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INTRODUCTION 
 
Degradation of spent nuclear fuel (UO2) in a breached 

waste package occurs via a complex balance between 
chemical and oxidative dissolution. The overall process 
depends on several factors including the burnup and age of 
the fuel, environmental temperature, and concentration of 
dissolved species. Moreover, the process can be altered by 
the precipitation of solid species at the fuel surface which 
retards diffusional processes and restricts access to active 
sites. Noble metal particles can exist which catalytically 
speed up reaction processes. Modeling this complex 
process and predicting nuclear fuel dissolution rates is a 
difficult reactive-transport problem. This often becomes 
intractable when attempting to simulate hundreds or 
thousands of breached waste packages. To address this 
challenge, novel machine-learned surrogate models are 
highly attractive and the topic of on-going research. 
Surrogate models are dependent upon the data on which 
they are trained and therefore having a conservative but 
accurate process model for fuel dissolution rates is critical. 

The Fuel Matrix Degradation (FMD) Model is the 
current capability being employed by the Spent Fuel and 
Waste Science and Technology (SFWST) campaign of the 
U.S. Department of Energy (DOE). The FMD model exists 
as a suite of MATLAB functions and subroutines which 
predicts the UO2 dissolution rate via a 1-dimensional (1D) 
reactive-transport model. The current capabilities include 
alpha radiolysis of water for H2O2 generation, oxidative 
and chemical dissolution of the fuel matrix, additional 
redox reactions, aqueous chemical reactions, precipitation 
and dissolution of solid uranium, diffusional processes, and 
Arrhenius temperature dependencies.  

We will show that the current implementation relies on 
a sequential iteration scheme to solve for interfacial 
corrosion potentials given static concentrations and 
subsequently solving for updated concentrations. We 
hypothesize that this leads to observed discontinuities in 
the predicted dissolution rate including a stair stepping 
behavior and static dissolutions rates at long times. At a 
minimum, the algorithm increases the number of non-
linear solver iterations needed at each time step and 
increases the time required to generate new training data 
for future surrogate models. In this manuscript we propose 
a new algorithm for solving for the concentrations and 
corrosion potentials simultaneously while outlining our on-
going efforts to improve the performance and reliability of 
the results predicted by the FMD model. 

The remainder of this manuscript is organized as 
follows; first we detail the conceptual FMD model and 
describe the included processes, then we detail our results 
including identification of the computational bottleneck in 
the FMD model and proposed new algorithm, and lastly, 
we outline our conclusions and describe the current and on-
going efforts. 
 
FUEL MATRIX DEGRADATION MODEL SYSTEM 
AND PROCESSES 
 

The FMD model is originally adapted from the mixed-
potential model by Shoesmith et al.1 The entirety of the 
model is better described elsewhere2 however we will 
briefly orient the reader here to provide a common 
understanding. Fundamentally the FMD model exists to 
predict UO2 fuel dissolution rates in a breached waste 
package and thereby provide a source term for performance 
assessment models. The MATLAB implementation 
simulates a 1D reactive transport column although it should 
be noted that 2D models are the subject of active research.3 
The system is depicted in Figure 1 where the left boundary 
represents the fuel surface, the right boundary is the 
breached container surface, which sandwich an aqueous 
region containing water and dissolved species. The 
aqueous region is spatially discretized with smaller 
spacings used near the interfaces. 
 

 
The aqueous chemistry reactions that are incorporated 

into the FMD model are shown in Table I while the 
electrochemical reactions that occur only at the fuel or 
container surface are shown in Table II. The fuel interface 
includes a noble metal particle region which has been 
shown to catalytically increase the reaction rate of the 
various reactions. Reaction rate expressions and associated 

Figure 1. Physical model simulated by the FMD model which 
exists as a 1D reactive-transport column where the left 
boundary represents the fuel matrix, and the right boundary 
represents the breached container surface. A logarithmically 
discretized aqueous chemistry region is in the middle. 
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model parameters have been omitted here for clarity but 
can be found in previous reports.4 

 
Table I. List of aqueous chemistry reactions incorporated 
in the FMD model. 

