Real-Time Process Modeling & Control of

Direct Ink Write 3D Printing using
Computer Vision and Machine Learning
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DIW 3D printing provides large design space

This big-data problem is well-suited for Machine Learning (ML)-based
modeling and optimization approaches

Previous methods for 3D printing control relied on convolutional
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Previous optimization approaches used iterative adjustments. cibiod B
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We propose a real-time process monitoring and control approach that = L

is both material agnostic and output-driven. i i Do
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Direct Ink Write (DIW) 3D Printing
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Vision-Assisted Optimization
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Single G-code command to print a line:

After choosing a nozzle size, we can

|Gl F15 AO 014 X-20 Y24 Z0. 41 represent our entire DIW design
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W Printi _ Y Y Y space with a single line of G-code.
W Printing Nozzle Print Extrusi e (A Height from ,
Parameters: [GIENSGEEN e xtrusion rate (A) iy ° G-code is the language a 3D
printer uses to interpret motion
Computer Vision and extrusion commands.
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Camera aimed at print head for in-situ
measurements of printed line-width.
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Neural network
training will consist
of printing all 240
combinations.

Printed Lines for Neural Network Training

Measuring the line
width as follows:

Enhancement Thresholding Line Detection Measurement

This computer vision set-up can provide sampling
rates up to 200Hz.

Cameras provide 250 pixels/mm for a
resolution of 2.5um/pixel.
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Printed line at iteration 1:

Neural Network Modeling

The ANN used below captures the relationship between  Example code used to print 200um line:

the input and output DIW printing parameters.

>> target line = 50/250 (50 pixels; 250 pixels)

target line =

[ Artificial Neural Network (ANN) Architecture ]

Hidden La@ Output Layer (Printed Line)

r LW = 50 pixels
or 200 ym

0.2000 =200 pum

Input Layer (DIW Printing Parameters):

>> print parameters = network(target line)

Printed sample at iteration
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Error #1: Coiling defect
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Increasing Nozzle Height Increase Printing Speed

Solution: Log coordinates and location for re-print

Error #2: Printing defect
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Generated an invertible neural network so we can begin Fix 2 of 4 variables: D = 0.84mm. H & 1
at any measured line width and determine optimal path : -
to target print parameters. . .
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Material Agnostic, Real-time Process Control

We attempt to print an epoxy/acrylate material which
was not used for the neural network training.
Original ink:

Begin with randomized print settings & rapidly
determine optimized settings.

Real-time Print Optimization

Used microparticulates to
modify the color of the ink
for computer vision visibility.

| Line Width: Line Width: Line Width: Line Width:
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Modified ink: e 7 i 8
D=0.84 D=0.84 D=0.84 D=0.84
V=10 V=5 V=60 V=10
A=0.6 A=0.6 A=0.3 A=0.3
original indeb modified ink H=2 H=1.5 H=1 H=1

The development of real-time monitoring of DIW 3D printing using computer vision and cutting-edge machine learning
methods enables process control and in-situ print correction. Furthermore, a material agnostic approach was developed,

eliminating the need for time-consuming trial and error approaches for the discovery of 3D printing parameters. This
approach lays the ground work for the successful extrusion-based 3D printing of novel Sand
materials with minimal operator interaction. Ng'rtliﬂlr?d
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