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Abstract—To keep pace with the demand for innovation
through scientific computing, modern scientific software devel-
opment is increasingly reliant upon a rich and diverse ecosystem
of software libraries and toolchains. Research software engineers
(RSEs) responsible for that infrastructure perform highly inte-
grative work, acting as a bridge between the hardware, the needs
of researchers, and the software layers situated between them;
relatively little, however, has been written about the role played
by RSEs in that work and what support they need to thrive.

To that end, we present a two-part report on the development
of half-precision floating point support in the Kokkos Ecosystem.
Half-precision computation is a promising strategy for increasing
performance in numerical computing and is particularly attrac-
tive for emerging application areas (e.g., machine learning), but
developing practicable, portable, and user-friendly abstractions
is a nontrivial task. In the first half of the paper, we conduct
an engineering study on the technical implementation of the
Kokkos half-precision scalar feature and showcase experimental
results; in the second half, we offer an experience report on
the challenges and lessons learned during feature development
by the first author. We hope our study provides a holistic view
on scientific library development and surfaces opportunities for
future studies into effective strategies for RSEs engaged in such
work.

Index Terms—research software engineering, scientific com-
puting, software libraries, floating-point arithmetic

I. INTRODUCTION

The present era of high performance computing (HPC)
scientific computing is one of relentless innovation in com-
puting capabilities, with scientific software developers having
to adapt to ever-changing circumstances. From continuing
advances in field programmable gate arrays (FPGAs) and
graphics processing units (GPUs) to emerging technologies
such as neuromorphic and quantum computing, we anticipate
many more cycles of disruption in HPC hardware and soft-
ware environments. From a software engineering perspective,
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finding better ways to manage that complexity and facilitate
the evolution of scientific codes as they transition from one
computing platform to another is key to the sustainability and
productivity of HPC scientific software projects.

The overarching goal of the Kokkos Ecosystem is to provide
a programming model, math kernels, and utilities engineered
for performance portability, that is, maximizing the amount of
user code that can be compiled for diverse devices and obtain
comparable performance as a variant of the code that is written
specifically for that device [1]. The primary components of the
Kokkos Ecosystem are Kokkos Core [2], [3], Kokkos Kernels,
and Kokkos Tools. Kokkos Core is a programming model
consisting of thread-safe data structures, parallel programming
constructs, and parallel algorithms which aim to abstract
hardware architecture nuances for application developers[4];
Kokkos Kernels is a collection of math kernels providing
BLAS, Sparse BLAS and Graph kernels which aims to provide
performance portable, shared memory, parallel linear algebra
kernels[5]; lastly, Kokkos Tools provides profiling and debug-
ging utilities for Kokkos users.

As part of a Kokkos Kernels development effort to provide a
batched-GEMM host-level interface for machine learning use-
cases, experimental half-precision scalar support was added
to Kokkos Core. Machine learning is a growth area for
scientific computing, and our team seeks to stay ahead of
the curve by providing useful features to the community. In
this paper, we present two views on the development of half-
precision support for Kokkos: (1) an engineering research
study on the design and implementation of the feature and (2)
an experience report, from a research software engineering
(RSE) perspective, on the challenges and lessons learned in
developing such features for the scientific software community.

Accordingly, the first half of the paper (Section II) presents
technical details on the implementation of the half-precision
capability and showcases experimental results. The second half
of the paper (Section III) seeks to critically analyze the effort
that went into that feature, as a way of illustrating the work of
RSEs in library development. Finally, Section IV summarizes
the key results of the paper and outlines directions for future
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work.

II. ENGINEERING STUDY

The engineering study is structured as follows. Subsec-
tion II-A describes the recent history of hardware support
for reduced-precision computations, Subsection II-B presents
related work on the use of half-precision floating point in
scientific computing and machine learning, Subsection II-C
details the implementation, and finally Subsection II-D offers
examples of how the choice to use half-precision support in
Kokkos affects performance.

A. Background

Host and device processors generally support two differ-
ent floating point formats for half-precision computations:
binary16 and bfloat16. binary16 is the IEEE 754
half-precision binary floating-point format with one signed
bit, five exponent bits and 10 fraction bits. bfloat16 was
invented by Google (see [6]) and is based on the IEEE 754
single-precision floating-point format with one signed bit,
eight exponent bits, and seven fraction bits. There are trade
offs to selecting a format for your application. binary16
has higher precision (3 more fraction bits) than bfloat16;
while bfloat16 has roughly the same range as float32. An
illustration of the differences between these formats is shown
in Figure 1.

