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INTRODUCTION

Unsaturated alluvium is one of several generic deep
geologic disposal environments considered in the United
States Department of Energy’s Spent Fuel and Waste
Science Campaign. However, there are physical and
numerical challenges in modeling flow and transport
associated with unsaturated systems. Exacerbating this,
decay heat released from the radioactive decay of spent
nuclear fuel packages may significantly elevate
temperatures in the repository system, resulting in complex
thermal-hydrological interactions. Thus, simulations of
spent fuel and high-level waste repository systems must
adequately model coupled thermo-hydrologic interactions in
multiphase systems.

In an isothermal system, a partially saturated porous
medium will drain to a small but non-zero degree of water
saturation known as the residual saturation. Many models,
such as the van Genuchten model!, capture this behavior by
allowing the capillary pressure to approach an infinite value
at some small but non-zero residual saturation. When
relative permeability is derived from capillary pressure
curves, as in the Mualem? model, this also specifies the
relative permeability to be zero at residual saturation. Thus,
the water saturation can never fall below the residual limit
by liquid-phase flow due to both the capillary pressure and
relative permeability models.

However, water can and is removed below the residual
limit by evaporation and gas-phase flow. This can be
encountered in high-level nuclear waste repositories as the
decay heat increases the temperature, driving evaporation
and convection. As capillary pressure cannot be infinite,
either physically or numerically, when water is driven off
past the residual saturation, several extensions have been
recently implemented in PFLOTRAN as part of the
Geological Disposal Safety Assessment (GDSA)
development project. However, these extensions can
introduce their own physical or numerical idiosyncrasies.
This work discusses some criteria a modeler should consider
when utilizing these options.

Numerically, the capillary pressure curve must be both
continuous and smooth for Newton’s method to efficiently
solve the implicit system of equations describing mass and
heat transfer in multiphase systems. Consequently, smooth
extensions to capillary pressure can have significant
improvement in performance on a series of benchmark
problems. One such benchmark problem is presented here

whereby evaporation, boiling from the thermal pulse of a
waste package, and infiltration from rainfall in an
unsaturated alluvium system all interact to dynamically dry
and re-wet the system. Using the new smooth capillary
pressure extensions, this problem can finish where it had
previously stalled due to unacceptably small timesteps
necessary for convergence.

Geologic Waste Repository Reference Case

A broad range of possible scenarios are being
considered with the GDSA program. Within this program,
the unsaturated zone (UZ) reference case is particularly
challenging as it has significant rates of evaporation or even
boiling in the porous media. The UZ model consists of a
mined repository in unsaturated alluvium located 255 m
below the land surface, and the repository is modeled to
contain hot commercial spent nuclear fuel’. The water table
depth is estimated to be at 500 m depth. Aside from
infiltration of rainwater, at 245 m above the water table, the
initial water content will initially be near residual saturation.

At the same time, due to radioactive decay heat, the
temperature in the spent nuclear fuel waste packages will be
elevated. Initial calculations have estimated peak
temperatures ranging from 150 °C to 350 °C. While the
temperature in the surrounding porous media will be less the
peak, the elevated temperatures will drive elevated rates of
evaporation or even boiling, at ambient or possibly elevated
pressures.

While water is at an elevated temperature near the
waste packages, most of the repository system remains near
the ambient temperature of 27 °C. Consequently, water
vapor generated by decay heat will not be removed in a
closed repository system. After gas phase transport, the
water vapor is anticipated to condense on cooler materials,
driving natural convection flows®.

This situation can be problematic when applying
standard approaches to model two-phase flow in porous
media. For example, the two-phase flow model in
PFLOTRAN was initially adopted from using the model
described by Chen et al’. The numerical difficulty due to the
singularity in the capillary pressure model is not new and
has previously been addressed using piecewise extensions
by Sun et al’. This work will examine extensions to relative
permeability and capillary pressure below the residual on a
physical basis.
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Two-Phase Darcian Flow Model

A common but ultimately empirical approach is to
follow the approach of Muskat model and extend Darcy’s
law to two-phase systems by introducing the concept of
relative permeabilities’. The phenomenon of residual
saturation was considered to be the saturation where the
relative permeability of the wetting phase approaches or is
equal to zero. And while it was evident there was residual
water, it was presumed to be removeable if evaporative
processes were adequately modeled.

Independent of the relative permeability model,
Richards® modeled the phenomenon of capillary rise in
porous media, modelling the flow of a wetting fluid into
porous media. More specifically, Richards modelled the
only the flow of fluid due to capillary pressure due to
cohesive forces that predominate in a wetted porous media.
Importantly, this explicitly excludes the forces of adhesion,
including phenomenon such as film flow that predominate
at very low degrees of saturation’. When adsorbed films are
neglected, the capillary pressure follows the Young-Laplace
equation and is presumed to approach infinite values in the
limit of infinitely small pores.

By merging the concepts of relative permeability and
capillary pressure'? the generalized Darcy equations and can
be formulated!!.
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Here, g,, and q,, are the volume flux of liquid water and
gaseous air, respectively. k; is the intrinsic permeability
while k,.,, and k.4 are the relative permeabilities of the
corresponding phases. Finally, 4 and p represent the
dynamic viscosity and pressure of their respective phases.
While general, the validity of this approach is entirely
dependent upon the validity of the underlying models for
both relative permeability and capillary pressure.

This problem is numerically challenging as both
relative permeability and capillary pressure are functions of
the phase saturation. While saturation can be defined in
many ways, here saturation will be defined on a fractional
volumetric basis such that the sum of the water and air
phase saturations equals one (i.e., S, + S,y = 1).

