) argued that there is sig-
nificantly more information in large-scale hydrological data
sets than hydrologists have been able to translate into theory
or models. This argument for increased scientific insight and
performance from machine learning rests on the assump-
tion that large-scale data sets are available globally (over
sufficient historical periods) to condition and inform on hy-
drological response. While significant progress on coarse-
scale hydrology dataset curation has been achieved in the
US (Newman et al. 2015), and Europe (Klingler, Schulz, and
Herrnegger 2021) this is not implemented for many other re-
gions and does not approach the spatial resolutions required.

Many studies have proposed frameworks to represent
the spatiotemporal properties of geophsysical systems. The
most widely used framework combines convolutional neu-



ral networks (CNN) with LSTM to represent both the spa-
tial (CNN) and temporal (LSTM) dependencies within the
data. This approach has been applied to a variety of geosci-
entific tasks such as precipitation nowcasting from rainfall
radar maps (Xingjian et al. 2015) and forecasting sea surface
temperature from satellite-derived observations (Yang et al.
2017). (ElSaadani et al. 2021) use this CNN + LSTM ap-
proach to estimate soil moisture. However, this approach re-
quires gridded input data, and relies on spatial correlations.
Our proposed approach overcomes these limitations by us-
ing graphs to handle unstructured data and by connecting
nodes of the graph based on hydrological similarity rather
than spatial proximity.

An alternative approach aims to embed information from
physics or heuristic knowledge within the network. Physics-
informed DL is a novel approach for resolving information
from physics. The philosophy behind it is to approximate the
quantity of interest (e.g., governing equation variables) by a
deep neural network (DNN) and embed the physical law to
regularize the network. To this end, training the network is
equivalent to minimization of a well-designed loss function
that contains the PDE residuals and initial/boundary condi-
tions (Rao, Sun, and Liu 2020).

A further stream of related work has been started by Chen
et al. (2018), who presented a novel approach to approx-
imate the discrete series of layers between the input and
output state by acting on the derivative of the hidden units.
At each stage, the output of the network is computed us-
ing a black-box differential equation solver which evalu-
ates the hidden unit dynamics to determine the solution with
the desired accuracy. In effect, the parameters of the hidden
unit dynamics are defined as a continuous function, which
may provide greater memory efficiency and balancing of
model cost against problem complexity. The approach aims
to achieve comparable performance to existing state-of-the-
art with far fewer parameters, and suggests potential advan-
tages for time series modeling.

Methods
Data

Leavesley et al. (1983) introduced the decomposition of
watersheds into sub-areas that are assumed to be homoge-
neous in their hydrologic response, termed hydrologic re-
sponse units (HRUs). The HRUs are characterized using
topographic variables, such as elevation, slope, and geo-
graphic variables such as soil type, vegetation type and pre-
cipitation distribution. HRUs are generated by first decom-
posing a domain into a set of watersheds which represents
the land area in which any precipitation eventually flows
into the same outlet. Within sub-basins, HRUs are further
delineated into smaller polygons, based on land use, soil
attributes, and slope. For modelling and analysis, polygons
with homogeneous hydrologic response are lumped together
and resolved simultaneously. The concept of HRUs enable
modelers to more effectively resolve complex issues regard-
ing spatial variability to provide a more realistic representa-
tion of land surface processes (Prasad 2005).

We use data simulated by Soil and Water Assessment

-~ State boundaries

0 50 100 200
Kilometers

Figure 1: Layout of the Mid-Atlantic basin along with its
stream network and HUC12 watersheds.

