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Atomistic MD Simulations
Needed ingredients:

• force fields (interaction parameters)
• bonded: bonds, angles, dihedrals
• nonbond: van der Waals, electrostatics

• equilibration method
• easy in melts, harder in glasses

Scope:

• from < ps to 1 µs simulation time
• box sizes: 5-10 nm

ideal for comparison to scattering!

• good results only if force field is good
• fixed charges not always sufficient
• does not include Grotthuss mechanism for 

protons, OH- transport
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Hydrocarbon-based Polymers

SDAPP

• what is the nanoscale morphology when hydrated?

• how does this affect H+ or OH- transport?
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SDAPP Simulations

short SDAPP chain 70 chains, 3 monomers/chain
box size about 60Å
OPLS-AA force field, TIP4P/2005 water model

# sulfonic acids/monomer:  S = 1, 2, 4
(IEC = 1.2, 2.2, 3.7)

# waters/sulfonic acid l = 3, 5,10, 20

H3O+

hydronium: treated as fixed ion
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Nanoscale Morphology from MD Simulations

S = 1 S = 2 S = 4

increasing water

l = 3 l = 5 l = 10

S = 1 sulfonic 
acid/monomer

l = 3

increasing sulfonation level
Abbott, L. J. & Frischknecht, A. L. Macromolecules 2017, 50, 1184-1192.
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X-Ray Scattering and MD

MD, S=4 MD, S=2experiments S=3.6 experiments, S=2.3
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ionomer peak
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X-Ray Scattering and MD

MD, S=4 MD, S=2experiments S=3.6 experiments, S=2.3

ionomer peak

why does the ionomer peak disappear??

Sorte, E. G. et al. Macromolecules 2019, 52, 857-876.
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Partial Structure Factors from MD

Stotal = Spolymer + Ssulfonic + Swater + 
Swater-poly + Ssulf-poly + Swater-sulf

water-polymer cross-correlations cancel other peaks

in hydrocarbon PEMs, loss of scattering contrast leads to loss of ionomer peak
still have nanoscale phase separation!
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MD Simulations of p5PhSA

• Gromacs 2019

• OPLS-AA force field, TIP4P/2005 water

• Ion and hydronium partial charges scaled to 
account for polarization effects to first order

• Simulations at λ = 3, 4, 6, 9, and 12

• IEC = 4.2 mmol/g
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MD Snapshots

water + H3O+

polymer

green = S
red = O in SO3
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X-Ray Scattering and MD

again: loss of ionomer peak at high water contents

Paren, B. A. et al. Chem. Mater. 2021, 33, 6041-6051.
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Partial Structure Factors

Paren, B. A. et al. Chem. Mater. 2021, 33, 6041-6051.

loss of contrast in scattering leads to loss of ionomer peak
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Scattering from Water Domains

spacing between water channels in MD consistent with peak in X-ray

d = 2p/q
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Water Domain Sizes

d in scattering: gives avg center-to-center distance between water domains
how large are the water channels? 

minimal cross-sectional area distribution

water channels from 1-2.8 nm
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Hydration level
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Coordination Environments

SDAPP p5PhSA

at higher l: H3O+ less associated with SO3
-, more associated with water

H3O+ is coordinated to NOS sulfonate oxygens, NOw water oxygens
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Water Diffusion Constants

SDAPP: DPD and NMR p5PhSA: MD

Clark, J. A., Santiso, E. E. & Frischknecht, A. L. J. Chem. 
Phys. 2019, 151, 104901.

water diffusion suppressed by confinement in membranes
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Water Dynamics

t = water rotational diffusion time

D = water diffusion constant

• t, D approach bulk values at large l

• faster water dynamics in p5PhSA than in p21SA
• more water in p5PhSA for given l
• larger water channels in p5PhSA
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Functionalized Polysulfones: OH- Conductors

MD simulations for l = 15, 23
OPLS-AA force field

l = 23 l = 15

IEC = 1.7 IEC = 1.8
NBI-PSU

TEA-PSU

Frischknecht et al, ACS Appl Polym Mater, 2022
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NBI-PSU

