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Abstract—This paper reports on Catalyst usability and initial
adoption by SPARC analysts. The use case driven approach
highlights the analysts’ perspective. Impediments to adoption can
be due deficiencies in software capabilities, but analysts identify
many mundane inconveniences and barriers that prevent them
from fully leveraging Catalyst. With that said, for many analyst
tasks Catalyst provides enough relative advantage that they have
begun applying it in their production work, and recognize the
potential for it to solve problems they currently struggle with.
The findings in this report include specific issues and minor
bugs in Paraview python scripting, which are viewed as having
straightforward solutions, and a broader adoption analysis.
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I. INTRODUCTION

Almost every widely used product starts as an idea, goes
through a stage of development and prototyping to demonstrate
the capability or utility, and finally, goes through another stage
of development to make a usable product. The demonstration
phase addresses utility: the capability addresses a need, and
if they exist, potentially better than the alternatives. The third
stage, often called “the valley of death,” focuses on usability
and adoption. Usability means that a user of the product can
realize the capability provided by the product. A user might
say a product is “too difficult to use” or “too complicated
to understand,” to complete their task to indicate barriers to
usability. Even if a product provides utility and is usable, it
has to fit in the environment of the user. Barriers to adoption
include, e.g, metric wrenches when the user has nuts and bolts
in imperial units, or software that does not run on the operating
system of the user. Viewed broadly, the lack of utility and
usability are barriers to adoption. Of course, many ideas start
the process but far fewer become widely used products.

In situ analysis and visualization for engineering and science
simulations on High Performance Computing (HPC) platforms
are in the demonstration phase. The primary capability is
that by generating analysis and visualization results as the
simulation is running, one avoids write large simulation data
files to disc. On state of the art HPC platforms, file I/O is
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relatively expensive and reducing the necessary I/O is highly
desirable. A secondary and perhaps under appreciated benefit
is automation. If the analysis and visualization steps are known
in advance and can be completed as part of the simulation,
analysts don’t have to postprocess the data their simulation
wrote to files. Uncertainty quantification and sensitivity anal-
ysis frequently involve large ensembles of calculations, and
automated analysis and visualization of the results is crucial,
even when postprocessing.

This paper reports our progress on the adoption phase for
Catalyst in SPARC. Sandia Parallel Aerosciences Research
Code (SPARC) is an engineering simulation code for fluid
dynamics, principally the flow around vehicles re-entering the
earth’s atmosphere [1]. Catalyst [2] is the in situ version of the
Paraview visualization application [3], [4]. The primary user
interface for Paraview is a Graphical User Interface (GUI)
and after reading simulation data files produced by SPARC,
the user interactively applies operations to the data to produce
images. The user interface for Catalyst is a Paraview python
script: Paraview commands are expressed in python syntax
and accessible as python modules. The general workflow, as
recommended by Kitware (the developer of Paraview and
Catalyst), is to generate the images desired in Paraview from
an existing set of simulation data files. Then a Paraview python
script can be generated from the GUI. This script can be
interpreted by Catalyst to generate images when invoked by
SPARC. We focus on this workflow and the Paraview python
scripts. Of particular interest is understanding and editing the
scripts, because analysts want to generate an initial script on
a small simulation and use a modified script for a similar
but much more expensive simulation. We did not examine the
usability of the Paraview GUI or SPARC, except where they
affect the usability of Catalyst. We are also interested in the
adoption of Catalyst and Paraview for quantitative analysis,
but in this paper we only examine visualization.

Paraview is a mature software application and its large,
established user base demonstrates its adoption. Catalyst has
essentially the same utility, so we focus on Catalyst usability
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Fig. 1. Use Case 1: Corner view of flowfield temperature on symmetry and
exit planes and heat transfer on the vehicle surface.

and adoption. We chose an analyst driven, use case approach.
Use cases are typical tasks an analyst (Catalyst user) would
like to accomplish.

A. Use Cases

Use cases are concrete examples of analysts’ tasks. Two
image generation use cases were designed to identify specific
usability barriers encountered while executing an in-situ visu-
alization workflow leveraging Paraview, Catalyst, and SPARC.

