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INTRODUCTION 

 
Unsaturated alluvium is one of several generic deep 

geologic disposal environments considered in the United 
States Department of Energy’s Spent Fuel and Waste 
Science Campaign. However, there are physical and 
numerical challenges in modeling flow and transport 
associated with unsaturated systems. Exacerbating this, 
decay heat released from the radioactive decay of spent 
nuclear fuel packages may significantly elevate 
temperatures in the repository system, resulting in complex 
thermal-hydrological interactions. Thus, simulations of 
spent fuel and high-level waste repository systems must 
adequately model coupled thermo-hydrologic interactions in 
multiphase systems. 

In an isothermal system, a partially saturated porous 
medium will drain to a small but non-zero degree of water 
saturation known as the residual saturation. Many models, 
such as the van Genuchten model1, capture this behavior by 
allowing the capillary pressure to approach an infinite value 
at some small but non-zero residual saturation. When 
relative permeability is derived from capillary pressure 
curves, as in the Mualem2 model, this also specifies the 
relative permeability to be zero at residual saturation. Thus, 
the water saturation can never fall below the residual limit 
by liquid-phase flow due to both the capillary pressure and 
relative permeability models. 

However, water can and is removed below the residual 
limit by evaporation and gas-phase flow. This can be 
encountered in high-level nuclear waste repositories as the 
decay heat increases the temperature, driving evaporation 
and convection. As capillary pressure cannot be infinite, 
either physically or numerically, when water is driven off 
past the residual saturation, several extensions have been 
recently implemented in PFLOTRAN as part of the 
Geological Disposal Safety Assessment (GDSA) 
development project. However, these extensions can 
introduce their own physical or numerical idiosyncrasies. 
This work discusses some criteria a modeler should consider 
when utilizing these options. 

Numerically, the capillary pressure curve must be both 
continuous and smooth for Newton’s method to efficiently 
solve the implicit system of equations describing mass and 
heat transfer in multiphase systems. Consequently, smooth 
extensions to capillary pressure can have significant 
improvement in performance on a series of benchmark 
problems. One such benchmark problem is presented here 

whereby evaporation, boiling from the thermal pulse of a 
waste package, and infiltration from rainfall in an 
unsaturated alluvium system all interact to dynamically dry 
and re-wet the system. Using the new smooth capillary 
pressure extensions, this problem can finish where it had 
previously stalled due to unacceptably small timesteps 
necessary for convergence. 
 
Geologic Waste Repository Reference Case 

 
A broad range of possible scenarios are being 

considered with the GDSA program. Within this program, 
the unsaturated zone (UZ) reference case is particularly 
challenging as it has significant rates of evaporation or even 
boiling in the porous media. The UZ model consists of a 
mined repository in unsaturated alluvium located 255 m 
below the land surface, and the repository is modeled to 
contain hot commercial spent nuclear fuel3. The water table 
depth is estimated to be at 500 m depth. Aside from 
infiltration of rainwater, at 245 m above the water table, the 
initial water content will initially be near residual saturation. 

At the same time, due to radioactive decay heat, the 
temperature in the spent nuclear fuel waste packages will be 
elevated. Initial calculations have estimated peak 
temperatures ranging from 150 ºC to 350 ºC. While the 
temperature in the surrounding porous media will be less the 
peak, the elevated temperatures will drive elevated rates of 
evaporation or even boiling, at ambient or possibly elevated 
pressures.  

While water is at an elevated temperature near the 
waste packages, most of the repository system remains near 
the ambient temperature of 27 ºC. Consequently, water 
vapor generated by decay heat will not be removed in a 
closed repository system. After gas phase transport, the 
water vapor is anticipated to condense on cooler materials, 
driving natural convection flows4. 