Weak Ionomer Peaks

total scattering intensity

TEA NBI
TEA-PSU

Frischknecht et al, ACS Appl Polym Mater, 2022
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Water Partial Structure Factors

TEA

NBI

all water spacings from Sww(q) from MD

polysulfones have small water domains

Frischknecht et al, ACS Appl Polym Mater, 2022
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Water Domain Sizes

calculate pore size distribution (PSD) 
from PoreBlazer

Fayon, P. & Sarkisov, L. Phys Chem Chem Phys 2019, 21, 26453-26465
Sarkisov, L., Bueno-Perez, R., Sutharson, M. & Fairen-Jimenez, D. Materials Chem. Mater. 
2020, 32, 9849-9867

using water diameter for probe
small water domains, about 0.57 and 0.7 nm
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Water and Hydroxide Diffusion

Kolesnichenko, I. V. et al. ACS Appl Mater Interfaces 2020, 12, 
50406-50417
Frischknecht et al, ACS Appl Polym Mater, 2022

water and OH- diffusion constants
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Implications for Alkaline Batteries

Need to prevent crossover of zincate: (ZnOH4)2-

zincate “size”: about 5-5.5 Å

selectivity: Rs = DOH/DZn

NBI, l = 15: Rs = 36 ± 2

TEA, l = 23: Rs = 17 ± 8

minimal pore size from MD

NBI: PLD = 4.6 Å

TEA: PLD = 6.1 Å

experimental selectivity

smaller pores           prevent diffusion of zincate       higher selectivity

Frischknecht et al, ACS Appl Polym Mater, 2022
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Conclusions

• nanoscale phase separation
• loss of contrast in X-ray scattering with increasing water
• modeling can give extra insight: not a loss of phase separation!

• interconnected, bulk-like water regions increase conductivity
• confinement reduces water, ion diffusion
• confinement can help with desired ion selectivity
• local interactions also important!

Abbott, L. J. & Frischknecht, A. L. Macromolecules 2017, 50, 1184-1192.
Clark, J. A., Santiso, E. E. & Frischknecht, A. L. J. Chem. Phys. 2019, 151, 104901.
Sorte, E. G. et al. Macromolecules 2019, 52, 857-876.
Paren, B. A. et al. Chem. Mater. 2021, 33, 6041-6051.
Frischknecht et al, ACS Appl Polym Mater, 2022, 4, 2470-2480.
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Backup
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Water Uptake

SDAPP
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Correlation Distance between Aggregates

S=1, l =3

from real space snapshots, low l:
S = 2, d = 23 Å 
S = 4, d = 19 Å

d = 2p/q*, q* = ionomer peak location

MD consistent with X-ray
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Why Does the Ionomer Peak Disappear?
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Water Structure Factors
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• water peak increases in intensity with increasing l
• shifts slightly to the left (lower q, larger domains)
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Conductivity is Related to Morphology

State-of-the-art PEM membrane: Nafion

Kusoglu, A. & Weber, A. Z. Chem Rev 117, 987–1104 (2017).

Allen, F. I. et al. ACS Macro Lett 2015, 4, 1-5.
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Experimental Proton Conductivity

SDAPP, 30ºC

very good for both polymers
higher at higher IEC, l
promoted by strong phase separation

IEC = 4.2

IEC = 0.91

Sorte, E. G. et al. Macromolecules 2019, 52, 857-876.
Paren, B. A. et al. Chem. Mater. 2021, 33, 6041-6051.

40ºC
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Experimental Proton Conductivity

SDAPP

conductivity not only dependent on water channels, IEC
• when normalized by IEC, SDAPP conductivity still depends on IEC
• Nafion, p5PhSA very similar
• water channel spacing similar between SDAPP, p5PhSA
• water diffusion constant higher in p5PhSA than in SDAPP

40ºC30ºC
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Comparisons of Proton Conductivity

Paren, B. A. et al. Chem. Mater. 2021, 33, 6041-6051.

SDAPP