Both binary16 and bfloat16 can reduce any algo-
rithm’s memory footprint, bandwidth congestion, and compu-
tational intensity. For algorithms targeting accelerators, sim-
ply loading half-precision input on the host and copying it
to the accelerator can provide a speedup at initialization.
In some cases, half-precision enables very large input sets
to fit in accelerator memory. Half-precision types provide
lower latency and higher throughput arithmetic operations.
On Nvidia’s V100 GPU, binary16 support provides user’s
with additional parallelism via tensor cores, thereby making
available up to 120 TFLOPS via CUDA-defined WMMA tile
sizes [7]. Hardware and toolchain support for binary16 and
bfloat16 varies across vendors. Some toolchain vendors
support one or more 16-bit floating point types as a storage
only type such that assembly instructions for load and store op-
erations will be emitted by the compiler while any C++ arith-
metic operator will generate a compiler error. Other vendors
support one or more 16-bit floating point types and will gener-
ate arithmetic instructions. Vendors such as Nvidia and AMD
provide compiler intrinsics for casting to and from the selected
half-precision type. Some GPUs support binary16 while
others such as NVIDIA’s A100 supports both binary16 and
bfloat16. Some CPUs support binary16 as well. One
particular problem of the GPU support for half-precision types
is that arithmetic operations are only defined in device code.
Furthermore, the GPU binary16 and CPU binary16 are
not interoperable at the language level. Table I summarizes
several vendor’s support for half-precision.

Half-precision scalars for both binary16 and bfloat16
were released in Kokkos version 3.6.00. Kokkos provides

two processor-agnostic, reduced-precision types: half_t and
bhalf_t which encapsulate binary16 and bfloat16,
respectively. These types are intended to be used in Kokkos
applications and are continuously unit-tested in Kokkos Core
as well as in the batched-GEMM Kokkos Kernel. These
Kokkos types have already been used to run experiments
within the GMRES example in Kokkos Kernels[16] and to
enable initial tensor code support in the SPMV Kokkos Kernel.
Any C++ developer may try using these experimental types by
including Kokkos_Half.hpp in their C++ code.

B. Related Work

Computational science and machine learning researchers
interested in utilizing half-precision to optimize and scale their
algorithms, could benefit from the addition of half-precision
support.

a) Computational Science: Utilizing mixed precision
arithmetic to achieve better performance has been a topic of
interest for several computational science applications. Two
recent reports from the Department of Energy’s Exascale Com-
puting project summarizes several works related to the use of
mixed precision within the codes in this project [17]. Several
methods developed in this domain focus on using mixed-
precision without much loss of accuracy. Loe et al. [18] and
Lindquist et al. [19] looked into using single precision to ac-
celerate their mixed-precision Generalized Minimum Residual
solver using an approach called the GMRES-IR where iterative
refinement is used to recover the loss of accuracy. Mixed-
precision approaches have also been utilized within Block-
Low-Rank methods to store singular vectors corresponding
to small singular values in lower precision to reduce the
memory footprint and floatng point operations needed for
the factorizations [20]. Gratton et al. [21] take a different
approach to show how the precision of the inner-products in
the Generalized Minimum Residual solver can be reduced as
the iterations proceed, without affecting the accuracy of the
solver.

b) Machine Learning: In recent years, there have been
substantial gains in artificial intelligence (AI) and machine
learning (ML) performance by increasing the size of models
and their datasets. Case in point, in realm of AI/ML for
NLP, Brown et al. demonstrated with GPT-3 that scaling
up the number of parameters in language models can lead
to dramatic improvements in task-agnostic performance[22];
GPT-1 had 115 million parameters, GPT-2 1.5 billion, and
GPT-3 175 billion. As models grow in size, however, they re-
quire more compute and memory resources to train, becoming
prohibitively expensive and introducing new challenges (e.g,
in deployment).

Mixed precision strategies, including the use of half-
precision formats, have been explored as a way of simultane-
ously reducing training time and model size while minimizing
loss of model accuracy. Micikevicius et al. used binary16
to scale their neural networks for improved accuracy[23].
Kalamkar et al. demonstrated that bfloat16 could be substi-
tuted for 32-bit floating point to match state-of-the-art results



Fig. 1: An illustration comparing binary16 and bfloat16 floating-point representations to the IEEE standard 32-bit
implementation.