The simulation for the first use case models the flow over
a blunt-nosed, axisymmetric vehicle traveling at Mach 5 at
sea level, at 10° angle of attack (AoA). SPARC iteratively
solves for the steady-state, turbulent flowfield. This simulation
is inexpensive, the amount of data written is small, and while
images are produced throughout the simulation, only those at
the end of the simulation are needed. However, it includes
all the realism needed for investigating Catalyst usability and
adoption. Images of the flowfield temperature are produced on
the symmetry and exit planes of the simulation. A third image
shows the heat flux on the vehicle surface, and the fourth
image, shown in Fig. 1, includes both planes and the surface.
SPARC analysts regularly produce images like these as a first
look to confirm the simulation ran as expected, and then to
identify any important flowfield structures.

The second use case is a large eddy simulation (LES) of
the flow over a cone at Mach 8 at 6° AoA. This simulation
runs on 100 nodes of an ASC CTS-1 machine; it is a modest
calculation by current LES and supercomputing standards, but
is large enough that analysts limit how frequently they write
the flowfield solution to disk. In Fig. 2, a contour surface of the
Q-criterion identifies resolved vortical structures, and coloring
the contour surface by temperature is useful for understanding
heat transfer to the cone surface. The symmetry and exit planes
display the gas density from a different simulation, stored in
files and read by Catalyst during the LES simulation.

Fig. 2. Use Case 2: Isocontour of Q-criterion colored by temperature from
LES, with steady state density (log scale) on symmetry and exit planes.

II. CODE INTEGRATION AND SUPPORT
A. Catalyst Integration with 10SS

The Input Output SubSystem (IOSS) library is part of the
Sandia National Laboratories (SNL) Sandia Engineering Anal-
ysis Code Access System (SEACAS). Many SNL simulation
codes, such as SPARC, Nalu, and Sierra Adagio, use IOSS to
output SNL Exodus II format files and CFD General Nota-
tion System (CGNS) files in parallel. The central abstraction
presented by IOSS is a database that encapsulates details
about how mesh data and associated variables are written out
by a simulation code. IOSS is similar to the SENSEI in-
situ framework [6], in that it provides an interface between
the simulation and multiple analysis targets. The Catalyst
integration in IOSS implements two new IOSS database types,
one for structured mesh output to Catalyst like CGNS and one
for unstructured mesh output like Exodus II.

Rather than writing to a set of files in parallel, the Catalyst
IOSS databases convert the data to equivalent Visualization
ToolKit (VTK) data structures, and then send the mesh data to
Catalyst in parallel. Catalyst runs a Python script that produces
images, data extracts, and analysis products. Catalyst runs in-
situ, using the same Message Passing Interface (MPI) ranks
as the simulation code.

Simulation codes that use IOSS for writing simulation data
to files require minimal changes to send that data to Catalyst
through IOSS. Furthermore, the Catalyst integration can be
tested independently of the simulation code by using test
drivers that feed input mesh data from files through the test
suite.

Catalyst is a large code library that has varied build
requirements on different HPC platforms. For this reason,
the Catalyst IOSS databases use a split implementation. The
IOSS side provides an interface between the simulation and
the Catalyst IOSS database types. The Catalyst side resides



in a dynamically loadable plugin library that converts the
mesh data to VTK data structures, and then calls Catalyst.
Simulation code build systems do not have to link against
Catalyst libraries directly, which allows the Catalyst portion
to be built, tested, and deployed separately.

B. SPARC Integration with Catalyst 10SS

SPARC must access the Catalyst IOSS database types. To
enhance compatibility with SPARC analyst experience using
file based I/O to Exodus IT and CGNS files, input deck controls
for Catalyst are implemented with a syntax parallel to the file
based controls. New Catalyst input deck blocks use existing
syntax for output frequency scheduling, variable selection,
and output database type. They also contain new syntax for
Catalyst specific requirements, such as Python script name,
and multiple mesh inputs to the same Catalyst script.

The Catalyst IOSS plugin dynamic library must be built,
tested, and deployed on all HPC platforms where SPARC
is supported. Project developers employ the DevOps tools
Ansible-Tower, Ansible, CDash, and CTest to meet this re-
quirement. To give analysts early access to new features in
SPARC and Catalyst, “advanced feature builds” are deployed
on some HPC platforms. These advanced feature builds facil-
itated the use case studies described below.

In-situ technology is a new capability for analysts. A robust
DevOps process lets us identify and fix issues and redeploy
rapidly, which is crucial for analyst adoption.

