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Computational Methods in Polymers
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Atomistic MD Simulations

Needed ingredients:

» force fields (interaction parameters)

» bonded: bonds, angles, dihedrals

* nonbond: van der Waals, electrostatics
» equilibration method

» easy in melts, harder in glasses
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» from < ps to 1 us simulation time

e box sizes: 5-10 nm

ideal for comparison to scattering!
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T
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» good results only if force field is good

» fixed charges not always sufficient

« does not include Grotthuss mechanism for
protons, OH" transport
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Hydrocarbon-based Polymers

SO;H 0
3 OO0,
I’Nk& PSu-NEt,
«O+HO—QHO,
p5PhSA

PSu-NBulmid [’
N

s

« what is the nanoscale morphology when hydrated?

« how does this affect H* or OH- transport?



SDAPP Simulations

@Laagﬁ;riga?clwies \
short SDAPP chain 70 chains, 3 monomers/chain
s box size about 60A
L g e OPLS-AA force field, TIP4P/2005 water model
.« oy £

hydronium: treated as fixed ion

# sulfonic acids/monomer: S=1,2,4
(IEC =1.2, 2.2, 3.7)

# waters/sulfonic acid A = 3, 5,10, 20
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S = 1 sulfonic
acid/monomer

increasing sulfonation level
Abbott, L. J. & Frischknecht, A. L. Macromolecules 2017, 50, 1184-1192.



X-Ray Scattering and MD
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experiments 5=3.6 MD, S=4 experiments, 5=2.3 MD, S=2
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X-Ray Scattering and MD
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MD, S=2

why does the ionomer peak disappear??

Sorte, E. G. et al. Macromolecules 2019, 52, 857-876.
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Partial Structure Factors from MD

Stotal = Spolymer + Squlfonic + Swater *

Swater-poly + Ssulf-poly + Swater-sulf

S=2,2=10

-—-= water
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water-polymer cross-correlations cancel other peaks
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S =1, water structure factor
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S = 4, water structure factor

—Ar=3 []
r=5

—x=10
—A=20]

water peak increases in intensity with increasing A
shifts slightly to the left (lower q, larger domains)

in hydrocarbon PEMs, loss of scattering contrast leads to loss of ionomer peak
still have nanoscale phase separation!



MD Simulations of p5PhSA

Gromacs 2019
OPLS-AA force field, TIP4P /2005 water

Ion and hydronium partial charges scaled to
account for polarization effects to first order

Simulations at A = 3,4, 6,9, and 12

IEC = 4.2 mmol/g

11



MD Snapshots
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X-Ray Scattering and MD
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again: loss of ionomer peak at high water contents

Paren, B. A. et al. Chem. Mater. 2021, 33, 6041-6051.
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Partial Structure Factors —
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loss of contrast in scattering leads to loss of ionomer peak

Paren, B. A. et al. Chem. Mater. 2021, 33, 6041-6051. 14



Scattering from Water Domains
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Water Domain Sizes —
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d in scattering: gives avg center-to-center distance between water domains
how large are the water channels?

minimal cross-sectional area distribution
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water channels from 1-2.8 nm 16



Coordination Environments

H30* is coordinated to Ngs sulfonate oxygens, No,, water oxygens

SDAPP

Sulfonation level
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at higher A: H30* less associated with SO3°, more associated with water
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Water Diffusion Constants @
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SDAPP: DPD and NMR p5PhSA: MD
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water diffusion suppressed by confinement in membranes
Clark, J. A., Santiso, E. E. & Frischknecht, A. L. J. Chem. 18

Phys. 2019, 151, 104901.



Water Dynamics

Bulk H,0
p5PhSA

p21SA-crystal
p21SA-amorph

Tomp *

05PhSA

p21SA-crystal
p21SA-amorph

olom ) ¥

0.1

0.2
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t = water rotational diffusion time

D = water diffusion constant

» 1, D approach bulk values at large A

» faster water dynamics in p5PhSA than in p21SA
» more water in p5PhSA for given A
» larger water channels in p5PhSA

19



Functionalized Polysulfones: OH- Conductors —p
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MD simulations for A = 15, 23
OPLS-AA force field

o O FO- Q0
%@g_@ook IEC=1.7 [’i)@ I[EC=1.8
rN& TEA-PSU

Frischknecht et al, ACS Appl Polym Mater, 2022 20



Weak lonomer Peaks

total scattering intensity

OO O,
rN& TEA-PSU
TEA

g (nm~1)

Frischknecht et al, ACS Appl Polym Mater, 2022

S(q)
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Water Partial Structure Factors -
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B.
A=23 .
all water spacings from Sy (q) from MD
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Frischknecht et al, ACS Appl Polym Mater, 2022 22



Water Domain Sizes

calculate pore size distribution (PSD)
from PoreBlazer

Free volume

4

Pore Limiting
Diameter

Connolly Surface Accessible Surface

Fayon, P. & Sarkisov, L. Phys Chem Chem Phys 2019, 21, 26453-26465
Sarkisov, L., Bueno-Perez, R., Sutharson, M. & Fairen-Jimenez, D. Materials Chem. Mater.