Architecture Toolchains binary16 bfloat16 Storage Only Casting Intrinsics Type Names Further Reading
Intel 64 llvm 10+, intel

19+, gcc 7+
Yes No Depends Yes _Float16, __fp16 [8][9][10]

ARM V8 ThunderX llvm 9+, arm 20+ Yes No Depends No, toolchain
casts

_Float16, __fp16 [10][11]

Volta70 Cuda 10+ Yes Toolchain-only No Yes __half [12][13]
Amphere Cuda 11+ Yes Yes No Yes __half,

__nv_bfloat16
[14][15]

TABLE I: A summary of toolchain support for half-precision by different vendors.

across several domains within the same number of training
iterations and with no changes to hyper-parameters[24]. Mean-
while, newer GPUs such as the Nvidia V100 provide native
binary16 support in tensor cores which has been used to
accelerate neural network training[7].

c) Half-Precision Support in Python, Matlab, and Julia:
Outside of the Kokkos Ecosystem, half precision abstractions
exist in NumPy, MatLab and Julia. NumPy v1.6.0 introduced
a binary16 type via numpy.half and numpy.float16
[25]. MatLab and Julia also support a binary16 type via
the half [26] and Float16 [27] typenames. None of these
ecosystems provide support for bfloat16. An initial literature
review indicates that researchers are utilizing third-party half
precision abstractions rather than the native NumPy, MatLab
or Julia half precision support.

C. Implementation

In this section, we describe the design decisions and imple-
mentation details for half-precision support within the Kokkos
Ecosystem.

1) Design of half-precision types: We introduce
half_t and bhalf_t as portable half-precision types
in Kokkos. They’re implemented as instantiations of a
single templated class called floating_point_wrapper
which encapsulates a single private data member that
is aliased to the underlying toolchain type1. The Kokkos
floating_point_wrapper class uses operator overloads
as well as implicit and explicit conversion constructors in
an effort to behave as closely as possible to any other
C++ built-in floating point type. To address the missing
half-precision arithmetic intrinsics for the GPU toolchains,

1e.g., half for CUDA11+

floating_point_wrapper has distinct host and device
operator overloads for each arithmetic function. The host
overload casts the internal data member to and from float
for arithmetic operations. The device overload uses the
available arithmetic intrinsic operations. In order to enable
portability to platforms where no underlying hardware or
toolchain support for half-precision exists, we provide a
fall-back implementation where half_t and bhalf_t are
aliased to float.

C++ operator overloads and conversion constructors pro-
vide many but not all the abstractions that a com-
piler writer can provide for a built-in type. The Kokkos
floating_point_wrapper class does not support im-
plicit conversion from the underlying toolchain type to another
built-in type. This implicit casting to built-in types enables
expressions like double OP float, where float is im-
plicitly upcast to double. This cannot be abstracted in C++
for all operations on half_t and bhalf_t. If we were to al-
low implicit conversion from floating_point_wrapper
to float, this would result in a compile-time ambiguity
for all C++ expressions involving half_t or bhalf_t
with another C++ built-in type. This compile time am-
biguity arises since the compiler considers all permuta-
tions of the expression float OP half_t which are:
float OP half_t and float OP float. Even though
float OP half_t simply upcasts the right hand side
and returns the floating point format, we have no way
as user’s of a C++ compiler, to assign a weight to re-
solve these two conflicting permutations. User’s can be
slightly more verbose when using half_t and bhalf_t
by writing float = static_cast<float>(half_t)
which then utilizes the explicit conversion constructors in the
floating_point_wrapper class and also works with



any built-in right hand size type, T.
2) Backend plugin mechanism: The Kokkos half-

precision implementation uses forward declarations to
hide the toolchain-specific intrinsic function names
from the half-precision operators and constructors. By
providing a set of common, type-agnostic wrappers in
floating_point_wrapper, every Kokkos Core backend
need only define their internal casting wrappers and type alias
to their underlying toolchain type in order to enable half-
precision scalars in a sustainable and reproducible manner
across Kokkos backends. Backends may choose to provide
a explicit specialization of floating_point_wrapper,
however, that has not been required yet. Table II summarizes
Kokkos version 3.6.00 backend support for half-precision
scalars.

Kokkos Backend half_t bhalf_t
CUDA Yes Yes
SYCL Yes No
HIP Yes No

TABLE II: Kokkos backend support for half-precision scalars.

3) Testing: The Kokkos half-precision support is
both unit and integration tested. To facilitate checking
results, we define constants including FP16_EPSILON
and BF16_EPSILON. Within Kokkos Core, we launch
unit testing on both the host and device within the
default test execution space. This unit testing is
broken into two files: TestHalfConversion.hpp
and TestHalfOperators.hpp where we aim
for full coverage of both the casting wrappers and
floating_point_wrapper class. Within Kokkos
Kernels, we launch integration testing of half-precision on
all targeted backends for every batched-GEMM kernel that
we support. In this way, the Kokkos Kernels batched-GEMM
unit tests also serves as an integration test for the Kokkos
half-precision support. Both Kokkos Core and Kokkos
Kernels use continuous integration tests and nightly tests on
the develop branch to guard against regressions.