C. Catalyst Integration Considerations

Based on our Catalyst SPARC integration experience, some
important factors to consider when integrating Catalyst with a
simulation code are:

o How to control Catalyst from the simulation input deck.

o How to link Catalyst to the simulation (dynamic run-time
library or direct link).

o Performance impact on the simulation, for example [5].

o Transfering simulation mesh data structures to VTK mesh
data structures.

o DevOps infrastructure to build, deploy, and test Catalyst
with simulation.

III. METHODOLOGY

A major challenge in the design and development of visu-
alization tools is ensuring that the product will be adopted
by real-world users and be practicable for their needs. As
noted by Fisher et al., a common stumbling block for the
visualization and visual analytics community is that tool
developers are often “not very consistent in articulating and
applying methodological principles for system design and end-
user evaluation” [10]. Insufficient rigor can lead to misunder-
standing users’ real needs or designing systems to solve the
wrong problems. For that reason, a key goal of our effort has
been to engage with prospective users directly and develop a
systematic understanding of their needs.

A. Theoretical Framework: Five Characteristics of Innovation

In this study, we applied the Diffusion of Innovations
(DOI) as a theoretical lens to investigate analysts’ experiences
with the Catalyst integration capability [8]. DOI theory, first
pioneered by communication theorist and sociologist Everett
Rogers in 1962, seeks to explain how and why innovative
ideas and technologies are adopted and spread throughout a
social system. In this approach, how an innovation is perceived
by prospective adopters depends on different dimensions of
perceived utility; as explained by Rogers, “The characteristics
of innovations, as perceived by individuals, help to explain
their different rate of adoption” [9]. These characteristics
found on pages 15-16 include

+ Relative Advantage: The degree to which an innovation
is perceived as better than the idea it supersedes.

o Compatibility: The degree to which an innovation is
perceived as being consistent with the existing values,
past experiences, and needs of potential adopters.

o Complexity: The degree to which an innovation is per-
ceived as difficult to understand and use.

o Trialability: The degree to which an innovation may be
experimented with on a limited basis.

o Observability: The degree to which the results of an
innovation are visible to others.

According to Rogers on page 16-17, “Innovations that are
perceived by individuals as having greater relative advantage,
compatibility, trialability, observability, and less complexity
will be adopted more rapidly than other innovations.” p.16
[9]. “Given that an innovation exists, communication must take
place if the innovation is to spread” p. 17 [9]. What makes
DOI theory particularly useful is that it helps in navigating the
trade-offs between different dimensions of utility. For exam-
ple, the Catalyst integration capability may promote relative
advantage through code proximity (the ability of the visualizer
to provide easy and fast access to underlying source code, see
[7]), but in doing so this may also increase complexity until
certain barriers to adoption are addressed.

Thus DOI theory enables researchers to explore the in-
terplay of different innovation adoption drivers. Along these
same lines, DOI theory has previously been used to study
user adoption of data visualization and analytics tools in
diverse contexts including healthcare [12], education [14],
construction [13], and geospatial analytics [18].

B. Walkthrough and Content Analysis

Our subject matter expert (SME) developed two image
generation use case workflows using Paraview, Catalyst, and
SPARC. The workflow steps constituted instructions to be
followed by analysts during a guided walkthrough interview
in which the SME observed the analysts’ actions, answered
questions, provided explanations, and responded to feedback.
The SME also performed a technical analysis, in which
bugs and usability issues were identified, while determining
the steps of the workflow. We conducted three interviews,
averaging 60 - 90 minutes per interview. In each interview, the



SME generated a workflow that the users followed to perform
certain tasks. During the walkthrough, users verbalized what
they were thinking, asked questions, and provided feedback.
We employed content analysis to analyze the video, audio, and
transcripts of the use case walkthroughs. Content analysis is a
methodology used to identify patterns in texts and can be quan-
titative, qualitative, or both [15]. Since our UUA hypothesis
points to Paraview user adoption of data manipulation as a key
abstraction, we used Rogers’ five characteristics of innovations
as categories to quantitatively code analysts’ statements from
the interview transcripts. Six project team members represent-
ing diverse scientific and engineering domains independently
coded each of the interviews by watching the videos and
matching the audio to the transcripts.

