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INTRODUCTION

Degradation of spent nuclear fuel (UOz) in a breached
waste package occurs via a complex balance between
chemical and oxidative dissolution. The overall process
depends on several factors including the burnup and age of
the fuel, environmental temperature, and concentration of
dissolved species. Moreover, the process can be altered by
the precipitation of solid species at the fuel surface which
retards diffusional processes and restricts access to active
sites. Noble metal particles can exist which catalytically
speed up reaction processes. Modeling this complex
process and predicting nuclear fuel dissolution rates is a
difficult reactive-transport problem. This often becomes
intractable when attempting to simulate hundreds or
thousands of breached waste packages. To address this
challenge, novel machine-learned surrogate models are
highly attractive and the topic of on-going research.
Surrogate models are dependent upon the data on which
they are trained and therefore having a conservative but
accurate process model for fuel dissolution rates is critical.

The Fuel Matrix Degradation (FMD) Model is the
current capability being employed by the Spent Fuel and
Waste Science and Technology (SFWST) campaign of the
U.S. Department of Energy (DOE). The FMD model exists
as a suite of MATLAB functions and subroutines which
predicts the UO: dissolution rate via a 1-dimensional (1D)
reactive-transport model. The current capabilities include
alpha radiolysis of water for H2O2 generation, oxidative
and chemical dissolution of the fuel matrix, additional
redox reactions, aqueous chemical reactions, precipitation
and dissolution of solid uranium, diffusional processes, and
Arrhenius temperature dependencies.

We will show that the current implementation relies on
a sequential iteration scheme to solve for interfacial
corrosion potentials given static concentrations and
subsequently solving for updated concentrations. We
hypothesize that this leads to observed discontinuities in
the predicted dissolution rate including a stair stepping
behavior and static dissolutions rates at long times. At a
minimum, the algorithm increases the number of non-
linear solver iterations needed at each time step and
increases the time required to generate new training data
for future surrogate models. In this manuscript we propose
a new algorithm for solving for the concentrations and
corrosion potentials simultaneously while outlining our on-
going efforts to improve the performance and reliability of
the results predicted by the FMD model.

The remainder of this manuscript is organized as
follows; first we detail the conceptual FMD model and
describe the included processes, then we detail our results
including identification of the computational bottleneck in
the FMD model and proposed new algorithm, and lastly,
we outline our conclusions and describe the current and on-
going efforts.

FUEL MATRIX DEGRADATION MODEL SYSTEM
AND PROCESSES

The FMD model is originally adapted from the mixed-
potential model by Shoesmith et al.! The entirety of the
model is better described elsewhere? however we will
briefly orient the reader here to provide a common
understanding. Fundamentally the FMD model exists to
predict UO: fuel dissolution rates in a breached waste
package and thereby provide a source term for performance
assessment models. The MATLAB implementation
simulates a 1D reactive transport column although it should
be noted that 2D models are the subject of active research.’
The system is depicted in Figure 1 where the left boundary
represents the fuel surface, the right boundary is the
breached container surface, which sandwich an aqueous
region containing water and dissolved species. The
aqueous region is spatially discretized with smaller
spacings used near the interfaces.

Fuel Aqueous Container
Matrix Region Surface

Figure 1. Physical model simulated by the FMD model which
exists as a 1D reactive-transport column where the left
boundary represents the fuel matrix, and the right boundary
represents the breached container surface. A logarithmically
discretized aqueous chemistry region is in the middle.

The aqueous chemistry reactions that are incorporated
into the FMD model are shown in Table I while the
electrochemical reactions that occur only at the fuel or
container surface are shown in Table II. The fuel interface
includes a noble metal particle region which has been
shown to catalytically increase the reaction rate of the
various reactions. Reaction rate expressions and associated
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model parameters have been omitted here for clarity but
can be found in previous reports.*

Table I. List of aqueous chemistry reactions incorporated
in the FMD model.