D. Performance Evaluation

To demonstrate the usability and performance impact of
half-precision support in Kokkos, we modified the conjugate
gradient solver (CGSOLVE) benchmark code used in [3]. The
problem run in CGSolve is a simple heat conduction problem
with a cubic grid of cells. CGSolve performs three math
kernels: sparse matrix vector multiply (SPMV), vector addition
(AXPBY), and an inner product (DOT). There are different
possibilities for using half-precision and mixed precision.
The four critical possibilities for distinct choices of what
precision to use are: (i) value type of the matrix, (ii) value
type of vectors, (iii) accumulation precision for DOT, and (iv)
accumulation precision for the inner reduction over a matrix
row in SPMV. We modified the code so that each of those
types can be chose independently via a compile time choice.

It is worth noting that the CGSolve is numerically unstable,
when using anything but full double-precision, if run for many
iterations. Since we are mostly interested in a performance
and functionality analysis, and are not doing an algorithmic
investigation, we simply chose to restrict runs to 10 iterations.

Four configurations were investigated: all double (dddd),
all float (ffff), matrix and vector value types using half_t
but reductions done in float (hhff), and everything but the dot
product using half_t (hhfh). It is worthwhile noting, that for
the dot product, only the accumulation is done with single-
precision in the last case, the actual memory loads and the
multiplication of two values from the two vectors is done in
the vector scalar precision (i.e. half-precision).

We ran problem sizes from 2003 to 1003. In figure 2, the
x-axis is the cubic number of cells (N3) and the y-axis is the
average runtime.

Generally, we observe the expected trends: full double-
precision runs are the slowest, half-precision runs the fastest,
and single-precision falls in between. We also see expected
linear scaling with the problem size. However, we do not
observe a 4x and 2x theoretical improvement over double-
precision, respectively. This isn’t too surprising. While the
total memory movement requirements go down significantly,
SPMV (which is by far the most expensive operation) requires
the load of integral-typed indices from memory, which do not
change in size. Thus, assuming perfect caching of the vectors,
the expected memory movement from global memory is only
reduced by a factor of two when using half-precision instead of
double-precision. Furthermore, the SPMV data access on the
right hand side is somewhat random, making access latencies
and metrics such as number of possible simultaneous memory
operations important. Last but not least, to gain the full benefit
of half-precision types on GPUs one has to utilize packed half-
precision operations.

All in all we see about a 20% reduction in kernel runtime
from using single-precision instead of double-precision, and
another 10-20% from using half-precision instead of single-
precision. It is worthwhile to note, that there was no per-
formance benefits from doing the inner reductions in half-
precision, which occurs within a single warp on the GPU.
The reduction performance is largely determined by the shuffle
operation and warp synchronization latencies.

As an example of a kernel where half-precision types
potentially offer larger performance improvements, we bench-
marked a batched matrix-matrix multiplication kernel, the
original motivation for this work. This kernel’s flops to bytes
ratio depends on the matrix size. In the limit of matrix size
being 1x1, the bytes to flops ratio is the same as for vector add
(AXPBY). At larger matrix sizes, the kernel becomes more
and more compute intensive. However, the matrix size regime
our users are interested in never reaches a size where the code
is compute bound.

Moreover, our implementation of batched-GEMM uses two
different algorithms for different size regimes. For the smallest
matrices, each output matrix element in C of a given matrix-
matrix multiply is performed by a single thread. In an inter-



Fig. 2: Average runtime of CGSolve, SPMV, AXPBY, and DOT with 10 timed iterations on Nvidia V100. The legends apply
to all four subplots and refer to the precision choices explained in II.D, (i) - (iv); ”Matrices:” refer to matrix and vector value
types and ”Acc:” refer to accumulation value types.

mediate size regime we use a double buffering scheme with
a team of threads per matrix, before switching back to the
original scheme. As with the CGSolve performance evaluation
above, the only code change between float, half_t and
bhalf_t is the chosen template argument for the scalar type.

The observed performance demonstrates that for small ma-
trices, the kernel is purely latency limited; float, half_t
and bhalf_t have the same throughput. Then there is a
middle regime, where we see half_t performing better than
float on V100, but not on A100. We suspect that on V100
we run out of L1 cache for float, while half_t still fits.
The increased L1 cache size on A100 makes float fit too.

At the larger sizes, the increased concurrency kicks in, and
the kernel is finally able to saturate more of the available
bandwidth. At that point, the smaller size of half_t and
bhalf_t leads to performance gains in a similar range to
what was observed in the bandwidth limited CGSolve.

In Figures 3 and 4, we perform 10 untimed warmup runs
followed by 20 timed runs on square matrix sizes, all with a
batch size of 1024.