Tool (SWAT) (Gassman et al. 2007). SWAT is the state
of the art small watershed to river basin-scale model used
to simulate the quality and quantity of surface and ground
water and predict the environmental impact of land use,
land management practices, and climate change. SWAT is
widely used in developing agricultural management prac-
tices, assessing soil erosion prevention and control, non-
point source pollution control and regional management
in watersheds. While publicly available soil moisture re-
analysis are available from institutions such as ECMWF
(ERA Land-5) and NOAA (NLDAS), practical applications
for agriculture management are constrained by the avail-
able resolution of 9km (Mufioz-Sabater et al. 2021) and
14km (Xia et al. 2012), respectively. Agriculture, on the
other hand, requires predictions that resolve field-scale (<
500 m) processes. The Hydrological and Water Quality Sys-
tem (HAWQS) v2.0 (https://hawgs.tamu.edu/), a web-based
interface of the SWAT model, was used to develop SWAT
models for 3,037 watersheds at HUC12 (hydrologic unit
code) resolution within HUC2- region 02, Mid-Atlantic re-
gion. The HAWQS provides a SWAT watershed model de-
velopment framework with pre-loaded input data and mod-
eling support capabilities for setting up models, running sim-
ulations, and processing outputs.To further divide delineated
watersheds into HRUs, an area threshold of 0.5 km?2 was ap-
plied i.e., HRUs having area less than threshold value were
not assigned a separate HRU-ID and merged with nearby
HRUs. Overall, our data set consists of 3,037 watersheds di-
vided into more than 99k HRUs. Detailed list of features
associated with each HRU are included in the supplement
file. Monthly data is available for each feature spanning 34
years.

Problem Formulation

Given a feature matrix X; € R"*¢ which is a snapshot of
d feature values for n HRUs at time ¢, our goal is to fore-



Algorithm 1: Dynamic Time Warping Algorithm

Input: Discrete time series x,y € R!**
Output: Distance between x and y

1: initialize C' = inf € R™*"

2: 0070 =0

3: fori: 0 — sdo

4. forj:0— sdo

5: dist = d(z;,y;)*

6: OiJ = dist+min(C’,;_Lj,Ci,j_l,Ci_Lj_l)
7 end for

8: end for

9: DTW(x,y) = 1/Cs.s

10: return DTW (x,y)

cast M soil moisture values {Y;;}}, in the future. For
M = 1 it is called single step forecasting, for M > 1 it
is called a multi-step forecasting. We start by solving the
single step forecasting problem and extend our method to
multi-step forecasting.

Single Forecast Given X; we want to forecast the soil
moisture Y; for the next month.

Multi-step Forecast Given X; we want to forecast the soil
moisture Yy, .., Y412 for the next 12 months.

Domain Inspired Clustering

Inspired by the concept of group response units (GRUs), we
build a clustering module to group HRUs that have similar
hydrological characteristics. Traditionally, GRUs are con-
structed based on climate, land use, soil and pedotransfer
properties (Poblete et al. 2020). The use of GRUs reduces
the need for model calibration and allows for the transfer of
model parameters among HRUs in the same group.

We propose a dynamic time warping based temporal clus-
tering technique, which leverages the seasonality of these
hydrological features to inform clustering.

First introduced in (Sakoe and Chiba 1978; Sakoe and
Chiba), dynamic time warping is an algorithm for measuring
the similarity between two discrete temporal signals. For the
data tensor X € R"*sxd containing n HRUs , s timesteps,
and d features x*J := X,:, j represents the 1D time se-
ries data for jth feature in ith HRU. The distance matrix
D € R™™ represents the pairwise DTW distance between
all HRUs. The distance D), 4 between two HRUs p and q is
given by

d
Dpq =Y _ DTW(xP7,x%7) €]
j=1

where DTW (., .) is calculated using Algorithm 1.

Temporal Graph Convolution Neural Network
(TGCN)

Graph convolution neural networks (Kipf and Welling 2016)
are an extension of convolution neural networks to unstruc-
tured graph data. A graph G : (V, £) , has associated with it

a set of nodes V connected by a set of edges £. For our ap-
plication each HRU represents a graph node. The adjacency
matrix A is a matrix representation of the graph topology.

We use the temporal graph convolution neural network
detailed in (Zhao et al. 2020) for predicting soil moisture at
each node given time series features. At time ¢, the feature
matrix X; is updated using the graph convolution defined
in (Bruna et al. 2014). The resulting ’neighbor-aware’ fea-
ture matrix Z, is then passed on to the gated recurrent unit
(GRU).

