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Abstract—TIterative methods for solving linear systems serve
as a basic building block for computational science. The com-
putational cost of these methods can be significantly influenced
by the round-off errors that accumulate as a result of their
implementation in finite precision. In the extreme case, round-
off errors that occur in practice can completely prevent an
implementation from satisfying the accuracy and convergence
behavior prescribed by its underlying algorithm. In the exascale
era, where cost is paramount, a thorough and rigorous analysis of
the delay of convergence due to round-off should not be ignored.
In this paper, we use a small model problem and the Jacobi
iterative method to demonstrate how the Coq proof assistant
can be used to formally specify the floating-point behavior of
iterative methods, and to rigorously prove the accuracy of these
methods.

Index Terms—TIterative convergence error, round-off error

I. INTRODUCTION

Solving sparse linear systems is often the most time-
consuming computation in large-scale scientific and engineer-
ing problems [1]. A major challenge in computational science
is to therefore design methods for solving these systems
that can be efficiently implemented at scale. This task is
particularly challenging for widely used iterative methods,
whose convergence behavior and attainable accuracy can be
hard to determine a priori. Iterative methods [1] solve a system
of linear equations by constructing a sequence of solution
vectors, which approximate the exact solution of the linear
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system. A critical but often neglected consideration in the
design of scalable iterative methods is a thorough analysis
of the effect of rounding errors and the potential for their
amplification [2]. Even when a thorough and interpretable
rounding error analysis does exist, developing and executing
comprehensive tests at scale to check that the analysis holds
for a particular implementation is time consuming and com-
putationally intensive [3], [4]. Furthermore, it is often hard
to determine if inaccurate results are due to the floating-point
behavior of the implementation or other sources of program
error. The design of scalable and accurate iterative methods
for solving linear systems is therefore inextricably linked to
other notions of program correctness.

In this paper, we introduce our work towards verifying the
accuracy and correctness of stationary iterative methods and
their implementations using the Coq proof assistant [S]. The
Coq proof assistant is an interactive theorem proving environ-
ment that has been used to great success in the development
of formal proofs of the functional correctness of programs [6],
[7]. The theoretical guarantee of a formal proof of program
correctness is that the program will behave as expected on
all possible inputs. For numerical programs such as stationary
iterative methods, a thorough proof of functional correctness
requires performing round-off error analysis in Coq; we refer
to this error analysis as verified round-off error analysis.

Our verified round-off error analysis is informed by the
standard round-off error analysis of iterative methods given
by Higham and co-authors [8], [9], but provides concrete
error bounds in place of big-O estimates, and uses a slightly
different rounding error model that accounts for subnormal
numbers. Our work is facilitated by advancements in automatic
and interactive theorem proving [10]-[13] and other recent
formalizations of numerical methods [14]-[25]. Our verifi-
cation approach leverages several pre-existing Coq packages
and libraries for reasoning about mathematical abstractions
in linear algebra and real-analysis, and for reasoning about
floating-point arithmetic. Overall the work outlined in this
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paper makes the following contributions, which we believe are
relevant to both the interactive theorem proving community
and to the developers and maintainers of numerical software:

o We illustrate how two previously unconnected Coq li-
braries — VCFloat [6], [26] and MathComp [27] — can
be interfaced in order to perform verified round-off error
analysis of algorithms from numerical linear algebra;

o We demonstrate how to develop formal models of sta-
tionary iterative methods in both exact arithmetic and
floating-point arithmetic in Coq;

o We show how formal models of numerical algorithms can
be used to prove concrete bounds on the total round-off
error for the Jacobi method [1], using a simple model
problem consisting of a 3 x 3 linear system;

o We extend the Coq linear algebra library MathComp [27]
with vector and matrix infinity norm definitions that are
sufficient for round-off error analysis.

This paper is structured as follows. Our model problem is
introduced in Section II. In Section III, we provide an overview
of the Coq MathComp mathematical component library and
VCFloat package that were used in our formalization. The
functional models for the Jacobi iterations in floating-point and
exact arithmetic are described in Section IV. Our main theorem
on the accuracy of floating-point Jacobi iterations carried out
in single-precision arithmetic is given in Section V, for the
Jacobi iteration algorithm applied to a simple model problem.
Finally, our formalization required the addition of matrix and
vector infinity norms to the core of the MathComp library,
and we discuss the definitions and properties of these norms
in Section VI. In Section VII, we discuss some key takeaways
from our work and end with future directions.