To reproduce the performance results in this section, we

have provided the table below with supplementary information
the footnote below. 2

TABLE III: Dependency information for reproducing results
from our computational experiments

Type of Dependency Libraries/Versions Used
Kokkos Software Versions kokkos-3.6.00, kokkos-

kernels@us-rse-escience-2022,
code-examples@us-rse-escience-
2022.

V100 Third Party Libraries (TPLs) cmake-3.19.1, gcc-8.3.0,
cuda-11.2.142.

A100 TPLs cmake-3.22.0, gcc-7.5.0,
cuda-11.2.142.

III. EXPERIENCE REPORT

In the previous sections, we described the implementation
details of half-precision support within the Kokkos Ecosystem

2For further guidance on how to reproduce the results from our paper,
consult the instructions found at the following links:
CGSolve reproducer instructions.
bathced-GEMM reproducer instructions.

https://github.com/kokkos/kokkos/tree/3.6.00
https://github.com/kokkos/kokkos-kernels/tree/papers/us-rse-escience-2022
https://github.com/kokkos/kokkos-kernels/tree/papers/us-rse-escience-2022
https://github.com/kokkos/code-examples/tree/us-rse-escience-2022
https://github.com/kokkos/code-examples/tree/us-rse-escience-2022
https://github.com/kokkos/code-examples/blob/us-rse-escience-2022/papers/kokkos-half-t-rse-escience-2022/reproducer.md
https://github.com/kokkos/kokkos-kernels/blob/papers/us-rse-escience-2022/perf_test/blas/blas3/papers/kokkos-half-t-rse-escience-2022/reproducer.md


Fig. 3: Runtime of batched-GEMM with 20 timed iterations
on Nvidia V100.

Fig. 4: Runtime of batched-GEMM with 20 timed iterations
on Nvidia A100.

and provided preliminary results to demonstrate the trade-offs
offered to end-users. Now we intend to shift gears and turn
our attention to the RSE perspective on the contribution. The
term of research software engineer has grown in popularity
to encompass a diverse range of software professionals in the
scientific domain [28], [29], [30], but relatively little has been
written about how RSEs carry out their highly interdisciplinary
work and what their needs are. In the case of middleware
library development like Kokkos, RSEs must carefully con-
sider the needs of researchers, the capabilities of the baremetal
hardware, and the engineering of the abstractions between
them. A better understanding of how RSEs navigate these rich
and diverse problem spaces may help inform training, tool
development, and organizational support for RSEs and their
work.

To that end, this paper presents an self-reflective experience

report on the development of half-precision support in Kokkos.
The first author, Evan Harvey, is a research software engi-
neer (RSE) in the Department of Software Engineering and
Research at Sandia National Laboratories[31][32], who was
principally responsible for implementing the feature. He de-
scribes challenges and lessons learned, while Reed Milewicz,
the second author on this work and a software engineering
researcher has supplemented these experiences by drawing
connections and comparisons to the available literature.

The experience report is structured as follows: Subsection
III-A catalogs challenges faced by the first author (an RSE)
alongside commentaries from the second author (a software
engineering researcher) on those challenges, and Subsection
III-B captures lessons learned that can be carried forward to
future development activities.

A. Development Challenges

a) Managing Evolving Requirements: A formal require-
ments elicitation was performed for the batched-GEMM work
with a researcher in our center who needed the feature. Of
note, Reed (the second author), had previously conducted a
rapid literature review for me on requirements elicitation in
domain-specific contexts (see [33]); he created a guidebook
on requirements gathering techniques and when to apply them,
and this proved very helpful.

After prototyping a half-precision type alias in Kokkos
Kernels without operator overloading and demonstrating that
batched-GEMM would run on Intel, AMD, and CUDA, it
was clear that a simple type alias would not be portable
nor usable for Kokkos users. At this point, we saw value in
expanding half-precision support beyond the batched-GEMM
use-case and decided to use both casting wrappers and operator
overloads rather than a type alias. While another requirements
gathering effort was not performed for half-precision support,
there was one guiding requirement: to implement a half_t
type that behaves as closely as possible to float. As we im-
plemented the expanded half-precision support, we found that
C++ cast operators could be supported via explicit conversion
constructors, getting us closer to mimicking the behavior of a
C++ built-in type.

Commentary: Smith et al. has argued that there has long
been a prevailing belief that requirements gathering is imprac-
tical or infeasible for most scientific software development,
when in truth they are “no more challenging than for any
other domain – requirements are difficult for everyone” [34].
Indeed, requirements engineering is especially critical when
developing scientific software libraries for the community. For
RSEs developing such software, knowing how to effectively
interact with researchers to ascertain those requirements is an
important competency, but such soft skills are not covered by
the training most RSEs have received [35].