Aqueous Chemistry Reactions 

𝑈𝑂!!" + 2𝑂𝐻# +𝐻!𝑂 → 𝑈𝑂$ ⋅ 2𝐻!𝑂 

𝑈𝑂!!" +𝐻!𝑂! + 4𝐻!𝑂 → 𝑈𝑂% ⋅ 4𝐻!𝑂 + 2𝐻" 

𝑈𝑂!(𝐶𝑂$)!!# + 2𝑂𝐻# +𝐻!𝑂 → 𝑈𝑂$ ⋅ 2𝐻!𝑂 + 2𝐶𝑂$!# 

𝑈𝑂$ ⋅ 2𝐻!𝑂 + 2𝐶𝑂$!# → 𝑈𝑂!(𝐶𝑂$)!!# + 2𝑂𝐻# +𝐻!𝑂 

𝐻!𝑂! + 2𝐹𝑒!" + 4𝑂𝐻# → 3𝐻!𝑂 + 𝐹𝑒!𝑂$ 

𝑂! + 4𝐹𝑒!" + 8𝑂𝐻# → 4𝐻!𝑂 + 2𝐹𝑒!𝑂$ 

𝑈𝑂!!" + 2𝐹𝑒!" + 6𝑂𝐻# → 𝑈𝑂!,(()) + 3𝐻!𝑂 + 𝐹𝑒!𝑂$ 

𝑈𝑂!(𝐶𝑂$)!!# + 2𝐹𝑒!" + 6𝑂𝐻#

→ 𝑈𝑂!,(()) + 2𝐶𝑂$!# + 3𝐻!𝑂 + 𝐹𝑒!𝑂$ 

𝐻!𝑂! → 𝐻!𝑂 +
1
2𝑂! 

𝑈𝑂!,(+) → 𝑈𝑂!,(()) 

𝑈𝑂!,(()) → 𝑈𝑂!,(+) 

 
Electrochemical reactions are implemented using the 

Mixed Potential Approach which works on two 
assumptions; (1) electrochemical reactions can be broken 
into partial oxidation/reduction reactions, and (2) there is 
no net accumulation of charge.5 It is these electrochemical 
reactions that are the heart of the FMD model and lead to 
the oxidative dissolution of the fuel. As such they deserve 
outsized discussion here. 

Each half reaction yields a current which depends on 
the fuel “corrosion potential”. For example, the current for 
the first reaction in Table II (𝑈𝑂! → 𝑈𝑂!!" + 2𝑒#) is given 
by 
 	

𝑖,-!,. = 𝑛𝐹𝜀𝑘,-!,.𝑒𝑥𝑝 9
/"#!,%0

12
:𝐸3455

,-! − 𝐸,-!,.
6 => (1) 

 
where 𝑛 is the number of transferred electrons, 𝐹 is 
Faraday’s constant, 𝜀 is the porosity of fuel or steel 
corrosion layers,  𝑘,-!,. is the reaction rate constant, 𝛼,-!,. 
is the electrochemical transfer coefficient, 𝑅 is the 
universal gas constant, 𝑇 is the temperature, 𝐸3455

,-!  is the 
corrosion potential of the fuel, and 𝐸,-!,.

6  is the standard 

potential. The central premise of the FMD model is that 
there is no net accumulation of charge or current, therefore 
 
                               𝑖(7489 −	𝑖3(:;489 = 0. (2) 
 
Thus, at each timestep within a simulation, a set of ordinary 
differential equations are solved to determine 𝐸3455

,-!  at a 
given set of concentrations. This value of 𝐸3455

,-!  is then used 
to determine reaction rates and concentrations are updated 
using standard non-linear solvers (e.g., Newton-Rhapson). 
 
Table II. Electrochemical reactions incorporated into the 
FMD model at the fuel, fuel noble metal particle (NMP), 
and steel (canister) interface. 

