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Al/ML has Great Potential for National Security Missions
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Mission Problem | Characteristics

Multi-modal sensors, distributed sensors, and real-time behavior
Physical models and ground truth may not exist
Real time monitoring with streaming data

Limited data that is likely modified or disguised

Desire to reduce or remove human in the loop

Data available at multiple levels of sensitivity

Adversary withholds differentiating capabilities and tactics

Many sources of variation - unknown limits to what can be learned
Lack of a mathematical foundation and physical models

Volume of data is very low

Rich but sparse data - can be expensive to obtain
Multi-instrument, multi-experiment, multi-measurement
Uncertainty present in experiments and physics models

Need to introduce Al without disrupting current operations
Very high consequence, very rapid transactions (many per minute)
Streaming data with very dynamic environment

Multiple types of data requires data fusion
Data collection is often destructive
Theoretical models often don't exist

Operations staff do not understand performance/failure
mechanisms

Thousands of instrumentation points, but unknown if data provide
useful insights

Complex resource usage makes it difficult to tune systems
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Al-driven methods for designing, manufacturing and deploying m
products have the potential to revolutionize NNSA workflows

Discovery Design Exploration Manufacturing Deployment and
and Optimization and Certification Surveillance

New molecules and Major increases in efficiency and Major advances in Characterizing behavior
materials vital to national costimprovement manufacturing efficiency over the full life cycle
security priorities « Optimizing for robustness, and quality » Digital twin with aging
« New polymers with performance and * In-situ, defect detection and effects
customized properties manufacturability correction * Analysis of embedded
* High explosives with + Al enabled, non-intuitive solutions » UQ approach to process SENsors
i o Abili i - i : P Predicting problems
improved safety and Ability to find optimal solutions and material certification before th
performance over a broad parameter space - Quantifying the value of erore they occur I
» Customized molecules for experiments

countering WMD

NNSA aims to advance high-performance simulation, experimental and engineering capabilities, including

Al/ML-enabled tools, to solve current.and emerging national security challenges



I ASC Advanced Machine Learning Initiative (AMLI) Strategy

The DDMD capabilities are supported by six capability-development areas identified in ASC
Advanced Machine Learning Strategy. E

StOCka'G DI'IV?I'.S _ _ Evolve Next-Gen HPC for
» Improved Efficiency in the Design Process ND Mission

 Anticipatory Stockpile Decision Making

Science and Technology Drivers
» Data-Driven Physics Models Reduce the design

« Enhance Experimental Design cycle time
* Reduce the Computational Cost of Physics Simulations

Six Capability Development Areas
1. Advance research in physics-constrained ML Increased production

- : : : th hput
Improve our ability to employ machine learning with sparse data, il
Invest in validated and explainable machine learning,
Explore learning hardware systems in an HPC environment,
Create an AML-tailored data environment, : _

_ _ Re-think the surveillance

Improve simulation workflows, and program for the 215 century
Build the machine learning expertise and workforce at the laboratories.

August, 2022 Ron Oldfield, AI4SES, Bowie State University

NOo O kwd

Ex U.5. DEPARTMENT OF [~ \'
ENERGY NAS& b

Wtone Myear Sty dalmins




Example: Physics-Informed ML Material Models for Solid Mechanics

Sharlotte Kramer, Principal Member of Technical Staff, Experimental Solid Mechanics

Problem
= Traditional constitutive models incorporate first-principles and H Multi-fidelity data ‘ '
obey physics constraints, but have model-form errors too large for {2 _
Nuclear Deterrence problems ML prediction with uncertainty
= Purely data-driven models require large training sets, lack 1 - rusted model
robustness, and are not generalizable @ o8
= Experimental data is emerging, but is sparse and is multi-fidelity & 06
(unusable for traditional and too sparse for data-driven) @ =
0.4
Technical Approach o
= Use ML to correct model-form error in traditional modeling 0.2 Jflon e o discrepancy
= Trained on fusion of multi-fidelity experimental data - maintains % 002 o0o0i o006 o008 o4
physical constraints, requires less data, includes uncertainty. STRAIN
=  Exemplars: Polymer foams and Additive Manufacturing metals
Example of the Traditional + ML-
Deployment: ] discrepancy Model Approach:
- IF)ngcigK/pl)oratioQ into SIERRA LAME material library through partner Traditional elastic-plastic model plus
projects data-driven discrepancy model with
Key Partnerships: Amir Farimani (Carnegie Mellon University) uncertainty is clgser to multi-fidelity
ata.

Hamel, C. M., Long, K. N., & Kramer, S. L. (2022). Calibrating constitutive models with full-field
data via physics informed neural networks. arXiv preprint arXiv:2203.16577.
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Example: Credibility for Scientific Machine Learning:
Training Data Verification and Model Qualification

. Pl: Erin Acquesta, Principal Member of Technical Staff, Computational Decision
Science

ATDM

Problem
= High-consequence ND workflows require rigorous Verification and Validation (V&V) and T
Uncertainty Quantification (UQ) Fidelity
= Need evidence-based credibility for scientific machine learning when used in ND workflows. S
Technical Approach Validation Physics
= Leverage CompSim and traditional ML credibility workflows into a tailored SciML framework. HoSeS
=  Predictive Capability Maturity Model (PCMM), Datasheets for Datasets
= Exemplar: Device Aging Classification
=  Predict health of devices using waveforms collected using non-destructive tests. v:g}:‘c";‘::m
= |dentify key input features in time or Fourier domains, assess the quality of training datasets, and decompose
uncertainty into its aleatoric and epistemic components. \_/
Deployment:
= Targeted integration into Dakota and other ASC tools
Notional time-series Credibility assessment of different classifiers
measurement e ?’lun:;y :: B Tassifier 1
© 8 & / \ Series LI lassifier 2
= @ a . O lassifier 3
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Frequency-domaln o} \A_ Q E Uncertainty
representation 3 jl a 2
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Uncertainty
Class: 4 . _
Classifier's uncertainty decomposition \
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|
Security is an important piece of the DOE Al Mission m

NNSA's national security mission has somewhat unique requirements (e.g., rigorous
V&V) but many aspects of foundational research are similar to the open science
community

Partnership with ASCR, Vendors, Universities and others will be key to ASC's strategy
= We simply cannot do this on our own - we already leverage billions in investments from industry
= We also cannot simply adopt technology thrown “over the fence” and expect it to work effectively

ECP provides a model for how ASC and ASCR can collaborate openly within constraints
of a classified mission space
= |t took years to develop a productive ECP collaboration model, we should build on that experience

Outcomes of the AI4SES Workshops will likely influence future NNSA investments |
in AI/ML to address Grand Challenge problems in National Security

 Itis vital for the US to tackle hard problems, build the enabling tech, and train a workforce |
capable of rapidly addressing future/unforeseen challenges.
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