The communication barriers faced by RSEs are well-attested
in the literature. According to Jay et al., “many common soft-
ware engineering challenges, such as requirements gathering,
communication difficulties[etc. ...] are particularly challeng-
ing— and often qualitatively different—within science, due



to the nature of the research process, and the environment in
which the work is conducted”[36]. RSEs and the researchers
they work with come from different backgrounds and per-
spectives, which Chue Hong et al. note “ highlights a need
for varied skills and good communication [...] Researchers
are more likely to be working with others who have different
technical expertise, use different technical terminology, and
may be communicating in a tertiary language”[37].

Here, Evan calls attention to benefiting from a rapid review,
which is a time-boxed literature review meant to deliver ac-
tionable guidance to practitioners in the field [38]. A review of
the literature on requirements elicitation surfaced recommen-
dations for how to apply such techniques in domain-specific
contexts, particularly with respect to interviews, surveys, sce-
narios, brainstorming exercises, and ethnographic techniques.
Training on these kinds of requirements gathering techniques
may help to reduce friction between RSEs and the scientific
software teams they work with.

Challenge Observation 1: Soft skills, such as when
working with researchers to gather software require-
ments, are important to RSEs and their work, but few
have specific training in these skills. Targeted training
on soft skills like requirements gathering techniques may
help RSEs in their work with scientific software teams.

b) Balancing User Expectations and Hardware Realities:
Many of the challenges we faced when implementing half_t
arose in 3 categories: implicit casts, volatile overloads, and
parallel reduction support. We knew that researchers were
already using mixed precision expressions with float and
double and, in an effort to provide a strong abstraction,
we added friend operators to support mixed precision on
binary arithmetic operations involving half_t and float
or double. We also added implicit conversion constructors
in order to downcast integral types to half_t and allow
toolchains to reuse the existing half_t operator overloads.
At this point, we had still preserved half_t as a trivially
copyable type. However, the Kokkos parallel constructs such
as parallel_reduce required both byte alignment and
support for volatile stores and loads. During this phase, the
Kokkos CUDA backend did not yet support reductions on
types less than 4-bytes in size.

Next, to support CUDA reductions, we decided to first
add support for volatile loads and stores and then make
a second pass to reduce the half_t storage requirement
back to 2-bytes. Performing volatile loads and stores was not
possible for toolchain intrinsic types. Note that the volatile
keyword tells the C++ compiler that an entity outside of this
thread of execution may modify the given memory address.
Some toolchains supported only volatile stores, others did not
support any volatile operations on the half-precision type and
this was further complicated for Kokkos codes with accelerator
backends such as CUDA that run the same process on both the
host and device. We also wanted to keep the operator overloads
as simple as possible in an effort to provide the toolchain a

path for emitting vector instructions. To support researchers by
providing a toolchain and hardware agnostic type, we decided
to use a widely supported integral data type that toolchains
know how to emit volatile load and store instructions for.
In this way, we added overloads for volatile operators which
explicitly reinterpret the underlying float16 or bfloat16
bits as a 2-byte integral type for the purpose of getting the
toolchain to emit a volatile load or store operation. We then
had to add a copy constructor to support copying from a
volatile half_t. Without this copy constructor, it is not
practical to use half_t since researcher’s would have to
perform this reinterpretation themselves during any assignment
operation with a volatile half_t on the right hand side.
Additionally, by adding this copy constructor, half_t is no
longer trivially copyable and therefore, no longer considered a
true C++ scalar type. Once we had supported common volatile
operations, we added CUDA backend reduction support for
2-byte scalars and reduced the alignment and storage require-
ments of half_t back from 4-bytes to 2-bytes.

Commentary: Library development in the middle of sci-
entific software stacks, such as for performance portability,
I/O, or parallel communication, involves a delicate negotiation
between what users want to do versus what toolchains and
hardware want to support. At each layer of the HPC software
stack, infrastructure providers must strategically choose which
implementation details to expose and which ones to hide[39],
and for library developers, navigating those layers can entail
complex, integrative knowledge-work[40].

As seen above, successfully implementing the half-precision
support feature in Kokkos required intimate knowledge of
the hardware vendor interfaces (CUDA), language standards
and compilers (C++), and researchers’ software development
preferences. Among other things, this raises interesting
questions about how we think about RSEs and their skillsets.
In general, the boundaries of software development practice
tend to be very dynamic and open-ended, and RSEs are
no exception; as Sims has commented, “As an emerging
professional identity, the RSE role is still imprecisely
defined (often intentionally so) [...] definitional issues around
professional identity and boundaries are still under active
discussion”[41]. This includes questions about what work
RSEs do in practice and what competencies are they expected
to have. Insofar as this is relevant to hiring, training, and
career growth for RSEs, more studies are needed to ascertain
what kinds of work RSEs find themselves doing and how
they can be better supported in that work.