Surface Reactions 

Fuel 

𝑈𝑂! → 𝑈𝑂!!" + 2𝑒# 

𝑈𝑂! + 2𝐶𝑂$!# →	𝑈𝑂!𝐶𝑂$!# + 2𝑒# 

𝑈𝑂! → 𝑈𝑂!,(()) 

𝐻! + 2𝑂𝐻# → 2𝐻!𝑂 + 2𝑒# 

𝐻!𝑂! + 2𝑂𝐻# → 𝑂! + 2𝐻!𝑂 + 2𝑒# 

𝐻!𝑂! + 2𝑒# → 2𝑂𝐻# 

𝑂! + 2𝐻!𝑂 + 4𝑒# → 4𝑂𝐻# 

Fuel, 
NMP 

𝐻! + 2𝑂𝐻# → 2𝐻!𝑂 + 2𝑒# 

𝐻!𝑂! + 2𝑒# → 2𝑂𝐻# 

𝐻!𝑂! + 2𝑂𝐻# → 𝑂! + 2𝐻!𝑂 + 2𝑒# 

𝑂! + 2𝐻!𝑂 + 4𝑒# → 4𝑂𝐻# 

Steel 
𝐹𝑒 → 𝐹𝑒!" + 2𝑒# 

2𝐻!𝑂 + 2𝑒# → 𝐻! + 2𝑂𝐻# 

 
Hydrogen peroxide acts as the main oxidant within the 

FMD model (reaction 6, Table II) and is generated via 
radiolysis of groundwater. The treatment of radiolysis 
within the FMD model is relatively simple and the yield of 
H2O2 can be computed by 

 
               𝐻!𝑂!	𝑌𝑖𝑒𝑙𝑑 = 𝐺<!-! × 𝑅=(𝑥, 𝑡) × 𝑔(𝑥)   (3) 

where 𝐺<!-! is the generation value for H2O2, 𝑅=(𝑥, 𝑡) is 
the dose rate, and 𝑔(𝑥) is a geometrical factor accounting 
for the fraction of fuel surface that is blocked from emitting 



alpha radiation. In the current implementation, 𝐺<!-! is a 
constant value, however more complex expressions have 
been explored which depend on the concentration of H2 and 
O2. This is particularly relevant at low O2 and high H2 
concentrations.2 Radiolysis can also be enhanced by alpha 
emitters adsorbed in the porous solid uranium phases that 
form, however this effect is currently ignored. 

The remaining notable process included in the FMD 
model is the precipitation of solid U phases at the fuel 
surface. This has a two-fold effect; (1) causing the 
retardation of diffusion near the fuel surface, and (2) 
blocking the availability of active sites for oxidative 
dissolution of the fuel. 
 
Description of the Fortran Implementation of the FMD 
Model 

 
We seek to refactor the FMD model code into a working 
version in Fortran. Our goal is to be more easily used and 
updated, as well as be readily modified for future corrosion 
applications. In this vein, we have begun developing, from 
scratch, a 1D reactive-transport code that implements the 
FMD model via a finite volume approach. We briefly 
describe that effort and the structure of the code here. 

Diffusion is implemented by discretizing the system in 
space and time using a finite volume approach. Imagine a 
3 grid cell system, with just 1 non-reactive diffusing 
species. The resulting governing equation is given by 
(ignoring advection, reaction, and source terms)  

𝑉 (>?)&
'(%#(>?)&

'

∆:
− M𝜙𝐴𝐷 ?&#?&)%

∆A
Q
B#%!

C".
+

M𝜙𝐴𝐷 ?&(%#?&
∆A

Q
B"%!

C".
= 0 = 𝑓(𝐶C".,B), where k and k+1 are 

the current and new time step, V is the volume, 𝜙 is the 
porosity, 𝐶B is the concentration in the ith grid cell, ∆𝑡 is 
the time step, ∆𝑥 is the distance between grid point centers, 
A is the area, and D is the diffusion coefficient. In this 1D 
case we will assume ∆𝑦 and ∆𝑧 are 1 and therefore V = ∆𝑥 
and A = 1. We will also assume a full grid cell exists at the 
boundaries. Concentrations are updated using the Newton-
Raphson approach while a linear solver is used to solve the 
equation 𝐽𝛿𝐶 = 	−	𝑓(𝐶C".,B). Adding reactivity to the 
matrx form of this problem transforms the Jacobian matrix 
into a large (Nc * Ngrid) × (Nc * Ngrid) where Nc is the 
number of components and Ngrid is the number of grid cells. 
 