Our full formalization is available at: https://github.com/
ak-2485/iterative_error.git.

II. PROBLEM FORMULATION

Stationary iterative methods are among the oldest and
simplest methods for solving linear systems of the form

Az =b, A=M+NeR™™ beR" (1)

The nonsingular and usually non-Hermitian matrix A and
vector b in such systems typically appear, for example, in
the solution of a partial differential equation. The stationary
iterations for the solution vector « have the form

Mz, + Nty,_1 =0, ()

where the vector z,,_; is an approximation to the solution
vector x obtained after m — 1 iterations, and is known at the
m* step. The unknown x,, is therefore given by

T = (M *N)xp_1 +M b (3)

In this paper, we demonstrate our work towards verifying
the accuracy and correctness of stationary iterative methods
by considering the Jacobi method, where M = diag(A),
on a simple model problem. In this case the model problem
is representative of solving a linear boundary value problem

with a second order central difference scheme; this simple
model problem serves as a sufficient “stress test” for our
proposed verification method, indicating how the Coq libraries
and packages we utilize will need to be developed in order to
handle larger problems and provide more general proofs (see
Section VII). In particular, we consider the tri-diagonal matrix
system Az = b where A is a coefficient matrix of size 3 x 3, x
is the unknown solution vectors, and b is a known data vector:

1 2 -1 0 1
h2
0 -1 2 1

Although most of our theorems are parameterized by the
discretization parameter h, we set h = 1 globally in our
analysis for simplicity. Ultimately, we are interested in a
formal proof of the accuracy of an iterative solution to the
system (4) obtained in floating-point arithmetic by a particular
implementation in an imperative language. Fortunately, there
is a well-established road map for obtaining such a proof.
In particular, the following steps for proving the accuracy
and correctness of floating-point programs has been described
before by Appel and Bertot [28] for a Newton’s-method
square root function, and Kellison and Appel [29] for Verlet
integration of the simple harmonic oscillator. For our model
problem, the steps are as follows.

1) Write a C program that solves the system (4) by Jacobi
iterations of the form (3).

2) Write a floating-point functional model in Coq — a
recursive functional program that operates on floating-
point values — that solves the system (4) by Jacobi
iterations of the form (3) in the precision of the C
program from Step 1.

3) Prove that the program written in Step 1 implements
the floating-point functional model of Step 2 using a
program logic for C.

4) Write a real functional model in Coq — a recursive
functional program that operates on Coq’s axiomatic real
numbers — that solves the system (4) by Jacobi iterations
of the form (3) using exact arithmetic.

5) Prove a tight upper bound on the accuracy by which
the floating-point functional model approximates the real
functional model.

In this work, we focus on the proof of accuracy of Jacobi
iterations, which involves steps 2, 4, and 5. In the following
section, we briefly describe the tools we have used for writing
the functional models in steps 2 and 4. We describe the proof
of accuracy in Section V.

III. BACKGROUND

We define functional models as purely functional programs
written in Coq that implement the Jacobi iterates in equation
(3). The real functional model is written using the math-
ematical components (MathComp) library, and the floating-
point functional model is written using the VCFloat library.
For the interactive theorem proving community, a highlight
of this work is a demonstration of the interaction between



the VCFloat and MathComp libraries for proving an upper
bound on the accuracy to which the floating-point specification
approximates the exact arithmetic specification. We briefly
review relevant background on the MathComp and VCFloat
libraries in the following sections.

A. The VCFloat Coq Library

The VCFloat [26], [30] Coq library performs semi-
automatic floating-point round-off error analysis on floating-
point expressions. VCFloat utilizes the Flocq [31] formaliza-
tion of IEEE-754 binary floating-point formats, which is an
inductive data-type parameterized by the precision prec € N
and the exponent emax € Z. For the round-to-nearest round-
ing mode, VCFloat models rounding error as

rnd(z) =z x (1+§)+¢€ 5)

where § < prec gives the maximum relative error for normal
numbers and € < (3 — emax — prec — 1) gives the maximum
absolute error for subnormal numbers.