Challenge Observation 2: RSEs do a wide range of
boundary-spanning, interdisciplinary work, which com-



Fig. 5: A Venn diagram illustrating type support for half-
precision in C++. Green indicates the subset that Kokkos aims
to support.

plicates how we define what an RSE role entails and
what skillsets are needed for RSEs to thrive. More studies
are needed to ascertain what kinds of work RSEs find
themselves doing and how they can be better supported
in that work.

c) Anticipating Cognitive Load: Kokkos users leverage
the half-precision support by using the half_t or bhalf_t
type in place of their built-in floating point scalar types. The
CGSolve performance evaluation demonstrates that, even for
moderately complicated code including reductions at various
levels of the parallelism hierarchy, this replacement is straight-
forward and trivially works. However, existing algorithms
may need to be modified to perform explicit upcasts for
assignments and extend library overloads to include half_t
and bhalf_t parameter types. For example, Kokkos already
provides portable support for C++ mathematical functions
in the standard library. But since we have not yet extended
that support to the half-precision types, users would need to
upcast explicitly to float in order to use them. We plan to
provide, at a minimum, fallback implementations which do
that upcast internally in the next release. User codes that use
overloaded functions specific to a scalar type, may also need
to add explicit support for half_t and bhalf_t. While
Kokkos half-precision support abstracts many of the fine-
grained details that would otherwise result in costly duplicate
workarounds in every researcher’s code, we cannot abstract
every detail.

In Figure 5 we can see that, without toolchain support,
Kokkos users do not have full support for implicit casting
nor standard library routines. Without half-precision overloads
for standard library routines, there is high potential for rapid

growth of duplicate overload implementations resulting in
technical debt. Without full support for implicit casts, Kokkos
user’s will need to explicitly cast assignment expressions with
half_t or bhalf_t on the right hand side. Furthermore,
Kokkos version 3.6.00 codes that leverage accelerators such
as GPUs should be aware that half-precision arithmetic on
the host is always upcast to single-precision. For algorithms
that are sensitive to floating point rounding, these codes will
produce slightly different results depending on what steps are
offloaded to the device. Without full host and device toolchain
support for both binary16 and bfloat16, researchers
cannot ignore these subtle device-dependent details like they
can with float, double and long double. As a result,
accelerating codes via the adoption of half-precision types
increases researcher’s cognitive load.

Commentary: Milewicz and Rodeghero have observed that
usability receives relatively little attention in scientific software
development[42], and, as scientific software developers plumb
the depths of the software stack from application codes down
to the baremetal, ill-fitting and less-than-usable abstractions
at each layer contribute to excessive cognitive overhead. In
this case, the Kokkos team want clean, performance-portable
constructs for researchers, but having to interact with the “low-
level” mechanics of half-precision floating point exposes users
to complex, device-dependent details; there are nuanced trade-
offs involved in the design of these abstractions. RSEs, as
professionals who span the scientific and software engineering
domains, are uniquely well-positioned to address usability
as a software quality. As Benthall and Seth have stressed,
“software engineering skills are necessary to produce software
that is usable beyond the lab or research group that originates
it, which is a necessary path towards software sustainabil-
ity” [43]. However, there is a lack of evidence-based guidance
on how to apply usability tools, techniques, and concepts
across scientific software stacks, particularly at the level of
library APIs, suggesting a need for further research.

Challenge Observation 3: Usability receives relatively
little attention in scientific software development. RSEs
are well-positioned to address software quality concerns,
including usability, but it is unclear how to map SE tools
and techniques for usability to the various problem spaces
in which RSEs operate (e.g., in API design), indicating
a need for further research.

B. Lessons Learned

a) Identify Prospective Users and Engage Frequently
on Requirements: I found that despite a best faith effort to
perform a thorough batched-GEMM requirements elicitation,
neither the researchers nor myself knew what the Kokkos
half-precision support requirements were. In fact, it wasn’t
until the batched-GEMM work had been fully prototyped
in Kokkos Kernels that we had a good idea of what half-
precision support the Kokkos ecosystem would require. At
this point, we were deep into tangential implementation details
and had at least one guiding requirement for the Kokkos half-



precision feature: create a half-precision type that behaves as
closely as possible to float. A lesson learned here is that
as soon as you identify a nested feature request, determine
the users and stakeholders of the nested feature and perform
another requirements elicitation with them. Getting feedback
early and often is critical in scientific software development.
Solicit feedback at any opportunity, whether that be stand-
up meetings, code reviews, or helping someone use the new
feature.