Zy = Relu(AX,Wy) 2)
up =0 (WulZs : he—1] + by) 3)
re =0 (Wp[Z¢ 2 heea] + br) 4)
¢t = tanh (W, [Z:(r ® hi—1)] + be) 5)
he = (ut © he—1) + (1 —up) © ¢ 6)

where u; represents update gate, r; represents reset gate, c;
represents cell state, h; represents hidden state, and W;, b;
are learnable weights and baises. The prediction Y, is ex-
pressed as a linear transform of h;.

We minimize the mean squared error loss during training.

1 n R
Lo=—> (Yii— i) (7)

i=1

Results

We train the LSTM model and 10 TGCN models (one for
each cluster) for both the single forecast and multi-step fore-
casting. The number of clusters was selected based on the
proportion of variance explained as described in the supple-
mentary material.

Evaluation Metrics

We evaluate all models using mean squared error (MSE),
which is a popular metric for regression. We also calculate
the relative percent decrease in MSE to compare model per-
formance. For our multi-step forecast method, we also use
Kling-Gupta Efficiency (KGE) to quantify the goodness of
fit. KGE is a traditional metric used in hydrology to evaluate
model performances.

KGE=1—+/(r—12+(B-12+(a-1)2 (8

where r is the Pearson product-moment correlation coef-
ficient, « is the ratio between the standard deviation of
the predicted values and the standard deviation of the true
values, and 3 is the ratio between the mean of the pre-
dicted values and the mean of the true values. A value of
KGE = —0.41 corresponds to using the mean value as a
benchmark predictor, therefore KGE > —0.41 indicates
that the model improves upon the mean value benchmark
(Knoben, Freer, and Woods 2019). As model becomes more
accurate, KGE — 1.

For model comparison, we perform a t-test to examine the
statistical significance of performance improvement. Since
we report test performance on independent clusters instead
of k-folds, we do not violate the independence of sample
assumption for the t-test. We define the following two null
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Figure 2: Schematic of our Clustering and Temporal Graph Convolution Neural network (C+TGCN) approach for soil moisture

forecast.

Figure 3: Schematic of a single cell of TGCN, equations (2-
6).

hypotheses: ‘H - model MSE has identical average values as
LSTM MSE. For probability less than 0.05, we reject the
null hypothesis.

Model Details

We use the first 27 years of data for training and validation
and keep data from the last 7 years for testing.

Before computing the DTW distance matrix (D), we nor-
malize the data using a custom min-max scaling. Instead of
independently scaling the time series data, we normalize the
time series for each feature by the minimum and maximum
feature values across time series across all HRUs. Using this
custom scaling we are able to preserve the relative trends in
features.

We use an elbow test to estimate the number of clusters.
Based on the results from the elbow test we then use K-
means to split HRUs into 10 clusters. In order to avoid data
leakage, we only use training data for clustering. We use
functions from tslearn (Tavenard et al. 2020) to implement
temporal clustering.

Once the HRUs are split into clusters, we introduce graph
topology on each cluster by using the DTW distances of
HRUs within the cluster. The static graphs represent disjoint
subsets of HRUSs and are trained independently using TGCN
with same model architecture.

The model consists of a layer of graph convolution, fol-
lowed by a linear transform. Output from the linear layer
is then fed to the GRU which outputs the forecast Y;. For
multi-step model the GRU outputs a sequence of 12 pre-
dictions for each node. All TGCNs were trained using the
Adam optimizer (Kingma and Ba 2015) with a learning rate
of le-2 for around 100 epochs (until validation loss stopped
decreasing). Weights were initialized using He initialization

(He et al. 2015). Based on the size of the graph the training
took between 1.5 - 150 sec/epoch on 1 cpu core with 100G
mem. Code for model setup, training and evaluation will be
made available post-blind review.

Soil Moisture Forecast Results

Results from DTW + K-means clustering are shown in Fig-
ure 4, which illustrates the true normalized soil moisture val-
ues for a subset of clusters. The clusters represent distinct
seasonal trends in soil moisture values.