This situation can be problematic when applying 
standard approaches to model two-phase flow in porous 
media. For example, the two-phase flow model in 
PFLOTRAN was initially adopted from using the model 
described by Chen et al5. The numerical difficulty due to the 
singularity in the capillary pressure model is not new and 
has previously been addressed using piecewise extensions 
by Sun et al6. This work will examine extensions to relative 
permeability and capillary pressure below the residual on a 
physical basis. 
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Two-Phase Darcian Flow Model 
 

A common but ultimately empirical approach is to 
follow the approach of Muskat model and extend Darcy’s 
law to two-phase systems by introducing the concept of 
relative permeabilities7. The phenomenon of residual 
saturation was considered to be the saturation where the 
relative permeability of the wetting phase approaches or is 
equal to zero. And while it was evident there was residual 
water, it was presumed to be removeable if evaporative 
processes were adequately modeled. 

Independent of the relative permeability model, 
Richards8 modeled the phenomenon of capillary rise in 
porous media, modelling the flow of a wetting fluid into 
porous media. More specifically, Richards modelled the 
only the flow of fluid due to capillary pressure due to 
cohesive forces that predominate in a wetted porous media. 
Importantly, this explicitly excludes the forces of adhesion, 
including phenomenon such as film flow that predominate 
at very low degrees of saturation9. When adsorbed films are 
neglected, the capillary pressure follows the Young-Laplace 
equation and is presumed to approach infinite values in the 
limit of infinitely small pores. 

By merging the concepts of relative permeability and 
capillary pressure10 the generalized Darcy equations and can 
be formulated11.  
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Here, 𝑞! and 𝑞% are the volume flux of liquid water and 

gaseous air, respectively. 𝑘" is the intrinsic permeability 
while 𝑘'! and 𝑘'% are the relative permeabilities of the 
corresponding phases. Finally, 𝜇 and 𝑝 represent the 
dynamic viscosity and pressure of their respective phases. 
While general, the validity of this approach is entirely 
dependent upon the validity of the underlying models for 
both relative permeability and capillary pressure.  

This problem is numerically challenging as both 
relative permeability and capillary pressure are functions of 
the phase saturation. While saturation can be defined in 
many ways, here saturation will be defined on a fractional 
volumetric basis such that the sum of the water and air 
phase saturations equals one (i.e., 𝑆! + 𝑆(! = 1). 

 
Saturation-based Mass Balance 

 
If the expression for the volume flux is substituted into 

a mass balance, a nonlinear partial-differential equation is 
created. 
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Here, 𝜌! represents the mass density, 𝜙 the porosity, 
and 𝑄! the source/sink term for the liquid phase of water, 
including evaporation and condensation. For a fluid that is 
approximated to be incompressible, the density of the fluid 
is close to constant, and saturation is the primary solution 
variable.  

Above the residual, the Darcian model applies as usual. 
But if residual saturation is to be understood as the region 
where liquid phase flow ceases due to a lack of hydraulic 
connectivity, the mass balance is trivial below the residual. 
That is, only the source/sink term contributes, and transport 
of the water is limited to vapor phase flux. Solving the mass 
balance is not challenging in either of the individual 
regimes, but it is in the transition when the simulation spans 
both regimes. 

While relative permeability models generally approach 
zero at the residual saturation, a common assumption is that 
capillary pressure is also infinite at residual. Not only that, 
but to find the pressure gradient, the system requires the 
derivative with respect to saturation. The Darcian model for 
volume flux then seeks to model the product of 𝑘'!
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which is ill-defined near the residual liquid saturation. 

Previously PFLOTRAN truncated capillary pressure to 
a fixed maximum, here described as a flat extension. By 
bounding the derivative of capillary pressure to finite 
values, the flow is similarly limited to finite values. 
However, this introduces a new discontinuity in the model 
as the slope is discontinuous at the corner. 

This is particularly problematic when using Newton’s 
method to solve the system of nonlinear equations, as 
Newton’s method requires dividing by the derivative. Thus, 
if the derivative is or approaches zero, the next iteration may 
be driven to a wildly incorrect saturation.  

In the approach taken by Sun et al.6, a piecewise but 
smooth extension to capillary pressure resolves the 
instability using Newton’s method. This was the initial 
approach taken here as well for PFLOTRAN for capillary 
pressure. However, this work deviates in the treatment of 
relative permeability as, by similarly extending the relative 
permeability models below residual saturation, liquid-phase 
flow will continue below residual saturation. 