Lesson 1: Feature development work for scientific soft-
ware libraries should be grounded in the needs of real
users. Proactively identify prospective stakeholders and
engage with them frequently to gather requirements.

b) Choose an Appropriate Development Methodology:
For the Kokkos half-precision feature request, it quickly be-
came clear that an feature-driven development approach was
a good fit. In this way, I would identify one half-precision
operator feature, write the production code, and then add
the test code. This methodology provided me with a solid
foundation for maximizing code coverage and implementing
each half-precision operator, one at a time. Since I knew the
half-precision type could be used as a template argument
in any user’s code, I wanted to ensure that coverage was
maximized. For verifying both host and device results on
the host, I decided to store actual and expected results in a
single rank Kokkos View (i.e. array) and index into that array
with a large enumeration. Each enumeration member maps an
operator overload to an array element via a human-readable
constant. This leads to the second lesson we learned, which
is to choose a development methodology that improves your
development experience and user confidence.

Lesson 2: Be intentional in the choice of development
methodology, and consider both your individual needs as
a developer and those of your customers – different tasks
may require different approaches.

c) Refactor Early and Often, and Pay Down Technical
Debt: Shortly after the half_t support had been prototyped,
support for bhalf_t was requested. Rather than copying
and modifying the half_t class, we refactored half_t
into the type-agnostic floating_point_wrapper class
and augmented the class to work with both binary16
and bfloat16 CUDA intrinsics. At the same time,
other backends were beginning to copy half_t and
modify the class to suit their needs. At this point,
I refactored floating_point_wrapper to also be
backend agnostic and requested that other backends use
floating_point_wrapper rather than copying the
half_t class. Our lesson learned here is to refactor early
and often to avoid costly technical debt.

The exploratory nature of experimental feature develop-
ment, however, can nevertheless lead to persistent debt. Since
half-precision support was not initially identified as a nested
feature request in the batched-GEMM feature request, an arti-

fact of the initial half-precision batched-GEMM prototype per-
sists. This artifact is a small KokkosKernels_Half.hpp
file which defines binary16 and bfloat16 constants
required for verifying half-precision arithmetic in Kokkos
Kernels. Unfortunately, some of these constants are also
defined within the half-precision unit tests in Kokkos
Core since I never decided where these constants should
be defined. A related piece of technical debt is a type
alias in the Kokkos Kernels AritTraits class called
halfPrecision. halfPrecision was originally added
as a convenience for performing mixed precision expressions
with the next lowest precision. halfPrecision is now
confused as an alias for half_t or bhalf_t. Unfortunately,
halfPrecision is used in too many codes to be changed.

Lesson 3: It is important to pay down technical debt
by refactoring early and often. Of particular note when
developing scientific software libraries, latent technical
debt can emerge in public interfaces and, once in place,
is persistent and hard to remove.

d) Leverage Language Support: C++ provides powerful
features that blur the line between compiler development and
library / application development. These C++ features are a
double edged sword. The features provide an immediate path
forward to enable research via high-level, backend-agnostic
abstractions such as half_t and bhalf_t, at the expense
of subtle feature divergences from built-in types as depicted
in Figure 5. Our lesson here is to learn and leverage ad-
vanced C++ features including class templates, compile-time
conditionals, forward declarations, typedefs and include guards
to enable type-agnostic and architecture-agnostic abstractions
like half_t and bhalf_t.

Lesson 4: As an RSE, know your tools. Case in point,
modern programming languages have powerful and flex-
ible features, but they can also be a source of complexity
that must be managed. Knowing what language features
to use and when is a key part of good software crafts-
manship.

IV. CONCLUSION

While the potential for a quick and easy way to speedup
C++ algorithms with half-precision scalars is both sensible
and alluring, it is not practical without an additional level
of indirection. As discussed above, toolchain and hardware
vendors support half-precision types and arithmetic to varying
degrees. This variation poses show-stopping portability chal-
lenges which the experimental Kokkos half-precision indirec-
tion attempts to alleviate. While modern C++ allows us to
provide powerful abstractions like half_t and bhalf_t,
without full toolchain and hardware support for float16
and bfloat16, there is no way to fully mimic the behavior
of other C++ built-in floating point types. Regardless of the
researcher’s ecosystem, the current variation of toolchain and
hardware support for half-precision is causing wide-spread
and growing software sustainability burdens. Future work for



Kokkos half precision support includes: Adding half-precision
Kokkos mathematical function overloads and consolidating
half-precision constant definitions such as BF16_EPSILON
to Kokkos Core.
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