RESULTS 

Here we will outline our results starting with the 
exploration of computational bottlenecks within the FMD 
model code, discussion of reaction rate parameters and 
their sensitivities, and lastly our current implementation of 
the alpha radiolysis. 

 
FMD Model Computational Bottleneck 
 

As mentioned above, the corrosion potential provided 
in eq. 1 are solved given eq. 2 which generates a set of 
ordinary differential equations. Effectively this means the 
corrosion potentials are solved for given the current 
concentrations of various species within the system. The 
new corrosion potential is then used to update those 
concentrations and this process is iteratively continued 
until convergence is reached. Figure 2 depicts the number 
of Newton-Raphson iterations needed to solve for (a) new 
concentrations and (b) new corrosion potentials in a 
representative FMD model run using the MATLAB code. 
Recall that for each new set of concentrations, the 
corrosion potential needs to be updated. Therefore, for each 
time point there are several different sets of iterations to 
update the corrosion potential. For example, there are often 
3 iterations needed to update new concentrations, for each 
of those 3 iterations there can be upwards of 8 iterations 
needed to solve for corrosion potentials, yielding 24 total 
iterations. Indeed, timing tests  

Figure 2. The number of Newton-Raphson iterations 
needed to solve for (a) the new concentrations and (b) the 
corrosion potentials at the fuel interface. The number of 
iterations needed for corrosion potentials are often the 
same and leads to overlapping points indicated by the 
colors in (b).   



 

 
Figure 3. Representative proposed matrix for solving for corrosion potentials and new concentrations simultaneously in the 
FMD model. Here the reaction expressions and their derivatives are given by 𝑅, the diffusion operator is given by 𝐿, the 
corrosion potential equation is given by 𝑓(𝐸DE9F), and the standard accumulation term for each species is G#G

'

∆:
. 

 
indicate that the FMD model code spends ~30% of the total 
computation time solving for corrosion potentials.  

Herein we suggest a new algorithm that solves for 
corrosion potentials and new concentrations 
simultaneously.  Imagine a 1D reactive transport system 
with 3 species (A + B à C) and 3 grid cells. Also assume 
that species A is accumulated via an electrochemical 
reaction with an associated corrosion potential (e.g., eq. 1). 
This electrochemical reaction only occurs in the left most 
grid cell (i.e., fuel surface). A typical matrix representation 
of the system solved via a finite volume method is shown 
in Error! Reference source not found.. In the 2nd and 3rd 
grid cell you observe the standard penta-diagonal structure 
in which the derivative of the rate expression for A, B, and 
C is taken with respect to the given species in the center 3 
diagonals (e.g., 𝑑𝑅(𝐴) 𝑑𝐴Y ), and the derivative of the 
diffusion operator (e.g., 𝐿H(𝐴)) appears in the center and  
two off diagonals. The derivative of the standard 
accumulation term appears in the center diagonal (e.g., 
1
∆𝑡Y ). However, now given the need to solve for the 

corrosion potential and the concentration of A in the left 
most grid cell, the 3x3 block is transformed to a 4x4 block 
in the upper right.  The 4th column represents the derivative 
of each reaction equation with respect to the corrosion 
potential. Note that this is 0 except for the 4th row in which 
the derivative of the corrosion potential equation is taken. 
The 4th row therefore has two entries, one in which the 
derivative of the fuel corrosion equation is taken with 
respect to the concentration of A and another where it is 
taken with respect to the corrosion potential itself. Using 
this matrix form, the corrosion potential and concentrations 
can be solved for simultaneously; potentially limiting 
unnecessary non-linear solver iterations, improving the 
efficiency of the algorithm, and removing observed 
discontinuities in the results. 