The next two sections will detail the justification for 
both decoupling the value for residual saturation for relative 
permeability and capillary pressure, as well to support 
eliminating the assumption of infinite capillary pressure at 
the capillary pressure residual.  
 
Relative Permeability Models 

 
As seen in equation 1, permeability is essentially the 

coefficient relating the flow rate of a fluid in a non-
equilibrium system with its driving potential. While models 
based on bundles of tubes in Hagen-Poiseuille flow can be 
drawn for single-phase flow, for multi-phase flow, the 



relative permeability represents the averaging behavior over 
many discontinuous regions12. 

Measuring relative permeability directly can be 
experimentally demanding and, rather than making direct 
measurements at numerous degrees of saturation, only the 
saturated liquid or intrinsic permeability is often measured – 
or estimated – directly. The permeability of each phase is 
then calculated relative to this using an additional model, 
dependent upon the capillary potential model. Two such 
models implemented in PFLOTRAN are the Burdine13,14 
and Mualem2 models.  

In the development of the first model, Burdine et al. 
first performed detailed characterizations of petroleum 
reservoir rocks13 and later developed a conceptual model for 
estimating the relative permeability by summing over the 
volume, area, and tortuosity of the fluid filled pores14. To do 
so, Burdine made a simple linear interpolation between 
residual and full saturation to represent the “relative” 
tortuosity of the wetting phase, that is 𝑋'! =

,"2,!
32,!

. This 
relative tortuosity is mathematically equivalent to the term 
effective saturation 𝑆4.  

However, the relative tortuosity is distinct from the 
intrinsic tortuosity, that is the tortuosity of a fully saturated 
medium. Additionally, while narrow dead-end pores appear 
inside the Burdine summation, if they lack connectivity, 
they do not contribute to the resulting permeability in the 
original Burdine model.  

However, detailed pore size and tortuosity distributions 
are rarely available. Rather, it is assumed that all pores have 
equal tortuosity as a matter of convenience, and the 
diameter of filled pores at a given saturation are modeled 
using the Young-Laplace equation. Assuming cylindrical 
pores, this can be expressed as 𝑟 = 56

7$
, where 𝛾 is the 

surface tension. In doing so, the so-called Burdine equations 
result if the summation is replaced with integration9.  
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Later, Mualem2 took a different approach in deriving a 

model for relative permeability that more clearly 
demonstrates it is allowable for small pores to be neglected. 
That is, when Mualem substituted the Young-Laplace 
equation to convert the variable of integration from pore 
diameter to saturation, the limits of integration in terms of 
pore diameter were explicitly non-zero: 
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Thus, in the original formulation from Burdine and 

Mualem there is a finite capillary pressure at the residual, 
𝑝&', that corresponds to the minimum pore diameter 𝑟>"( 

that contributed to permeability. That is, 𝑝&' =
56
'+,-

. The 
value of residual saturation 𝑆' can then be viewed in terms 
of the saturation that predicts this capillary pressure. That is 
𝑝&' = 𝑝&(𝑆'). Thus, for any non-zero minimum pore 
diameter, the capillary pressure must be finite. 

 
Capillary Pressure Models  
 

As such, we require a capillary pressure model can 
satisfy the equation 𝑃&' = 𝑃&(𝑆'). At the same time, modeling 
the capillary pressure in porous media is complex proposition 
due to the heterogeneity in both pore sizes, and additionally 
surface chemistries and thereby wetting angles. 
Consequently, it is most often defined by empirically fitting 
simple functions to experimentally measured values. 

In this work, two frequently utilized but similar 
empirical approaches for capillary pressure will be 
considered. The first is the Brooks-Corey15, which applied 
the concept of the power law distribution of pore sizes to 
capillary potential. 
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Where 𝑝B is air entry pressure and 𝜆 is the pore size 

distribution constant. The effective saturation 𝑆4 is 
mathematically equivalent to the “relative tortuosity” of 
Burdine. This assumption allows the integrals inside the 
Burdine equations to evaluated analytical if and only if 
capillary pressure is allowed to approach infinity, neglecting 
the presence of dead-end pores or thin films. 

