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2 | Operator learning — an ingredient for surrogate models
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3 | Operator learning — an ingredient for surrogate models
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Observed by
Agua MODIS and Cloudsat radar

An Earth digital twin - combining MODIS and Cloudsat observations with ECMWF simulations'

'Bauer et al., Nature Computational Science, 2021
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+ I Operator learning — an ingredient for surrogate models
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Operator learning as a component of digital twins. FNO used to emulate NEMO
simulations of coastal and ocean dynamics?

An Earth digital twin - combining MODIS and Cloudsat observations with ECMWF simulations'
'Bauer et al., Nature Computational Science, 2021 2Jiang et al., arXiv:2110.07100, 2022



Functional data is always noisy

27 (6.535-6.895 pm) 28(7.175-7.475 pm) 29 (8.400-8.700 um) 30(299.580-9.880 pm)

33(13.185-13 485 um)  3H13.485-13.785um)  3I5(13.785-14.085 um)  36(14.085-14.385 pm)

31(10.780-11.280 pm)  32(11.770-12.270 pm)

Terrestrial MODIS data exhibits striped noise pattern’

Liu et al., IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2006



Noisy independent variables lead to biased estimates in
ordinary least-squares (OLS) operator regression

Find Lii ~ 0,47
U =1u-+¢€,

€y ™ QP(O, O-uéa:,a:’)




7 I Noisy independent variables lead to biased estimates in
ordinary least-squares (OLS) operator regression

Action of learned operators on noiseless test u:




s I Noisy independent variables lead to biased estimates in
ordinary least-squares (OLS) operator regression

Standard neural network regularization does not remove bias

Weight decay Dropout




o I Noisy independent variables lead to biased estimates in
ordinary least-squares (OLS) operator regression

Project goal:

* Develop and demonstrate
an error model that
corrects for bias
Assuming smooth
functions and white noise




0 I Attenuation bias for scalar linear regression
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Hutcheon, Chiolero, and Hanley, BMJ, 2010
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Error-in-variable (EiV) models for standard regression

* Given,

(x,y) where x =2 + ¢, and y = f(£) + ¢,
* Find f
* Tools are narrowly tailored

* Deming regression and total least-squares —
variance/covariance must be known

» Thesis with review of EiV models: Zwanzig, Estimation in
nonlinear functional error-in-variables models, 1997
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2 I Generalization of attenuation bias to discrete
linear operators

Given(u,v) where u = 4 + ¢, and v = L(4) + €,

Let U,V Dbe finite dimensional ahd be linear

Assume enough data such that the sample statistics converge
The optimum of the OLS problem,

min||Z(u) - ol

is L = Elvu!|(Eluu’] + o, 1)1
With norm upperbound,

| E[vu’]]]

luul'] + o, 1|

1Ll <
H



13 ‘ EiV model for operator regression

Error model,

’[L. — ?,L- O-uéac,a:’ 0
[Lu — v'] ~GP (O’ [ 0 avém,x/]>

Use maximum likelihood estimation (MLE)

~ 4 1

U —u
max P i ;
L., t,0,,0, Lu' — v

(

Assume: is a smooth function and introduce a filter

nax p([gu —D
L,G,0y,00 L Lu* — v

1



14 ‘ EiV model for operator regression

Error model,

’[Li — ui O'uéac,a:’ 0
[L&i — vi] ~GP (O’ [ 0 avém,x/]>

Use maximum likelihood estimation (MLE)

Methods of parameterizing the operator
1. MOR-Physics
2. DeepONet




15 ‘ Operator learning methods

MOR-Physics'?
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MOR-Physics parameterization

'Patel and Desjardins, arXiv:1810.08552, 2018
ZPatel et al., CMAME, 2021
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MOR-physics learns dynamics of colloidal
system from molecular dynamics
simulations. Generalizes to unseen
concentration and colloid diameter



6 I Operator learning methods

DeepONet®

U — :u_(_mz) —{ Branch net |<

Y —{ Trunk net |<

s
3
g:00||ld: &

Unstacked DeepONet parameterization

"Lu, Jin and Karniadakis, Nature, 2021
'Goswami et al., CMAME, 2022
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Variational DeepONet learns crack path
under shear loading. Generalizes to
unseen crack tip locations.?