2020, 32, 9849-9867

B

PSD
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A=15TEA
A=23, TEA
A =15, NBI
A =23, NBI

5 10

d (A)

using water diameter for probe

small water domains, about 0.57 and 0.7 nm
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Water and Hydroxide Diffusion
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water and OH- diffusion constants

| ® DOH-’ TEA T T T
= D, NBI
e D TEA
w
0.1 g i
3 =
Q
(m)
0.01 L -
0.001 1 1 1 ] ]
14 16 18 20 22 24
A

Kolesnichenko, 1. V. et al. ACS Appl Mater Interfaces 2020, 12,
50406-50417

Frischknecht et al, ACS Appl Polym Mater, 2022 24
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Implications for Alkaline Batteries —

MnO, Zn
Separators

Need to prevent crossover of zincate: (ZnOHy4)?*

zincate “size”: about 5-5.5 A

Mn(OH), Zno
selectivity: Rs = Don/Dzn
experimental selectivity minimal pore size from MD
NBI, & = 15: Ry=36 + 2 NBI: PLD = 4.6 A
TEA, L =23: R =17 + 8 TEA: PLD = 6.1 A

smaller pores — prevent diffusion of zincate — higher selectivity

Frischknecht et al, ACS Appl Polym Mater, 2022 25



Conclusions

* nanoscale phase separation

 loss of contrast in X-ray scattering with increasing water
* modeling can give extra insight: not a loss of phase separation!

 interconnected, bulk-like water regions increase conductivity
» confinement reduces water, ion diffusion

» confinement can help with desired ion selectivity
* local interactions also important!

Abbott, L. J. & Frischknecht, A. L. Macromolecules 2017, 50, 1184-1192.

Clark, J. A., Santiso, E. E. & Frischknecht, A. L. J. Chem. Phys. 2019, 151, 104901.
Sorte, E. G. et al. Macromolecules 2019, 52, 857-876.

Paren, B. A. et al. Chem. Mater. 2021, 33, 6041-6051.

Frischknecht et al, ACS Appl Polym Mater, 2022, 4, 2470-2480. 26
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Correlation Distance between Aggregates

d (nm)

d = 2n/q*, q* = ionomer peak location

| ! | ! | | ! | ! | ! I ! | ! I ! | ! [ S=1 b 7\’ =3

3.4 B - %
30f . ;
28 oo i
26f o @ @ &
24 - o o . e
221 ¢ e o . o
20p @8 - o .
18 ® SDAPP7(S=2.3) -
16} o S=2 : from real space snapshots, low A:
14L ® 14-48B(S=36) - S=2,d=23A

X S=4 h
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Why Does the lonomer Peak Disappear!?

total S(q)

140 ——————

120

100

AN

60 -

IS
=

S(q) (arbitrary units)

20

does this mean the water and sulfonic
acids are no longer phase segregated?
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Water Structure Factors
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S =1, water structure factor S =4, water structure factor (b) R
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» water peak increases in intensity with increasing A
+ shifts slightly to the left (lower q, larger domains)
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Conductivity is Related to Morphology

State-of-the-art PEM membrane: Nafion
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3D nanoscale morphology of as-cast hydrated Nafion
obtained through cryo-TEM (hydrophilic domains shown in gold)
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Experimental Proton Conductivity -

1 T T T |o 1005.':|---,-..|-..|--.40.0.C-
—=—IEC=34 SDAPP, 30°C ] —@— p5PhSA IEC = 4.2
e rcned 1 —— Nafion
1 1EC = 0.91
-1
01 | i 10 3 -
£ 3
2 S
2 = i
0 b 107 -
0.01 | -
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10-3 ryryrfjryrvyrfyrvrrrryrrryvyrrrroey
0.001 ! ! I ! | 0 2 4 6 8 10 12
o2 4 s s 0w A (moles H,O/moles SO;)

» (moles H O/moles 803-)

very good for both polymers
higher at higher IEC, A
promoted by strong phase separation

33

Sorte, E. G. et al. Macromolecules 2019, 52, 857-876.
Paren, B. A. et al. Chem. Mater. 2021, 33, 6041-6051.



Experimental Proton Conductivity
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conductivity not only dependent on water channels, IEC

» when normalized by IEC, SDAPP conductivity still depends on IEC
» Nafion, p5PhSA very similar

» water channel spacing similar between SDAPP, p5PhSA

» water diffusion constant higher in p5PhSA than in SDAPP
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Comparisons of Proton Conductivity —
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Paren, B. A. et al. Chem. Mater. 2021, 33, 6041-6051. 35