Aqueous Chemistry Reactions

UOZ* 4+ 20H™ + H,0 — U0, - 2H,0

UOZ* + H,0, + 4H,0 - U0, - 4H,0 + 2H*
U0,(CO5)¥™ + 20H™ + H,0 — UO, - 2H,0 + 2C02~
UOs - 2H,0 + 2C0%™ - U0,(C03)2™ + 20H™ + H,0

H,0, + 2Fe?* + 40H™ — 3H,0 + Fe,0,
0, + 4Fe?* + 80H™ — 4H,0 + 2Fe,0,
UO3* + 2Fe®* + 60H™ = U0, qq) + 3H,0 + Fe, 05

U0,(CO3)%¥ + 2Fe?* + 60H
= U0y (qq) + 2C03™ + 3H,0 + Fe, 0,

1
Hy0, > Hy0 +0;

UOz,(s) = UOy,aq)

UOz,(aq) = UOy s

Electrochemical reactions are implemented using the
Mixed Potential Approach which works on two
assumptions; (1) electrochemical reactions can be broken
into partial oxidation/reduction reactions, and (2) there is
no net accumulation of charge.’ It is these electrochemical
reactions that are the heart of the FMD model and lead to
the oxidative dissolution of the fuel. As such they deserve
outsized discussion here.

Each half reaction yields a current which depends on
the fuel “corrosion potential”. For example, the current for
the first reaction in Table I1 (U0, —» UO2* + 2e™) is given
by

U051 — Qy0z1F U0, 0
17725 = nFekyo, 1 exp [ RT (Ecorr = E§o0,1) (D

where n is the number of transferred electrons, F is
Faraday’s constant, ¢ is the porosity of fuel or steel
corrosion layers, ky, ; is the reaction rate constant, ayo, 1
is the electrochemical transfer coefficient, R is the
universal gas constant, T is the temperature, Eg,?zr is the
corrosion potential of the fuel, and E{}OZ’1 is the standard

potential. The central premise of the FMD model is that
there is no net accumulation of charge or current, therefore

lanode — icathode =0. (2)

Thus, at each timestep within a simulation, a set of ordinary

differential equations are solved to determine Eclgizr at a

given set of concentrations. This value of E| CUO% is then used
to determine reaction rates and concentrations are updated
using standard non-linear solvers (e.g., Newton-Rhapson).

Table II. Electrochemical reactions incorporated into the
FMD model at the fuel, fuel noble metal particle (NMP),
and steel (canister) interface.

Surface Reactions

U0, » UOZt + 2e~
U0, + 2C0% - U0,C0%™ + 2e-
U0, = U0,y (ag
Fuel H, + 20H - 2H,0 + 2e~
H,0, + 20H > 0, + 2H,0 + 2e~
H,0, + 2e~ - 20H"

0, + 2H,0 + 4e~ - 40H~

H, + 20H™ - 2H,0 + 2e~

H,0, + 2e~ - 20H~

Fuel,
NMP H,0, + 20H™ - 0, + 2H,0 + 2e~
0, + 2H,0 + 4e~ > 40H~
Fe — Fe*t + 2e~
Steel

2H,0 + 2e~ — H, + 20H"~

Hydrogen peroxide acts as the main oxidant within the
FMD model (reaction 6, Table II) and is generated via
radiolysis of groundwater. The treatment of radiolysis
within the FMD model is relatively simple and the yield of
H>0> can be computed by

H,0, Yield = Gy,o, X Rp(x,t) X g(x) 3)

where Gy, 0, is the generation value for H202, Rp (x, t) is
the dose rate, and g(x) is a geometrical factor accounting
for the fraction of fuel surface that is blocked from emitting



alpha radiation. In the current implementation, Gy, is a
constant value, however more complex expressions have
been explored which depend on the concentration of H> and
Oz. This is particularly relevant at low Oz and high H»
concentrations.? Radiolysis can also be enhanced by alpha
emitters adsorbed in the porous solid uranium phases that
form, however this effect is currently ignored.