VCFloat provides wrappers for the ordinary Flocq floating-
point arithmetic operators that enable users to write floating-
point expressions in Coq’s “native” logic — which we refer
to as shallow-embedded expressions — using infix notation,
along with tactics for automatically translating these shallow-
embedded expressions into deep-embedded expressions, which
are expression trees over floating-point types. VCFloat’s core
theorem operates on these deep-embedded expressions by
soundly applying the rounding error model of equation (5) to
generate a correctly rounded deep-embedded expressions over
the reals; that is, an expression tree with the correct insertion
of epsilons (¢) and deltas (). These rounded expression trees
are only generated if intermediate proofs of the absence of
overflow and underflow are discharged, which guarantees their
soundness with respect to the Flocq formalization and the
rounding error model '.

Finally, additional VCFloat tactics automatically transform
the correctly rounded expression tree back into a shallow-
embedded correctly rounded real expression. An absolute
forward error bound is then obtained automatically by apply-
ing the Coq interval library [32] to the absolute difference
between the correctly rounded shallow-embedded expression
and its corresponding shallow-embedded expression in the
absence of rounding error. In particular, if we represent the
correctly rounded shallow-embedded expression as 7 and its
corresponding shallow-embedded expression in the absence of
rounding error as 7, then the Coq Interval library automatically
proves theorems with goals of the form |7 — r| < const.
supposing that the shared variables of r and 7 are sufficiently
bounded in the hypothesis of the theorem.

The VCFloat predicate used for stating Coq theorems
bounding the absolute local round-off error of a reified expres-
sion tree expr over floating-point types by the real value bnd
is (prove_round—-off_bound mapl map2 expr bnd), where

'In fact, there are additional properties that must hold, see Appel and
Kellison [30] and Ramananandro and co-authors [26]

map2 maps the positive identifiers used to construct the reified
expression tree to floating-point valued variables, and mapl
maps these floating-point valued variables to their real-valued
bounds; the real-valued bounds on variables are provided by
the user, and are necessary both for proving the absence of
underflow and overflow of the expression, and for generating
tight error bounds. A full demonstration of VCFloat’s func-
tionality is provided by Appel and Kellison [30].

B. The Mathcomp Coq Library

The MathComp mathematical components [27] library for-
malizes theories of sequences, matrices, and vectors, and
provides an abstraction over algebraic structures like rings
and fields. These algebraic structures can be instantiated with
Coq’s axiomatic reals, which allows users to perform real
analysis using Coq’s standard library. The MathComp theories
for matrices and sequences were utilized for this work.

In Mathcomp, a matrix is defined as a function from an
ordinal type to an appropriate ring type.

Variant matrix : predArgType :=
Matrix of {ffun’I_m x’I_n —R}.

where ' I_n and ’ I_m denote an ordinal type, i.e., set of
naturals from 0...n — 1 and 0...m — 1 respectively. For
instance, a 2 x 2 real valued matrix, A = [1,2;3,4] can be
defined 2 as

Definition A :=\matrix_(i< 2, j < 2)
(if (1 ==0%N :> nat) then
(1f (7 ==0%N :> nat) then 1%Re else 2%Re) else
(1f (j ==0%N :> nat) then 3%Re else 4%Re)).

The matrix theory in Coq defines generic properties like
transpose, conjugates, matrix space theory, eigenspace theory
etc. We leverage this formalization for our work, while filling
some existing gaps in the theory relating to matrix and vector
norms.

The seq library in MathComp [27] allows us to define
a finite sequence. In our formalization, we use sequences to
reason about matrix and vector infinity norms. Therefore, it
is worth going through some relevant operations from the
sequence library. The following notation defines a map for
each element x in the sequence s.

[seq E | x « s] :==map (fun x = E) s.

To extract an n'" element in the sequence, we use the

following notation from MathComp

nth x0 s i

The MathComp [27] library in Coq provides an infrastruc-
ture to define iterated operations. The notation

Notation "\big

r \ P ) F" =
(bigop idx r (fun i = BigBody i op P%B F)) :
big_scope.