 
 
 

Exploration of Model Parameter Sensitivities 
 

Several of the reactions in Table 1 include a 𝑐+(: 
parameter in the rate expression. As we will lay out below, 
this parameter works to turn reactions off as the 
temperature decreases. For this case study, we will 
consider reaction 2 from Table 1 (i.e., 𝑈𝑂!!" +𝐻!𝑂! +
4𝐻!𝑂 → 𝑈𝑂% ⋅ 4𝐻!𝑂 + 2𝐻"). This and only this reaction, 
will be turned on. A 5-grid cell system was considered with 
the initial concentrations of each species set to 0.01 M in 
the left most grid cell and 0 M in all other grid cells. In this 
system, the size of each grid cell is the same. The boundary 
condition at both the left and right boundaries was 0.01 M 
for all species. Diffusion was turned on, however 𝑈𝑂% ⋅
4𝐻!𝑂 is a solid and does not diffuse in the model.  

The concentration of 𝑈𝑂!!"as a function of time is 
shown as a log-log plot in Figure 4. Note that diffusion 
occurs at the left and right boundary and therefore, within 
a short period of time, the system is symmetric (i.e., grid 
cell 1 = grid cell 5). We note that the concentration of 𝑈𝑂!!" 
reaches an initial equilibrium and the concentration 
remains relatively unchanged for ~100 years. At this point 
the concentration begins to increase towards that boundary 
condition concentration (i.e., 0.01 M) at ~1000 years. 



 

 
In an effort to understand this nearly 100 year 

equilibrium we looked at the reaction rate constant for this 
reaction 

𝑘! = 1.0 × 10#I𝑒
I.6×.6*⋅82 M!.%⋅3+,-

"#!
!(
N
*

O
                 (4) 

 
and the 𝑐+(:

,-!!( parameter  
 

𝑐𝑠𝑎𝑡,-!!( = 3.2 × 10#! ⋅ 𝑒#$.6×.6*⋅82                 (5) 
 

where 𝑑𝑇 =
( .
!PQ

− .
2
)
𝑅
^   is an Arrhenius temperature 

factor. The reaction rate constant and 𝑐+(:
,-!!(as a function of 

time are show in Figure 5. The temperature as a function of 
time is shown as an inset. Here we observe that the reaction 
rate constant is constant up until 100 years. At this point 
the temperature begins to decrease which leads to an 
increase in 𝑐+(:

,-!!(. Ultimately 𝑐+(:
,-!!( increases by a factor 

of 2.3 from its initial value to its final value at the minimum 
temperature observed within this time period. However, 

the reaction rate constant has a M𝑐+(:
,-!!(Q

%
dependence 

meaning the rate constant decreases by a factor of 31. 
Therefore, the observed result that the concentration of 
𝑈𝑂!!" can go unchanged for 100 years can be explained by 
all the concentration that diffuses in from the boundary is 
immediately converted to 𝑈𝑂% ⋅ 4𝐻!𝑂, however as the 
temperature decreases the reaction rate constant decreases 
rapidly. At this point, the rate of diffusion is greater than 
the rate of the reaction and the concentration of 𝑈𝑂!!" 
begins to head toward the boundary condition. In this 
regard 𝑐+(:

,-!!( works to, effectively, turn reactions off as the 
temperature of the system decreases at long times. Note 
that the temperature of the system is a simple analytical 
function however in the full FMD model 𝑈𝑂!!" is produced 

due to corrosion at the fuel surface. Therefore, it is 
theoretical possible for the reaction rate to remain high 
despite a decreasing temperature if the concentration of 
𝑈𝑂!!" is large. This result indicates that long simulations 
are needed for the system to reach equilibrium. In an effort 
to meet this need we implemented an adaptive time 
stepping routine which scales the value of the time step 
based on the number of Newton-Raphson iterations needed 
to update the concentrations (i.e., a low number of 
iterations yields a longer time step). 

 
It is interesting to consider the reaction rate 

expressions and how they can affect the shape of the time 
evolution curves for various concentrations. Many of the 
reactions are 5th order with respect to a certain 
concentration. For example, reaction 3 and 4 from Table 1 
are the reverse of each other, however reaction 3 has a rate 
constant that is, initially, 100X that of reaction 4. The rate 
expression for UO!(CO$)!!# in reaction 3 is given by 

  
RST!(UT.)!!)