IV. RESULTS AND DISCUSSION
A. Technical Findings

Technical findings are defined in the present paper as
specific issues or recommendations identified by the SME or
interviewees for Paraview, Catalyst, and the Paraview python
scripting interface.

Paraview has different classes of objects. Filters are pro-
cessing units assembled into a pipeline. The output of each
filter may be displayed, as defined by its representation. A
view composes the image from the active representations it
contains. Extractors, or extracts, were added in version 5.10.0,
and describe file output; data extractors send the output of a
filter, and image extracts send the image in a View.

The scripts generated by the Paraview GUI are verbose.
There are many lines specifying the properties of represen-
tations and views, and many of them are not necessary to
include. Either the user has not changed the property values
from their default values, or that property was not needed to
make the image. Many of these properties are set by the user
indirectly, such as through a mouse or widget interaction, and
the associated property is not familiar to the analyst by the
name in the script. Consequently the analyst may be uncertain
about which representation and view properties are necessary,
so they are hesitant to edit or delete them.

The scripts generated by the Paraview GUI embed speci-
ficity of the dataset in a way that is difficult for an analyst
to identify. For example, in the color lookup table, the data
value and the corresponding 3-tuple defining the color are
just appended together in a python list, with no structure to
distinguish the value from the tuple or one value-tuple pair
from another. To rescale the color table to different minimum
and maximum values, an analyst would have to recognize the
structure from the values in the list, then recompute each data
value and edit the list appropriately. It would be much easier
to just specify the color table for a value range of, say, O to
1, and have Catalyst compute the corresponding values given
user-specified minimum and maximum values, as the analyst
would do in the Paraview GUI. There are many places in the
script like this, though the color lookup table is particularly
difficult to edit. As a reminder, easy modification of the scripts
to apply to a different dataset is crucial, because the benefit of

TABLE I
CODED FREQUENCIES OF DOI CHARACTERISTICS USED IN THE
QUALITATIVE ANALYSIS OF THE FLOWFIELDS AND LES USE CASES.

Innovation Characteristics Flowfields Use Case  LES Use Case

Relative Advantage 24 7
Compatibility 51 26
Trialability 33 9
Observability 6 2
Complexity 41 11
Total Number of Codes Applied 155 55

in situ analysis is only realized when applying it to simulations
that have not yet been run.

Another issue is that some properties recorded in the Cata-
lyst script are not intuitive. For example, the view properties
that specify the camera’s location and orientation are easy to
identify, but it is difficult for an analyst to know how to adjust
the values to get the updated image they desire. In Paraview,
these parameters are accesible but rarely displayed — instead,
the analyst updates the view by using the mouse, seeing the
effects but not the actual values of the camera properties.

The scripts generated by the GUI are best thought of
as “journal” files that record the necessary information to
regenerate the output image or data file, rather than a clear
description that leads to easy understanding and adaptation to
a different data set. Fortunately, the issues identified in the
GUI-generated scripts have straightforward solutions, and we
are working developers at Kitware to address them.

B. Usability and Adoption Findings

Usability and adoption findings were developed by perform-
ing a content analysis on the walkthroughs with analysts. Two
hundred and ten unique statements made by three analysts
during the interviews were identified across the image gen-
eration use cases. Each statement was then categorized into
only one of the five characteristics of innovations by each
coder [15]. Across the six coders, we used Cohen’s Kappa
[16], [17] to measure pairwise intercoder reliability (0.2238
average unadjusted). Intercoder reliability was calculated by
taking the average pairwise kappa among the six coders based
on whether or not they coded a statement, irrespective of
how they coded the statement. A common discrepancy among
coders was that while some coders labeled each statement
at the beginning, others labeled statements at the middle or
end. Therefore to compensate for this irregularity, we adjusted
the kappa by grouping statements with those before and
after (0.3276 adjusted). Additionally, while three coders were
aligned in their coding schema (0.3641 unadjusted, 0.4181
adjusted) suggesting moderate agreement, others were not as
well-aligned, resulting in lower kappa scores overall for the six
coders due to the misalignment. Agreement among six coders
was fair (0.21 - 0.40). Kappa scores were lower than desirable,
but still within acceptable limits.