[ op / idx ]_ ( i <«

2The form Definition name (arguments) : type := term in Coq binds
name to the value of the term of type type.



allows us to define iterated sums and products by instantiating
the op operator and the appropriate identity idx. Here, F
is a function of i chosen from a finite sequence r when
the predicate P holds true. The matrix operations like matrix-
vector multiplication, dot products, traces etc. are defined in
terms of these big operations.

We will next discuss our formalization of the error analysis
in Coq.

IV. FUNCTIONAL MODELS

We first define functional models for the iterative algo-
rithm (3). This is implemented using the Fixpoint operator
in Coq which defines a recursive function. In this case, the
iterative solution after m steps, x,, is defined recursively.

The real-valued functional model is defined in Coq as
Fixpoint X_m_real (m n:nat) (x0 b: ’cV[R]_n) (h:R) :
>cV[R]_n:=

match m with

| 0= x0

| p+l = S_mat nh #*m (X_m_real p x0 b h) +

inv_Al n h=s*mb
end.

X_m_real takes as inputs: m, the iteration number; n, the
matrix and vector dimension; x0, the real valued initial guess
column vector of size n; b, the real valued data column
vector of size n, and the parameter h, which represents the
discretization step. X_m_real returns a real valued column
vector of size n represented by the type ' cV[R]_n. If the
iteration step is zero, X_m_real returns the initial guess
vector. If the iteration step is non-zero, X_m_real returns

the iterative solution corresponding to the formula (3). Here,

. . . .. A
S_mat is the iteration matrix, i.e., Sy = —M ~'N, and

inv_A1l is the inverse of M.
The floating point functional model is defined in Coq as
Fixpoint X_m (m: nat) xOb h: list (ftype Tsingle) :=
match m with
| 0= x0
| p+l = vec_add (S_mat_mul (X_m p x0 b h))
(Al_inv_mul_b b h)
end

where S_mat_mul is defined as fI((—M 'N)z,,_1) and
Al_inv_mul_b is defined as fI(M~1b). vec_add is a
routine that adds elements in a vector recursively.

Here, we used the CompCert [33] lists to define a vector
of floats. In this work, we consider floats of single preci-
sion. Therefore, the return type of x_m is list (ftype
Tsingle). This choice is governed by the ease with which
we can switch between the lists and MathComp vectors.
We define this relationship between CompCert lists and
MathComp column vectors using the following definition
Definition listR_to_vecR {ninat} (1:1list R):=
\col_(i < n)

match (nat_of_ord i) with

| Sn=Listnth(Sn)10

| 0= List.nth010
end.

The definition 1istR_to_vecR takes a list of reals of
length n, and returns a column vector of length n. The column
vector is constructed using pattern matching on the row index
i which varies from 0...(n — 1). If ¢ is zero, we extract an
element from the list at index 0. If 7 is non-zero, or a successor
of some natural number, we extract an element from the list at
that index. An important point to note here is that the natural
numbers in Coq are either 0 or successor of some other natural
number.

V. A FORMAL ACCURACY PROOF
The global iterative error defined after k + 1 iterations is
defined as
ek1 = |[Thr1 — 2| (6)
where z is the solution obtained by solving the linear system
Axr = b exactly, i.e. #+ = A~'b, and x4 is the iterative
solution after k+1 steps computed in floating-point arithmetic.
We can further split the global iterative error into the global
round-off error and the exact iterative error:

ek+1 = ||[Tr+1 — ||
<||Zk41 — Tl + okt — 2] - (7

global round-off error  exact iterative error

The exact iterative error is the difference between the solution
obtained by solving the linear system exactly and the solution
obtained by solving the linear system using an iterative method
in exact arithmetic. A formal proof of convergence in the
presence of iterative error in exact arithmetic is given by
Tekriwal and co-authors [34]. In this work, we focus partic-
ularly on the global round-off error, which is the difference
between the iterative solutions obtained in exact and floating-
point arithmetic. In particular, we represent the floating-point
solution to iterative system in equation (2) as

Fpp1=—M "Nz + M b+ frp ®)

where fi1 is the local absolute round-off error from com-
puting (—M 1N + M~1b) at step k + 1. If we denote the
error between the iterative solution obtained in ideal arithmetic
from the iterative solution obtained in floating point arithmetic
as ey, then the following recurrence relation holds.

eri1 = [[ons1 — Trralloo < NMTN)erloo + [ frt1loo-

From examining the error terms at successive steps it is
clear that the norm-wise error terms satisfy

k
ept+1 < %lgg(fn)ZHM_lN”éo )
=0
where max(f,,) is the maximum local error over all k itera-
tions.