Table 1 shows the average mean squared error of pre-
dicted soil moisture in each cluster. Using our model re-
duces the mean squared error across all clusters compared
to the LSTM model. The relative percent reduction in mean
squared error also illustrates the added benefit of using do-
main inspired clustering. Figure 5 shows the mean and stan-
dard deviation of KGE for all HRUs in a cluster. Since the
KGE values for all clusters is greater than —0.41 this illus-
trates that the model improves upon a naive (mean value)
model. Figure 7 and 9 show predicted values of soil moisture
on a sample HRU compared to the true values. These figures
illustrate the logic behind our approach, where the TGCN
corresponding to every cluster is being trained to predict dif-
ferent trends in soil moisture, analogous to GRUs sharing
model parameters in traditional hydrological modeling.

Table 2 shows a comparison of the prediction mean
squared error for multi-step forecasting. The average mean
squared error of LSTM across all clusters is 0.4584 with a
standard deviation of 0.2179. Whereas, the average mean
squared error of our method across all clusters is 0.0480
with a standard deviation of 0.0165. The p value of null-
hypothesis H is 6.5e-6, which shows that the reduction in
predicted mean squared error of our model compared to
LSTM is statistically significant. Figure 6 shows that on
average our method improves upon a naive (mean value)
model.

Discussion

Soil moisture estimation and prediction are critical to
climate-aware agriculture. Resolving these predictions re-
quires a comprehensive assessment of heterogeneous spa-
tial and temporal features. While well-established physics-
based approaches exist, they are hindered by their high user
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Figure 4: Plot of true soil moisture values of 20 randomly
sub-sampled HRUs in cluster 2,5,7, and 9 for time steps in
the test set. Soil moisture in different clusters exhibits dis-
tinct seasonal trend.

Cluster | LSTM | C+TGCN Rﬁas‘g e
ID | MSE | MSE :
Reduction
T (03433 | 00332 | 9034%
> 03815 | 00328 | 9141%
3 03588 | 00283 | 92.12%
4103057 | 00399 | 8695%
5 103677 | 00307 | 91.64%
6 104087 | 00321 | 92.14%
7107326 | 00389 | 94.69%
§ 104010 | 00217 | 94.58%
9 [ 04227 | 00383 | 90.93%
10 103847 | 00335 | 91.30%

Table 1: Mean Squared Error (MSE) for single soil moisture
forecast across clusters using TGCN, compared with LSTM
model.
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Figure 5: The plot shows the mean and standard deviation of
Kling-Gupta Efficiency for each cluster for the single fore-
cast. KGE > —0.41 shows that the TGCN models improve
upon the mean benchmark.

Cluster | LSTM | C+TGCN Rﬁgg e
ID MSE MSE .
Reduction
1 0.3433 0.0549 82.93%
2 0.3815 0.0573 84.93%
3 0.3588 0.0523 86.06%
4 0.3057 0.0610 79.60%
5 0.3677 0.0527 86.06%
6 0.4087 0.0543 86.19%
7 0.7326 0.0417 94.29%
8 0.4010 0.0393 91.10%
9 0.4227 0.0560 87.42%
10 0.3847 0.0591 83.43%

Table 2: Mean Squared Error (MSE) for multi-step soil
moisture forecast across clusters using Clustering and
TGCN (C+TGCN), compared with the LSTM model.
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Figure 6: The plot shows the mean and standard deviation
of Kling-Gupta Efficiency for each cluster for the multi-step

forecast. KGE > —0.41 shows that the TGCN models im-
prove upon the mean benchmark.
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Figure 7: Predicted vs true soil moisture value for single
forecast for a sample HRU(id=10) in cluster 10 from test
data set. Blue boxes represent randomly sampled time steps
for which multi-step results are plotted in Figure 8.
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Figure 8: Predicted v.s. true soil moisture for multi-step fore-
cast for a sample HRU(id=10) in cluster 10 from test data
set.
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Figure 9: Predicted vs true soil moisture value for single
forecast for a sample HRU(id=76) in cluster 7 from test data
set. Blue boxes represent randomly sampled time steps for
which multi-step results are plotted in Figure 10.
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Figure 10: Predicted v.s. true soil moisture for multi-step
forecast for a sample HRU(id=76) in cluster 7 from test data
set.

complexity and computational expense to deploy at scale for
commodity use cases. In practical terms, they are the domain
of academic institutions and government organizations.

