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Calibration of Computer Models

Experimental data = Model output + error

d(x) = m(θ, x) + ε

Significant disagreement between the data and the model can be due to model form
error (model discrepancy, model inadequacy, structural error)
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Calibration of Model Parameters

Calibrate model parameters θ via Bayes’ Rule

π(θ|d) = π(d|θ)π(θ)
π(d)

︸ ︷︷ ︸
Posterior ︸︷︷︸

Evidence

︷ ︸︸ ︷Likelihood︷︸︸︷Prior

◦ π(θ) captures any prior information that is known about the parameters before
calibration

◦ π(d|θ) is the likelihood that the parameters will be able to reproduce the data
◦ π(d) is the model evidence
◦ π(θ|d) is the updated distribution of parameter values
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Calibrate Discrepancy Model

Propagate the MAP through the model and calculate the misfit:

dδ(x) = d(x)−m(θ̂, x)

Suppose we have a set of possible discrepancy models

M = {δ1, δ2, . . . , δn}

Each δj has its own likelihood and parameters cj

We can write Bayes’ Rule in expanded form:

π(cj|dδ) =
π(dδ|cj, δj)π(cj|δj)

π(dδ|δj)

The evidence becomes the likelihood in another formulation of Bayes’ Rule
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Calibrate Discrepancy Model

ρj = π(δj|dδ) =
π(dδ|δj)π(δj)
π(dδ)

◦ π(δj) is the probability that model δj is the best model before calibration begins
◦ π(dδ|δj) is the evidence from the calibration of cj
◦ π(dδ) is a normalization constant
◦ ρj is the model plausibility
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Application: Laminar Hypersonic Double-Cone Experiments
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◦ d = LENS-I (Calspan-University at
Buffalo Research Center)

◦ m = SPARC (Sandia National
Labs)

◦ θ = {ρ,U∞,T∞}
◦ Output QoI = {p, q,H0,Ppitot}
◦ Previous calibration efforts revealed

some discrepancy

Special thanks to Jaideep Ray and Sarah Kieweg. Ray, et al., AIAAJ 2020
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Constructed GP surrogate models for
each QoI m̂ = {m̂p, m̂q, m̂H0 , m̂Ppitot}
◦ Built with ∼ 400 build points

Calibrated θ using Bayes’ Rule
◦ π(θ) ∼ uniform
◦ π(d|θ) ∼ Gaussian
◦ d = {p, q,H0,Ppitot}

We used multiplicative discrepancy
d(x) = m̂(θ, x)δ(x) + ε

So, the misfit is calculated as

dδ(x) =
d(x)

m̂(θ̂, x)
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Calibration of Discrepancy Model
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Discrepancy Model Set

We defined the following set of possible discrepancy models
◦ Linear: δ(x, c) = c0x + c1
◦ Quadratic: δ(x, c) = (c0x + 0.5− c1)2 + c2
◦ Logarithmic: δ(x, c) = c0 ln(c1x + 1 + c2)

◦ Exponential: δ(x, c) = exp(c0x)− 1 + c1

◦ Gaussian: δ(x, c) = c0 exp
(
−1

2
(x−c1)2

c2
2

)
+ c3

◦ Trigonometric: δ(x, c) = c0 sin (2πr) + c3, r =
[

x−c1
c2

]

◦ Gaussian + Trigonometric
◦ Sinc: δ(x, c) = c0

sin(2πr)
2πr + c3, r =

[
x−c1

c2

]
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Model log(evidences)

Functional
Form

Heatflux Pressure
Run 06 Run 07 Run 06 Run 07

Linear -575 -623 -241 -212
Quadratic -575 -581 -239 -211

Logarithmic -568 -620 -236 -208
Exponential -575 -623 -241 -212

Gaussian -551 -608 -236 -166
Trigonometric -567 -552 -218 -214

Trigonometric+Gaussian -543 -609 -214 -165
Sinc -537 -560 -209 -170
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Top Discrepancy Models - Heatflux
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Top Discrepancy Models - Pressure
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Next step: Extrapolation

How can we extrapolate this information to new scenarios?

Multi-output Gaussian processes

f = [f1, . . . , fT]T

Single-output

fi(x) ∼ N (µi(x),Σi(x, x′))

Σi ∼ ki(x, x′)
⇒

Multi-output

f(x) ∼ N (µ(x),Σ(x, x′))

Σ ∼ K(x, x′) =

k11(x, x′) . . . k1T(x, x′)
... . . . ...

kT1(x, x′) . . . kTT(x, x′)



See poster by W. Lewis, et al. Multi-task Machine Learning for Fusion Simulations
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Multi-output MFE

Heatflux Pressure
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Summary

Combining model discrepancy with model selection yields a methodology for
identifying missing physics

Successfully applied proposed approach to laminar hypersonic double cone
experimental data

Next step: Extrapolate MFE to new experimental scenarios using MOGPs



Thank you
Questions?

kmaupin@sandia.gov



Liner Model of Coregionalization (LMC)

Define Q covariance functions kq(x, x′) and sample Rq latent functions

ui
q ∼ GP(0, kq(x, x′))

For output t,

ft(x) =
Q∑

q=1

Rq∑
i=1

ai
t,qui

q(x)

The cross-covariance is given by

cov[f(x), f(x′)] =
Q∑

q=1
AqAT

q kq(x, x′) =
Q∑

q=1
Bqkq(x, x′)

where Aq = [a1
q a2

q . . . aRq
q ]



Two special cases

◦ Q = 1⇒ intrinsic coregionalization model (ICM)
◦ Rq = 1⇒ semi-parametric latent factor model (SLFM)

LMC ICM SLFM

ft(x) =
Q∑

q=1

Rq∑
i=1

ai
t,qui

q(x)
R∑

i=1
ai

tui(x)
Q∑

q=1
at,quq(x)

cov[f(x), f(x′)] =
Q∑

q=1
Bqkq(x, x′) Bk(x, x′)

Q∑
q=1

Bqkq(x, x′)

A(q) = [a1
q a2

q . . . aRq
q ] [a1 a2 . . . aR] aq

Considerations
◦ kq can be the same function with different hyperparameters, or different function

types
◦ Larger Q increases flexibility (up to Q = T), but with computational cost