In order to obtain a concrete maximum floating-point error
vector max,<x(fn), we must first make an initial guess for a
component-wise bound on the absolute value of the floating-
point solution vector z at any iteration k. This user provided
bound must not induce overflow or underflow of the solution



as discussed in Section III-A. Furthermore, we must prove
in our global accuracy theorem that the floating-point error
accumulated over k iterations does not cause the components
of the computed solution to exceed this bound.

We represent the injection of the ¢-th component of the
floating-point solution vector at iteration k into the reals as 2%
and provide a loose bound of || < 100 for our model prob-
lem. This bound is encoded into a data-structure, which we de-
note as bmap, which maps the positive identifiers used to con-
struct the reified expression tree for each component of the so-
lution vector to floating-point valued variables. If (varmp s) is
the map data structure that maps the floating-point valued vari-
ables in the tuple s to their real-valued bounds then the pred-
icate (prove_round-off_bound bmap (varmp s) expr bnd)
is used to state that the absolute forward error on the com-
ponent expr of the floating-point solution is less than bnd.
A concrete numerical value for bnd is derived automatically
using the Coq interval package [35]while constructing the
proof. If !, 2, and #3 are deep-embedded expression trees
constructed from the shallow-embedded expression for a single
iteration of the floating-point function (i.e., for K = 1 in (X_m
k xo b h)), then the Coq theorems for the component-wise
local floating point error of the solution vector T are then
stated as follows.

Theorem prove_round—-off_bound_xl_aux:
forall s: state,

prove_round—off_bound bmap (varmap s) &' (9.04e—06).

Theorem prove_round—-off_bound_x2_aux:
forall s: state,
prove_round-off_bound bmap (varmap s) 72 (1.5e-05).

Theorem prove_round—off_bound_x3_aux:
forall s: state,

prove_round-off_bound bmap (varmap s) 73 (9.01e-06).

Using these theorems, we can then construct the vector
max, <k (fn) of component-wise round-off errors as

[Imax(f)llso = [l fmasllso = (1.5¢ — 05).

A core component of the definition of the pred-
icate (prove_round—-off_bound mapl map2 expr bnd) is
the predicate (boundsmap_denote mapl (map2 args)). If
(boundsmap_denote mapl (map2 args) = true), then the
floating-point valued variables in args are bounded by the
user supplied bounds used to construct mapl.

We make use of the (boundsmap_denote mapl (map2 args))

predicate in the following theorem, which proves an error
bound on the infinity norm of the shallow-embedded
expressions for the functional models by invoking each
of the prior lemmas for the component-wise error on the
deep-embedded expressions. For the sake of clarity for the
reader, in the following theorems we omit the Coq functions
that inject single-precision floating-point data structures into
their real counterparts, as well as those functions that map
Coq lists to mathcomp vectors. We instead represent the
result of such an injection on the floating-point data g as 9.

Recall that the discretization parameter is assigned globally
to h =1.
Theorem step_round_off_error:
V s: state,
boundsmap_denote bmap (varmap s) —
let ki=11in
|| x_m_real(k.5.b.h) = X_m (k,5.b.h) [lso < ||fklloo-
Our main accuracy theorem is stated as
Theorem iterative_round_off_ error:
V (2o : 1list F), (k : N),
(boundsmap_denote bmap (varmap ) A
[|Zo]loc < 48 A ||b]]oc < 1A Kk <100) —
let & = X_m (k,%o,b,h) in
let x = X_m_real (k,%0,b,h) in
N k _
[z = 2lloe < |l fmaalloc opucq M N||Z
A boundsmap_denote bmap (varmap Zy).
We are considering the infinity norm of a vector and a
matrix which is defined mathematically as

n
- i 1Al = Asl
HUHOO m?X|vz|7 I Hoo mz.aXZ;| U| (10)
-7:

We define the vector and matrix infinity norms in Coq as

Definition vec_inf_norm {n:nat} (v : ’cV[R]_n) :=
bigmaxr 0%Re [seq (Rabs (v i 0)) | i + enum 'I_n].