Later, Van Genuchten1 expanded on this model to allow 
for a second power law distribution exponent for both large 
and small pores. 
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Where 𝑚, 𝑛, and 𝛼 are empirical parameters dependent 

on the material. Again, the effective saturation is assumed 
commensurate with the relative tortuosity and this model too 
ignores the existence of dead-end pores, requiring capillary 
pressure to approach infinity at the residual. 

Of course, dead end pores and thin films exist, and 
isolated pockets of water are retained in porous media. 
Residual water is associated with dead-end pores that have a 
non-zero radius and thereby a finite, no matter how large, 
capillary pressures. Adsorbed films also exist, though the 
Young-Laplace equation does not model these. While it is 
analytically convenient residual saturation to be 
commensurate in the relative permeability and capillary 
pressure models, it is not physically realistic to do so. 

There are, however, experimental challenges in 
measuring capillary pressure below residual. Gravitational 
drainage is generally not enough, and some additional water 



may be removed by centrifugal methods. However, flow 
below this threshold will be dominated by film flow or vapor 
phase transport. As originally suggested by Muskat and 
Meres7, liquid transport below the residual should be 
modeled using source/sink terms in the mass balance, rather 
than via ad hoc extensions to the Darcy model. While the 
relative permeability of the gas phase approaches a maximum 
at residual liquid saturation, transport of vapor may be 
reduced at saturations below residual by additional vapor 
pressure lowering. 

To date, PFLOTRAN has been programmed with the 
analytic expressions from Brooks-Corey and van Genuchten,  
and while residual values are allowed to differ in the two 
expressions, the resulting relative permeability is not 
consistent with either equations 5 or 6. Provided that the 
piecewise extension to the capillary pressure model occurs at 
a large capillary pressure, the impact on relative permeability 
is a minor perturbation as it is inversely proportional to 
square of capillary pressure. 

 
RESULTS 

 
Allowing the residual saturations to be dissimilar and 

extending the capillary pressure below residual was found to 
be sufficient to resolve the numerical instability in the UZ 
model. Using a reference case with 24 pressurized water 
reactor spent fuel waste packages, simulations were 
conducted on Sandia National Laboratories Skybridge 
cluster, which hosts Intel Xeon processors (E5-2670 2.60 
GHz, 20 MB L2 caches). Using the conventional Newton 
solver and the truncated or flat capillary pressure, the 
simulation failed to complete in 48 hours. Using either the 
linear or exponential extensions, such simulations completed 
in 33.8 and 31.8 minutes respectively. 

In addition to modifying the physical model, recently, a 
more robust numerical method, Newton Trust Region Dogleg 
Cauchy, was implemented into PETSc to be utilized by 
PFLOTRAN16. This algorithm, the UZ simulation with the 
capillary pressure extension completed despite the 
discontinuity in the capillary pressure derivative. It 
nevertheless requires considerably more computational 
resources (551.0 minutes). Combining NTRDC with smooth 
capillary extensions, but the original relative permeability 
expression provided the highest performance, with 
simulations requiring only 19.4 or 18.3 minutes., reducing 
computation time by approximately 42% over the traditional 
Newton solver. 

 
CONCLUSIONS 

 
In this work, the basis for the decoupling of residual 

saturation for relative permeability from the residual 
saturation for capillary potential has been presented. While 
previously described as an ad hoc approach, this approach is 
supported by the original works of Burdine and Mualem. 
Rather, the need for an infinite capillary pressure appears as 

a matter of convenience in the Brooks-Corey and van 
Genuchten models. 

In doing so, the cessation of liquid flow at residual 
saturation can be adequately modeled in terms of relative 
permeability alone. This permits capillary pressure to be 
described by any number of extensions to the empirical 
models below this relative permeability residual. While more 
robust numerical algorithms can resolve capillary pressure 
models with discontinuities in slope, it is nevertheless 
advantageous to use smooth extensions where possible.  
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