The remaining notable process included in the FMD
model is the precipitation of solid U phases at the fuel
surface. This has a two-fold effect; (1) causing the
retardation of diffusion near the fuel surface, and (2)
blocking the availability of active sites for oxidative
dissolution of the fuel.

Description of the Fortran Implementation of the FMD
Model

We seek to refactor the FMD model code into a working
version in Fortran. Our goal is to be more easily used and
updated, as well as be readily modified for future corrosion
applications. In this vein, we have begun developing, from
scratch, a 1D reactive-transport code that implements the
FMD model via a finite volume approach. We briefly
describe that effort and the structure of the code here.
Diffusion is implemented by discretizing the system in
space and time using a finite volume approach. Imagine a
3 grid cell system, with just 1 non-reactive diffusing
species. The resulting governing equation is given by
(ignoring advection, reaction, and source terms)
@O -(9Of Ci=Ci_1)F*?
v At a (¢AD Ax ) ot

j—=
2

Cir=Ci\ ! k+1,i
(¢AD ) , =0=f(C*""), where k and k+1 are
2

Ax i+

the current and new time step, V is the volume, ¢ is the
porosity, C; is the concentration in the ith grid cell, At is
the time step, Ax is the distance between grid point centers,
A is the area, and D is the diffusion coefficient. In this 1D
case we will assume Ay and Az are 1 and therefore V = Ax
and A = 1. We will also assume a fu// grid cell exists at the
boundaries. Concentrations are updated using the Newton-
Raphson approach while a linear solver is used to solve the
equation J6C = — f(C***). Adding reactivity to the
matrx form of this problem transforms the Jacobian matrix
into a large (Nc * Ngrd) X (N¢ * Ngia) where Nc is the
number of components and Ngid is the number of grid cells.

RESULTS

Here we will outline our results starting with the
exploration of computational bottlenecks within the FMD
model code, discussion of reaction rate parameters and
their sensitivities, and lastly our current implementation of
the alpha radiolysis.
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Figure 2. The number of Newton-Raphson iterations
needed to solve for (a) the new concentrations and (b) the
corrosion potentials at the fuel interface. The number of
iterations needed for corrosion potentials are often the
same and leads to overlapping points indicated by the
colors in (b).

FMD Model Computational Bottleneck

As mentioned above, the corrosion potential provided
in eq. | are solved given eq. 2 which generates a set of
ordinary differential equations. Effectively this means the
corrosion potentials are solved for given the current
concentrations of various species within the system. The
new corrosion potential is then used to update those
concentrations and this process is iteratively continued
until convergence is reached. Figure 2 depicts the number
of Newton-Raphson iterations needed to solve for (a) new
concentrations and (b) new corrosion potentials in a
representative FMD model run using the MATLAB code.
Recall that for each new set of concentrations, the
corrosion potential needs to be updated. Therefore, for each
time point there are several different sets of iterations to
update the corrosion potential. For example, there are often
3 iterations needed to update new concentrations, for each
of those 3 iterations there can be upwards of 8 iterations
needed to solve for corrosion potentials, yielding 24 total
iterations. Indeed, timing tests
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Figure 3. Representative proposed matrix for solving for corrosion potentials and new concentrations simultaneously in the
FMD model. Here the reaction expressions and their derivatives are given by R, the diffusion operator is given by L, the

corrosion potential equation is given by f(Ef,,;), and the standard accumulation term for each species is

indicate that the FMD model code spends ~30% of the total
computation time solving for corrosion potentials.