Definition matrix_inf_ norm {n:nat} (A: 'M[R]_n) :=
bigmaxr 0%Re [seq (row_sum A i) | i + enum 'I_n].
where bigmaxr is defined in the MathComp library in Coq,
and provides an infrastructure to define the maximum of
elements in a given sequence. The definition vec_inf_norm
takes a real column vector of size n denoted by ' cV[R]_n,
and returns a maximum of the sequence of absolute values of
each of its components, denoted by Rabs (v i 0), where
i is taken list of ordinal numbers {0 (n-1) }. Similarly,
the definition matrix_inf_ norm takes a real values square
matrix A denoted by ' M[R]_n and returns a maximum of the
sequence of the row sum of the components of A. We define
the row sum in Coq as follows

Definition row_sum {n:nat} (A: 'M[R]_n) (i: ’I_n) :=

\big[+%R/0]_(j<n) Rabs (A i j).
row_sum takes a square matrix A and a row index i and
returns a sum of the absolute values of the components of A
in that row. The big operator, defined in MathComp, returns
an iterated sum of finite components in the row 7 of the matrix
A in this case.

The proof of the theorem iterative_round_off_error
follows by induction. The base case follows trivially:
no error is introduced between the input starting vec-
tors To and its injection 2y to the reals. For the in-
duction case, we first prove the left conjunct ||zjy1 —
Frpilloe < [ferilloo Cpo [[MT'N||Z. Decomposing
[|Zk+1 — £r+1]|0o as single iterations over the inputs z;, and
Ty, yields

|zkt1 — Ztilloo =
[|X_m_real (1,xk,13,h) — X m (l,i‘k,g,h)ﬂoo,



which can further be decomposed into a local error term and
an accumulation of error term:

[|X_m_real (l,mk,l;, h) — X_m (175%75»]1)”00 <
|| X_m_real (l,x;wl;, h) — X_m_real (l,fck,i), h) oo +

global accumulation of error

|| X_m_real (1,i‘k,l;, h) — X_m (1,@;,5, h)|leo =

local round-off error

|M 7 Nllsol|ze — 2xlloe +

global accumulation of error

|[x_m_real (1,&,bh) — X_m (1,7, b,h)]||co-

local round-off error
The desired conclusion

k+1
lers1 = Erplloo < [ frlloo D M N2

m=0

then follows in two steps. To bound the global accu-
mulation of error term we need only invoke the induc-
tive hypothesis which bounds ||zx — #||s. To bound the
local round-off error term, we must have evidence that
each component of the floating-point solution vector =y
has not exceeded the user specified bound that was used
to derive the local-floating point error bound ||fmaz|co
that serves as the maximum local error; observe that
this follows from the inductive hypothesis which includes
the predicate (boundsmap_denote bmap (varmap Z)). This
predicate is used to satisfy the premise of the theorem
step_round_off_error, which is invoked to bound the
local round-off error term and concludes the proof of the left
conjunct of the conclusion.

Finally, in order to prove the right conjunct of the con-
clusion, boundsmap_denote bmap (varmap Zx41), we must
show that each component ¢ of the floating-point solution
vector at step k + 1 is bounded by the user supplied bounds:
|#%] < 100. To do this, we decompose the error bound at
step k + 1 that we have just proved in order to bound the
floating-point solution:

k+1
1&x41llo0 < [fklloc Y IMTINIZ + [[@ps1 oo

m=0

(1)

We obtain a bound on the exact arithmetic solution vector
[|Zk+1]|0o that satisfies ||Zx+1]/co < 100 under the conditions
[|zol|oo < 48, ||b]|oc < 1, and k < 100:

Lemma sol_up_bound_exists:
V(x_0b:lists R) (k: N),
(lzolloe < 48 A |[bl]oo < 1A K < 100) —
|| X_m_real(k+ 1,20,b, h)||e < 99.

Invoking this lemma concludes the proof.