We employed Friedman’s test to determine whether any of
the five innovation characteristics were consistently labeled



more frequently by different coders [19]. This test yielded a
p-value of 0.00027, indicating that there are innovation char-
acteristics consistently rated higher than others across coders.
Next, we used the post-hoc Friedman-Nemenyi test to measure
which pairs of innovation characteristics were significantly
more or less frequent relative to each other [20]. The test
revealed that Relative Advantage is consistently coded more
frequently than Observability (p=0.036466), and Compatibility
more frequently than Observability (p=0.00100).

Table I illustrates the number of unique statements (210)
that were coded in each of the characteristics of innovations
categories. Note that fewer analysts’ statements were coded
for the chararcteristic Observability, suggesting that there were
fewer instances of observability in these use cases. Addition-
ally, in each use case, analysts’ statements offered support for
relative advantage with respect to data manipulation through
testimonials such as, “Yeah, so I can see myself using this
immediately for some of our cavity works that we work on.”
and “Yeah, it seems quite useful right out of the box.”

While not depicted in Table I, 48 usability barriers were
identifed from 41 analysts’ statements. In seven of the an-
alysts’ statements, more than one coder identified different
usability barriers for the same statement. Our findings indi-
cate that some analysts’ statements corroborated the technical
analysis performed by the SME. For example, with respect to
auxiliary objects (e.g., color lookup tables) being impractical
to modify directly, analysts’ statements in both the flowfield
and LES image generation use cases addressed this finding.
When asked by the SME, “Do you think you could write that
part yourself without the GUI?” an analyst performing the
workflow steps for the flowfield use case stated, “We didn’t
change the color map for this but if we had to I don’t know
that I would be able to do that by hand.” While another added,
“I would say there’s a difference, right, between editing a
script that’s there, and creating it completely from scratch.”
When asked by the SME “What else do you see in here or
what do you think about the process we went through? ... Is
this tractable?” an analyst executing the steps for the LES use
case stated, “Some components of it, I think you're right where
it would be more valuable to be able to dig into the python
script.” It was observed that there appeared to be a lack of
intuitiveness of GUI visual elements in the Catalyst script,
and in the case of LES, understanding, editing, or modifying
image-specific parts of the Catalyst script was difficult.

With respect to adoption, the most salient finding from
applying Rogers’ Innovation Characteristics to our use cases
was the comparitively lower frequency of the innovation char-
acteristic of Observability. That is to say, analysts were not as
familiar with the capability afforded by the use of the Catalyst
script to perform certain in situ analyses as they were with the
Paraview GUI (see Table I) perhaps largely because they are
not aware of others employing a Catalyst-centric approach.
This is understandable, as the use case interviews may have
been the first time some of the analysts had attempted these
workflows.

Our research was exploratory in nature, and as such prone

to certain limitations. For example, the findings of the present
study are specific to the particular uses cases and the dataset
was small. Intercoder agreement should also improve as we
engage in further data collection and align our coding prac-
tices.

V. CONCLUSION

Catalyst in SPARC is entering the adoption stage for ana-
lysts in a production environment. Building on several years
of effort, Catalyst is now integrated into SPARC in its parsing,
simulation data transfer, and broader software engineering
processes. This foundation permits developers to give more
attention to usability and adoption.

We found that in practice, the Catalyst scripts generated
by the Paraview GUI are journal files — they are effective
for repeating an existing analysis, but they are difficult for
Catalyst users to understand and modify for new analyses. For
image generation tasks, the scripts are verbose and information
specific to the original dataset is embedded in such a way
that it is hard to find and modify. However, we believe
straightforward solutions to these issues can be found and
implemented, and are working with Kitware to that end. For
some information in the scripts, such as the specification
of camera properties and color tables, the Paraview GUI or
other tools may provide the best mechanism for the analyst to
specify what to include in their Catalyst script.

Through our UUA analysis, with respect to compatibility
(one of Rogers’ five characteristics of innovation), we con-
cluded that analysts in our walkthroughs focused on deter-
mining how Catalyst would fit in their existing workflows.
With respect to observability, we are using these preliminary
results to guide our efforts to build a user community. We
have deployed the workflow recipes on the SPARC Analysts’
wiki to address some of the barriers identified by users such
as the need for documentation. While our UUA results are
exploratory, they have given us insights into the process
of addressing usability barriers and technology adoption by
directly engaging with the analysts for whom Catalyst was
designed.
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