Herein we suggest a new algorithm that solves for
corrosion  potentials and new  concentrations
simultaneously. Imagine a 1D reactive transport system
with 3 species (A + B > C) and 3 grid cells. Also assume
that species A is accumulated via an electrochemical
reaction with an associated corrosion potential (e.g., eq. 1).
This electrochemical reaction only occurs in the left most
grid cell (i.e., fuel surface). A typical matrix representation
of the system solved via a finite volume method is shown
in Error! Reference source not found.. In the 2™ and 3%
grid cell you observe the standard penta-diagonal structure
in which the derivative of the rate expression for A, B, and
C is taken with respect to the given species in the center 3

diagonals (e.g., dR(A)/ dA)» and the derivative of the

diffusion operator (e.g., L'(4)) appears in the center and
two off diagonals. The derivative of the standard
accumulation term appears in the center diagonal (e.g.,

1/ A¢)- However, now given the need to solve for the

corrosion potential and the concentration of A in the left
most grid cell, the 3x3 block is transformed to a 4x4 block
in the upper right. The 4 column represents the derivative
of each reaction equation with respect to the corrosion
potential. Note that this is 0 except for the 4" row in which
the derivative of the corrosion potential equation is taken.
The 4™ row therefore has two entries, one in which the
derivative of the fuel corrosion equation is taken with
respect to the concentration of A and another where it is
taken with respect to the corrosion potential itself. Using
this matrix form, the corrosion potential and concentrations
can be solved for simultaneously; potentially limiting
unnecessary non-linear solver iterations, improving the
efficiency of the algorithm, and removing observed
discontinuities in the results.

A-ak
At T

Exploration of Model Parameter Sensitivities

Several of the reactions in Table 1 include a cgy;
parameter in the rate expression. As we will lay out below,
this parameter works to turn reactions off as the
temperature decreases. For this case study, we will
consider reaction 2 from Table 1 (i.e., UO(* + H,0, +
4H,0 - UO, - 4H,0 + 2H*). This and only this reaction,
will be turned on. A 5-grid cell system was considered with
the initial concentrations of each species set to 0.01 M in
the left most grid cell and 0 M in all other grid cells. In this
system, the size of each grid cell is the same. The boundary
condition at both the left and right boundaries was 0.01 M
for all species. Diffusion was turned on, however UO, -
4H,0 is a solid and does not diffuse in the model.

The concentration of UO2%as a function of time is
shown as a log-log plot in Figure 4. Note that diffusion
occurs at the left and right boundary and therefore, within
a short period of time, the system is symmetric (i.e., grid
cell 1 = grid cell 5). We note that the concentration of U02*
reaches an initial equilibrium and the concentration
remains relatively unchanged for ~100 years. At this point
the concentration begins to increase towards that boundary
condition concentration (i.e., 0.01 M) at ~1000 years.
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Figure 4. Concentration of UO2* as a function of time in
each of the 5 grid cells in our system.

In an effort to understand this nearly 100 year
equilibrium we looked at the reaction rate constant for this
reaction

2+\*
6.0><104<dT/<2.4-CSl{32 )
k, =1.0x10"% “)
vozt
and the c,,,° parameter
csatVo:’ =32 x 1072 . g~30x10%dT Q)

1 1

where dT = 2% T / g is an Arrhenius temperature

2+
factor. The reaction rate constant and CSUQZZ as a function of
time are show in Figure 5. The temperature as a function of
time is shown as an inset. Here we observe that the reaction
rate constant is constant up until 100 years. At this point

the temperature begins to decrease which leads to an

. . uost Ulti | vost . by a fact
increase in ¢ .~ . Ultimately c.,,” increases by a factor

of 2.3 from its initial value to its final value at the minimum
temperature observed within this time period. However,