Note that from the definition of iterative system (3), we
arrive at the following bound for the real solution vector zj

llzkrlloo < (M TIN5 |0 [oo+

m
M oo blloe S [1M N2

§j=0
For our model problem, we proved that the norm of the
iteration matrix is exactly 1, i.e., ||M 1 N|| = 1. Therefore,
the geometric sum of the norm of the iteration matrix depends
on the iteration count, i.e., Y o |[|[MTIN|Z, = k+ 1. We
also proved that ||[M || < 5. Hence,

1
ok lloe < Nlzolloe + 5 1blloc (k + 1)

Thus, to prove that ||zxr1 < 99, we need to invoke the
preconditions, ||x,||e < 48, k < 100, and ||b||c < 1.

VI. MATRIX AND VECTOR INFINITY NORM
FORMALIZATION

A by-product of this work is the formalization of infinity
norms of matrix and vectors. This is missing in the current
formalization of linear algebra in MathComp. We therefore
contribute a formalization of the properties of infinity norms.

Table I illustrates properties of vector infinity norm, and
Table II illustrates the properties of matrix norm, that we
formalized in Coq.

TABLE I
FORMALIZATION OF PROPERTIES OF VECTOR INFINITY NORM

Properties Coq formalization

Lemma vec_inf_norm_0_is_0
{n:nat}:
@vec_inf_norm n.+1 0 = 0%Re.

l10f|oc =0

Lemma triang_ineq {n:nat}:
forall a b: ’cV[R]_n.+1,
vec_inf_norm(a + b) <=
vec_inf_ _norm a +
vec_inf_norm b.

lla +blloo < [lalloo + [[blloo

Lemma vec_norm_pd {ninat}
0 <= [[0]]oc (v : ' cVIRLn.+l):
0 <= vec_inf_norm v.

Lemma vec_inf_norm_opp

{n:nat}: forall v: 'cV[R]_n,
vec_inf_ _norm v =
vec_inf_norm (-v).

Il = vlloe = [lv]lec

VII. CONCLUSION AND FUTURE WORK

We argue that tools that connect guarantees of program cor-
rectness to guarantees of floating-point accuracy can assist in
the design of scalable, accurate, and correct iterative methods
for solving linear systems by providing a priori guarantees on
worst case convergence behavior and attainable accuracy. In
this work, we demonstrated how the Coq proof assistant and
its associated packages and libraries can be used to provide
guarantees of the floating-point accuracy of a small model



TABLE II
FORMALIZATION OF PROPERTIES OF MATRIX INFINITY NORM

Properties Coq formalization

Lemma submult_prop {ninat}

(A: "M[R]_n.+1) (v : ’cV[R]_n.+1):

vec_inf_norm (A #m v) <=
matrix_inf_ norm A x*
vec_inf_ norm v.

[Av]loc < || Allil[v]loo

Lemma matrix_norm_pd {n:nat}
(A : *M[R] n+1):
0 <=matrix_inf_norm A.

0 <= [|A]l;

Lemma matrix_norm_le
{n:nat}:
forall (A B : M[R]_n.+1),
matrix_inf_norm (A xm B) <=
matrix_inf_ norm A =*
matrix_inf norm B.

[[AB|li < [|All:||Bl[:

Lemma matrix_norm_add
{n:inat}:

forall (A B : M[R]_n.+1),
matrix_inf_norm (A + B) <=
matrix_inf norm A +
matrix_inf_norm B.

A+ Blli < [|Alls +[|B]li

Lemma matrix_inf norm_1

{nmnat}:
@matrix_inf_norm n.+1 1
= 1%Re.

[1ffi =1

[|Al]; denotes induced infinity matrix norm.

problem whose solution was found using Jacobi iterates. As
future work, we have three goals. First, we plan to generalize
this analysis to a generic n X n matrix and a generic iteration
algorithm, i.e., parametric in A, M and N. Second, we
plan to connect our accuracy proof to previous work [34]
that has formalized sufficient and necessary conditions for
asymptotic convergence of the iterative solution obtained in
exact arithmetic to the solution obtained by solving Az = b
directly. Combining these works would provide a proof of
accuracy that soundly composes the effects of rounding errors
to the effects of iterative errors. Finally, we plan to connect our
accuracy proof to a proof of program correctness in order to
guarantee that a binary compiled from a C implementation of
an iterative method will always exhibit numerical error within
the proven bounds. We intend to carry out the proof of program
correctness using the Verified Software Toolchain (VST) [36],
which is proven sound with respect to the formal operational
semantics of C.
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