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Calibration of Computer Models

Experimental data = Model output + error

d(x) = m(6,x) + ¢

Significant disagreement between the data and the model can be due to model form
error (model discrepancy, model inadequacy, structural error)
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Calibration of Computer Models

Experimental data = Model output + error

d(x) =m(8,x)+o(x) + ¢

Significant disagreement between the data and the model can be due to model form
error (model discrepancy, model inadequacy, structural error)

= Something is missing from the model

> Incomplete understanding of physics

o Use of low-fidelity or reduced-order model

= What can 0(x) tell us about how to improve m(6)?



Calibration of Model Parameters

Calibrate model parameters 6 via Bayes' Rule

m(6ld) = ”(‘f()d?)r(e)

= m(0) captures any prior information that is known about the parameters before
calibration

= m(d|0) is the likelihood that the parameters will be able to reproduce the data
> m(d) is the model evidence

> m(0|d) is the updated distribution of parameter values
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Calibrate model parameters 6 via Bayes' Rule

m(6ld) = ”(ﬂe()dg(e)
~—~
Evidence

= m(0) captures any prior information that is known about the parameters before
calibration

= m(d|0) is the likelihood that the parameters will be able to reproduce the data
¢ 7(d) is the model evidence

> m(0|d) is the updated distribution of parameter values



Calibration of Model Parameters

Calibrate model parameters 6 via Bayes' Rule

_ 7(d|g)m(6)
osterior

= m(0) captures any prior information that is known about the parameters before
calibration

= m(d|0) is the likelihood that the parameters will be able to reproduce the data
> m(d) is the model evidence

> m(0|d) is the updated distribution of parameter values



Calibrate Discrepancy Model

Propagate the MAP through the model and calculate the misfit:

Each §; has its own likelihood and parameters ¢;
We can write Bayes' Rule in expanded form:

m(ds|cj, 6;)m(cjl9))

TEB) = )




Calibrate Discrepancy Model

Propagate the MAP through the model and calculate the misfit:

Each §; has its own likelihood and parameters ¢;
We can write Bayes' Rule in expanded form:

m(ds|cj, 6;)m(cjl9))

) = T Gl

The evidence becomes the likelihood in another formulation of Bayes' Rule



Calibrate Discrepancy Model

_ _ m(ds|é;)m(8))
Pj = 71—(6]|d5) - 7I'(d5)

> 7(6;) is the probability that model ¢; is the best model before calibration begins
> 7(ds|6;) is the evidence from the calibration of ¢;

> m(ds) is a normalization constant

° pj is the model plausibility
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Application: Laminar Hypersonic Double-Cone Experiments
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> d = LENS-I (Calspan-University at
Buffalo Research Center)

> m = SPARC (Sandia National
Labs)

0 ={p, Uso, To }

> Output Qol = {p, g, Ho, Ppitot}

> Previous calibration efforts revealed
some discrepancy

Special thanks to Jaideep Ray and Sarah Kieweg. Ray, et al., AIAAJ 2020
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Constructed GP surrogate models for
each Qol m = {mp, Mg, My, ﬁvpp,.mt}
o Built with ~ 400 build points
Calibrated 6 using Bayes' Rule
> m(6) ~ uniform
> m(d|@) ~ Gaussian
> d={p,q, Ho. Ppitot }
We used multiplicative discrepancy

d(x) = m(6, x)6(x) + ¢

So, the misfit is calculated as
d(x)

dé(X) = rAn(GA, X)



|Ca|ibration of Discrepancy Model
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Discrepancy Model Set

We defined the following set of possible discrepancy models
¢ Linear: 0(x, ¢) = cox+ a1
> Quadratic: §(x,c) = (cox+ 05— c1)? +
> Logarithmic: d(x, ¢) = g In(cix+ 1+ )
= Exponential: §(x, ¢) = exp(cox) — 1+ c1
> Gaussian: 0(x, ¢) = ¢ exp( 10 Zl) > +c3

> Trigonometric: §(x, ¢) = cpsin (27r) + ¢3,r= [ﬂ}

[&/]



Discrepancy Model Set

We defined the following set of possible discrepancy models
¢ Linear: 0(x, ¢) = cox+ a1
> Quadratic: §(x,c) = (cox+ 05— c1)? +
> Logarithmic: d(x, ¢) = g In(cix+ 1+ )
= Exponential: §(x, ¢) = exp(cox) — 1+ c1
> Gaussian: 0(x, ¢) = ¢ exp( 10 Zl) > +c3

> Trigonometric: §(x, ¢) = cpsin (27r) + ¢3,r= [ﬂ}
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o Gaussian + Trigonometric

- Sinc: 8(x, ¢) = o™ | o3 r= [X;Cl]

27r [¢)



Model log(evidences)

Functional Heatflux Pressure
Form Run 06 Run 07 Run 06 Run 07
Linear  -575 -623 -241 -212
Quadratic  -575 -581 -239 -211
Logarithmic  -568 -620 -236 -208
Exponential  -575 -623 -241 -212
Gaussian  -551 -608 -236 -166
Trigonometric  -567 -552 -218 -214
Trigonometric+Gaussian ~ -543 -609 -214 -165
Sinc  -537 -560 -209 -170
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|Top Discrepancy Models - Heatflux
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|Top Discrepancy Models - Pressure

Run 06 Run 07
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Next step: Extrapolation

How can we extrapolate this information to new scenarios?

See poster by W. Lewis, et al. Multi-task Machine Learning for Fusion Simulations



Next step: Extrapolation

How can we extrapolate this information to new scenarios?

Multi-output Gaussian processes

f=1[f,..., 7
Single-output Multi-output
fi(x) ~ N (wi(x), Zi(x, x')) f(x) ~ N (p(x), Z(x, X))
= kll(X, X/) . le(X, X/)
¥~ ki(x,x) T~ K(x,x) = : _ :
kri(x,x') ... krr(x,x')

See poster by W. Lewis, et al. Multi-task Machine Learning for Fusion Simulations



Multi-output MFE

Heatflux Pressure
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Summary

Combining model discrepancy with model selection yields a methodology for
identifying missing physics

Successfully applied proposed approach to laminar hypersonic double cone
experimental data

Next step: Extrapolate MFE to new experimental scenarios using MOGPs



Thank you

Questions?

kmaupin@sandia.gov



Liner Model of Coregionalization (LMC)

Define Q covariance functions kq(x, x) and sample Ry latent functions
uf7 ~ GP(0, kq(x, x'))

For output t,
Q Rq

x)_zzatq Ug\X

g=1 i=1

The cross-covariance is given by
cov[f(x) ]—ZAAkxx ZBk (x,x)

where A, = [ala2 ... ag’]



Two special cases

- @ = 1 = intrinsic coregionalization model (ICM)
° Ry = 1 = semi-parametric latent factor model (SLFM)

LMC ICM SLFM
Q Rq . . R . . Q
)= DD atqup(x)  Yoaw(x) D anque(x)
a=1 i=1 =1 a=1
Q Q
cov[f(x), f(x')] = Z Bgkqg(x, X') Bk(x, x') Z Bgkq(x, X')
g=1 g=1
R,
Ay = [azal...ag"] [ata®...aF a,

Considerations
° kg can be the same function with different hyperparameters, or different function
types
> Larger Q increases flexibility (up to Q = T), but with computational cost