4
. voz*
the reaction rate constant has a (c_,? ) dependence
sat

meaning the rate constant decreases by a factor of 31.
Therefore, the observed result that the concentration of
U0Z* can go unchanged for 100 years can be explained by
all the concentration that diffuses in from the boundary is
immediately converted to UO, - 4H,0, however as the
temperature decreases the reaction rate constant decreases
rapidly. At this point, the rate of diffusion is greater than
the rate of the reaction and the concentration of U02*

begins to head toward the boundary condition. In this

2+
regard csuaot2 works to, effectively, turn reactions off as the

temperature of the system decreases at long times. Note
that the temperature of the system is a simple analytical
function however in the full FMD model U0Z* is produced

due to corrosion at the fuel surface. Therefore, it is
theoretical possible for the reaction rate to remain high
despite a decreasing temperature if the concentration of
UO2* is large. This result indicates that long simulations
are needed for the system to reach equilibrium. In an effort
to meet this need we implemented an adaptive time
stepping routine which scales the value of the time step
based on the number of Newton-Raphson iterations needed
to update the concentrations (i.e., a low number of
iterations yields a longer time step).
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Figure 5. The reaction rate as a function of time for the
reaction U02* + H,0, + 4H,0 - UO, - 4H,0 + 2H*
2

+
(right axis) and the cslgiz parameter (left axis). The inset
shows the temperature as a function of time.

It is interesting to consider the reaction rate
expressions and how they can affect the shape of the time
evolution curves for various concentrations. Many of the
reactions are 5% order with respect to a certain
concentration. For example, reaction 3 and 4 from Table 1
are the reverse of each other, however reaction 3 has a rate
constant that is, initially, 100X that of reaction 4. The rate
expression for UO,(C03)%™ in reaction 3 is given by

dU0,(CO3)3~ _
% = —k; [Uoz (CO3)% ]5 (6)
with

2— 4
U02(C03)3 )

4. .
6.0x10 dT/<2.4 Coat

ks =1.0x 107%e @)
while for reaction 4 it is

dU0,(CO3)3~ _

— = k,[CO37][UO; - 2H,0] 3
and

k, = 8.6 X 1076¢60x10%ar ©)

This is due, in part, to the constant in front of the
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Figure 6. (a) [U0,(C03)%™] and (b) [COZ™] as a function
of time for a 3 grid cell simulation that tracks the first 4
reactions shown in Table 1. Two simulations are shown in
which the initial [U0,(C03)%™] concentration was .1 M
(lines) and .01 M (points).

exponential but also due to the c parameter that
appears in the rate constant for reaction 3 but not reaction
4. However, the rate expression has a 5 order dependence

_4 .. dU0,(C03)3™ _
on [U0,(C05)57] (ie., % o [U0,(CO3)571°).

We investigated this effect by considering a system
containing 3 grid cells of equal length. The first 4 reactions
from Table 1 were included. We ran two test cases, one in
which the initial concentration of all species was .1 M and
another where the initial concentration of all species was
.01 M. The [U0,(C03)37] and [CO%™] as a function of time
for both cases (lines = .1 M initial, points = .01 M initial)
is shown in Figure 6. Note that the system is symmetric and
therefore grid cells 1 and 3 are equal and therefore their
curves are on top of each other. We note that different
initial conditions can yield fundamentally different
trajectories, and this is due, in large part, to the 5" order
dependence. When the concentration of U0,(C03)5™ is
low and raised to the 5 power the rate for reaction 3 where
U0,(C05)% is consumed is small and therefore reaction 4

U0,(C03)3~

is faster and you see an increase in [U0,(C03)37] (points).
Yet when the concentration is high, reaction 3 is faster and
therefore you see a decrease in [U0,(C03)37] (line).

CONCLUSIONS

The computational bottleneck in the MATLAB-
implemented FMD model has been identified using
extensive timing studies. Significantly redundant Newton-
Raphson iterations are being performed that can likely be
reduced if the concentrations and corrosion potentials are
solved for simultaneously. We have proposed a potential
algorithm that could be used to achieve this and are
currently working on implementation. We have shown, in
great detail, how various reactions are controlled by certain
parameters within the model and how initial and boundary
conditions can significantly change the evolution of the
system. Our current stand-along 1D reactive-transport code
had included all bulk solution reactions, implements an
adaptive time stepping routine, and is maintained via a
gitlab repository with full version control. This effort is
crucial for increasing the efficiency of surrogate model
training on the FMD model
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