17 | Learning the Burgers operator with noisy input
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8 I EIV model reduces attenuation bias in learning the
Burgers operator — MOR-Physics

Action of OLS operator on clean u Action of EiV operator on clean u

EiV model improves recovery of true Burgers operator in the presence of noisy indepen-
dent variables. (Left) Underlying smooth function % (----) and training v for SNR = 8
(—), SNR = 4 (—), SNR = 0 (—), and SNR = —4 (—). (Right) Action of true
Burgers operator (----) on noiseless test u.st and action of learned operators from data
with decreasing SNR for OLS (7op right) and EiV (Bottom right).




19 I Smoothness prior

Use a smooth spectral filt@n, = F ‘erfc(a(k — k¢)) Fu

Use a Beta distribution for prior (approximatio ta, 1)
ke/B ~ Beta(l+ 46,1+ 6)

Maximum a posteriori estimation (MAP),

max 1:[13 (EZ B zD P(k./B)

L,g,O‘u,O'fU,K,C

a,0, 8 are hyperparameters
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Effect of smoothness prior on filter
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Effect of cutoff wavenumber prior on filter for EiV model. (Left) Action of MLE estimate
of filters on noisy u* (——) for decreasing SNR and corresponding noiseless 4* (----).
(Right) Action of MAP estimate of filters (k. prior) on u* with hyperparameters, 8. = 10

(—s Bre = 20(—), Bs, = 40(—), and B, = 80(—).




21 I Smoothness prior robustly recovers operator with EiV
model and is insensitive to hyperparameters
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Cutoff wavenumber prior improves Ei1V model. Action of EiV operator on wues¢ learned
from SNR = 8 (—), SNR = 4 (), SNR = 0 (—), and SNR = —4 (—) for
various (,_. Action of true operator (-=--).



EiV model reduces attenuation bias in learning
the 2D Burgers operator - MOR-Physics

Utest

Noise free test function

Vtest

True operator’s action
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0.2
= 0.0
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i

Increasing Slgnal to noise (SNR) in trammg data

OLS learned model applied to Utest

EiV learned model applied to Utest




23 | Extension of operator inference and EiV model to time-

dependent PDEs

For PDEs of the form,
6{& — L”LAL

We seek to infédf  given time independent 2white noise corrupted solutions,
U =1U-+ €,

The OLS loss is computed as,
win [[P(u(t = 0),t7) — u(tp)llf

whereP is the evolution operator for the PDE (approximated via forward Euler)
The EiIV model is
Gu(-,0)" —u(-,0)" | o7 (0. [7udra 0
LQUJ(,tf)Z —U(°,tf)7’ ’ 0 Juéx,m’

Where MLE and MAP estimation is computed as shown previously




24 | Inferring the Kuramoto—Sivashinsky Equation with EiV vs.
OLS — MOR-Physics Lyapinov exponcns

‘\
0.25 13N

Kuramoto-Sivashinsky Equation:
Opu + 0.50,u? + 0%u + hu = 0.

OLS and EiV models perform similarly for KS equation inference. (7op left) Noiseless
test data, uiest. (Bottom left) OLS and (Bottom right) EiV inferred operators for increas-
ing hyperparameter, N;. (Top right) Lyapunov exponents for true equation (----); OLS
equation with Ny = 2 (----), Ny = 4 (----), N; = 8 (----); and EiV equation with
Nt =2(), Ne =4 (), Ny =8 (—).



25 ‘ Statistics on learning the Burgers operator with
EiV vs. OLS — DeepONets
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26 I EiV model is robust to various distributions of the smooth
underlying input functions — DeepONet
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27 | Conclusion

Failure to account for error in the independent variables leads
to biased estimates for operator regression

Developed an error-in-variables model to correct for bias

Demonstrated this error model with MOR-Physics and
DeepONet

Future work

* Explore the full posterior distribution of operators
- Besides the MAP, how do other plausible operators behave?
* UQ - The action of operators sampled from the posterior will give error bars

* Other error models, e.g. multiplicative noise
* Relax smoothness assumption

Manuscript,
e Patel et al arXiv:2204 10909 2022