RV
= −k$[UO!(CO$)!!#]W                 (6) 

	
with		

	

𝑘$ = 1.0 × 10#%𝑒
I.6×.6*⋅82 M!.%⋅3+,-

"#!(0#.)!
!)
N
*

O
        (7) 

	
while for reaction 4 it is  
 

RST!(UT.)!!)

RV
= k%[CO$!#][UO$ ⋅ 2H!O]                 (8) 

	
and 
 

 𝑘% = 8.6 × 10#I𝑒I.6×.6*⋅82                                 (9) 
	
This is due, in part, to the constant in front of the 

Figure 4. Concentration of 𝑈𝑂!!" as a function of time in 
each of the 5 grid cells in our system. 

Figure 5. The reaction rate as a function of time for the 
reaction 𝑈𝑂!!" +𝐻!𝑂! + 4𝐻!𝑂 → 𝑈𝑂% ⋅ 4𝐻!𝑂+ 2𝐻" 
(right axis) and the  𝑐+(:

,-!!(  parameter (left axis). The inset 
shows the temperature as a function of time. 



exponential but also due to the 𝑐+(:
,-!(?-.)!!) parameter that 

appears in the rate constant for reaction 3 but not reaction 
4. However, the rate expression has a 5th order dependence 
on [𝑈𝑂!(𝐶𝑂$)!!#] (i.e., X,-!(?-.)!

!)

X:
∝ [𝑈𝑂!(𝐶𝑂$)!!#]W). 

We investigated this effect by considering a system 
containing 3 grid cells of equal length. The first 4 reactions 
from Table 1 were included. We ran two test cases, one in 
which the initial concentration of all species was .1 M and 
another where the initial concentration of all species was 
.01 M. The [𝑈𝑂!(𝐶𝑂$)!!#] and [𝐶𝑂$!#]	as a function of time 
for both cases (lines = .1 M initial, points = .01 M initial) 
is shown in Figure 6. Note that the system is symmetric and 
therefore grid cells 1 and 3 are equal and therefore their 
curves are on top of each other. We note that different 
initial conditions can yield fundamentally different 
trajectories, and this is due, in large part, to the 5th order 
dependence. When the concentration of 𝑈𝑂!(𝐶𝑂$)!!# is 
low and raised to the 5th power the rate for reaction 3 where 
𝑈𝑂!(𝐶𝑂$)!!# is consumed is small and therefore reaction 4 

is faster and you see an increase in [𝑈𝑂!(𝐶𝑂$)!!#] (points). 
Yet when the concentration is high, reaction 3 is faster and 
therefore you see a decrease in [𝑈𝑂!(𝐶𝑂$)!!#] (line). 
 
CONCLUSIONS 
 

The computational bottleneck in the MATLAB-
implemented FMD model has been identified using 
extensive timing studies. Significantly redundant Newton-
Raphson iterations are being performed that can likely be 
reduced if the concentrations and corrosion potentials are 
solved for simultaneously. We have proposed a potential 
algorithm that could be used to achieve this and are 
currently working on implementation. We have shown, in 
great detail, how various reactions are controlled by certain 
parameters within the model and how initial and boundary 
conditions can significantly change the evolution of the 
system. Our current stand-along 1D reactive-transport code 
had included all bulk solution reactions, implements an 
adaptive time stepping routine, and is maintained via a 
gitlab repository with full version control. This effort is 
crucial for increasing the efficiency of surrogate model 
training on the FMD model 
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Figure 6. (a) [𝑈𝑂!(𝐶𝑂$)!!#] and (b) [𝐶𝑂$!#]	as a function 
of time	for a 3 grid cell simulation that tracks the first 4 
reactions shown in Table 1. Two simulations are shown in 
which the initial [𝑈𝑂!(𝐶𝑂$)!!#]	concentration was .1 M 
(lines) and .01 M (points). 
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