This paper describes a machine learning framework that
borrows concepts from hydrological modelling to improve
predictive skill and ease interpretability. There is a large vol-
ume of literature related to applying physics-informed con-
straints to ML which is discussed earlier. The objective in
many of those studies is to augment the models with data
external to the training data via methods such as modified
loss functions (Daw et al. 2020), data augmentation (James,
Zhang, and O’Donncha 2018), or specifying consensus fil-
ters to guide disparate models or data towards convergence
(Haehnel et al. 2020).

The proposed methodology presents a natural framework
to ingest information external to a time series signal posit-
ing the opportunity to enhance learning. Results demon-
strate large increase in predictive skill provided by the GNN
framework. Conventional techniques such as LSTM are
commonly used for soil moisture prediction (Li et al. 2022).
However, these approaches treat different locations indepen-
dently and fail to exploit spatial dependencies.

Vyas and Bandyopadhyay (2022) described a GNN ap-
proach to forecast soil moisture based on Dynamic Graph
Learning. At each timestep graph topology is updated based
on a smoothness regularizer that evaluated dissimilarity for
both node features and labels. Regularized dynamic graph
updating have demonstrated improved model prediction in
general cases (Chen et al. 2020). However, for soil moisture
prediction, graph connectivity can be more effectively in-
formed based on a systematic quantification of static and dy-
namic catchment attributes. Due to the high spatial and tem-
poral hetereogeneity dynamic updating can lead to spurious
correlations based on synoptic similarity between features or
labels. This is exacerbated by the long heterogeneous mem-
ory of soil moisture concentration. For example, the soil
moisture at a point depends on weather processes together
with previous moisture values over a specific window. The
length of the historic window is highly dependent on local
factors such as soil types, vegetation cover, and slope. For
example, clay soils will have longer moisture retention than
sandy soils. To accurately represent these dynamics, graph
topology need to consider hydrological processes and their
implications rather than individual physical descriptors.

A prominent body of literature has explored the combina-
tion of CNN and LSTM frameworks to resolve spatiotempo-
ral processes. (e.g. (Xingjian et al. 2015; Yang et al. 2017)).
These provide an intuitive and pragmatic approach to incor-
porate these information dimensions but are generally con-
strained to data on a consistent spatial grid. Applications
have exclusively focused on gridded data such as satellite
measurements, radar observations, and numerical model re-
analysis products. Our proposed GNN framework adapts
naturally to the characteristics of hydrological data. Indi-
vidual polygons or hydrological response units are charac-
terised based on their specific properties and informs a mes-
sage passing between different regions based on similarity.
Further, our approach provides a direct fit to modern Internet
of Things (IoT) sensor networks that are typically of limited



spatial dimension but have complex (often time-lagged) de-
pendencies between neighboring sensors. With information
on the hydrological features, a graph topology can be con-
structed connecting different sensors.

Conclusion

This paper describes a spatiotemporal soil moisture predic-
tion framework. Robust, high-resolution estimates are criti-
cal to most aspects of farm management, including: planting
and harvesting scheduling, drought and irrigation manage-
ment, and informing insurance risk and coverage. Creating
a graph topology based on similarity metrics rather than the
physical stream network and topography improved predic-
tion performance by 70-90%. Further decoupling the graph
topology from spatial relationships improves the generaliz-
ability of the framework. The approach can be applied on re-
gions that share properties such as climate, soil features, and
vegetation regardless of spatial proximity. This has the at-
tractive property that data from regions with well developed
monitoring programs can inform predictions in other loca-
tions or geographies. Estimating and forecasting soil mois-
ture in ungauged basins is one of the great challenges of hy-
drology. This implicit form of parameters sharing enabled
by the spatially decoupled graph network is a valuable con-
tribution to this ambition.
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