Saturation-based Mass Balance
If the expression for the volume flux is substituted into

a mass balance, a nonlinear partial-differential equation is
created.
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Here, p,, represents the mass density, ¢ the porosity,
and Q,, the source/sink term for the liquid phase of water,
including evaporation and condensation. For a fluid that is
approximated to be incompressible, the density of the fluid
is close to constant, and saturation is the primary solution
variable.

Above the residual, the Darcian model applies as usual.
But if residual saturation is to be understood as the region
where liquid phase flow ceases due to a lack of hydraulic
connectivity, the mass balance is trivial below the residual.
That is, only the source/sink term contributes, and transport
of the water is limited to vapor phase flux. Solving the mass
balance is not challenging in either of the individual
regimes, but it is in the transition when the simulation spans
both regimes.

While relative permeability models generally approach
zero at the residual saturation, a common assumption is that
capillary pressure is also infinite at residual. Not only that,
but to find the pressure gradient, the system requires the
derivative with respect to saturation. The Darcian model for
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which is ill-defined near the residual liquid saturation.

Previously PFLOTRAN truncated capillary pressure to
a fixed maximum, here described as a flat extension. By
bounding the derivative of capillary pressure to finite
values, the flow is similarly limited to finite values.
However, this introduces a new discontinuity in the model
as the slope is discontinuous at the corner.

This is particularly problematic when using Newton’s
method to solve the system of nonlinear equations, as
Newton’s method requires dividing by the derivative. Thus,
if the derivative is or approaches zero, the next iteration may
be driven to a wildly incorrect saturation.

In the approach taken by Sun et al.%, a piecewise but
smooth extension to capillary pressure resolves the
instability using Newton’s method. This was the initial
approach taken here as well for PFLOTRAN for capillary
pressure. However, this work deviates in the treatment of
relative permeability as, by similarly extending the relative
permeability models below residual saturation, liquid-phase
flow will continue below residual saturation.

The next two sections will detail the justification for
both decoupling the value for residual saturation for relative
permeability and capillary pressure, as well to support
eliminating the assumption of infinite capillary pressure at
the capillary pressure residual.

volume flux then seeks to model the product of k

Relative Permeability Models

As seen in equation 1, permeability is essentially the
coefficient relating the flow rate of a fluid in a non-
equilibrium system with its driving potential. While models
based on bundles of tubes in Hagen-Poiseuille flow can be
drawn for single-phase flow, for multi-phase flow, the



relative permeability represents the averaging behavior over
many discontinuous regions'2,

Measuring relative permeability directly can be
experimentally demanding and, rather than making direct
measurements at numerous degrees of saturation, only the
saturated liquid or intrinsic permeability is often measured —
or estimated — directly. The permeability of each phase is
then calculated relative to this using an additional model,
dependent upon the capillary potential model. Two such
models implemented in PFLOTRAN are the Burdine!3!4
and Mualem” models.

In the development of the first model, Burdine et al.
first performed detailed characterizations of petroleum
reservoir rocks' and later developed a conceptual model for
estimating the relative permeability by summing over the
volume, area, and tortuosity of the fluid filled pores'*. To do
so, Burdine made a simple linear interpolation between
residual and full saturation to represent the “relative”
w=St This
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relative tortuosity is mathematically equivalent to the term
effective saturation S,.

However, the relative tortuosity is distinct from the
intrinsic tortuosity, that is the tortuosity of a fully saturated
medium. Additionally, while narrow dead-end pores appear
inside the Burdine summation, if they lack connectivity,
they do not contribute to the resulting permeability in the
original Burdine model.

However, detailed pore size and tortuosity distributions
are rarely available. Rather, it is assumed that all pores have
equal tortuosity as a matter of convenience, and the
diameter of filled pores at a given saturation are modeled
using the Young-Laplace equation. Assuming cylindrical

tortuosity of the wetting phase, that is X,., =

. 2 .
pores, this can be expressed as r = p—y, where y is the
c

surface tension. In doing so, the so-called Burdine equations
result if the summation is replaced with integration®.
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Later, Mualem? took a different approach in deriving a
model for relative permeability that more clearly
demonstrates it is allowable for small pores to be neglected.
That is, when Mualem substituted the Young-Laplace
equation to convert the variable of integration from pore
diameter to saturation, the limits of integration in terms of
pore diameter were explicitly non-zero:
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Thus, in the original formulation from Burdine and
Mualem there is a finite capillary pressure at the residual,

Pcr» that corresponds to the minimum pore diameter 7,,;,

that contributed to permeability. That is, p., = r2y . The
min

value of residual saturation S, can then be viewed in terms

of the saturation that predicts this capillary pressure. That is

Per = Pc(Sy). Thus, for any non-zero minimum pore

diameter, the capillary pressure must be finite.

Capillary Pressure Models

As such, we require a capillary pressure model can
satisfy the equation P, = P,(S,). At the same time, modeling
the capillary pressure in porous media is complex proposition
due to the heterogeneity in both pore sizes, and additionally
surface  chemistries and thereby wetting angles.
Consequently, it is most often defined by empirically fitting
simple functions to experimentally measured values.

In this work, two frequently utilized but similar
empirical approaches for capillary pressure will be
considered. The first is the Brooks-Corey'">, which applied
the concept of the power law distribution of pore sizes to
capillary potential.
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Where p,, is air entry pressure and A is the pore size
distribution constant. The effective saturation S, is
mathematically equivalent to the “relative tortuosity” of
Burdine. This assumption allows the integrals inside the
Burdine equations to evaluated analytical if and only if
capillary pressure is allowed to approach infinity, neglecting
the presence of dead-end pores or thin films.

Later, Van Genuchten! expanded on this model to allow
for a second power law distribution exponent for both large
and small pores.
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Where m, n, and « are empirical parameters dependent
on the material. Again, the effective saturation is assumed
commensurate with the relative tortuosity and this model too
ignores the existence of dead-end pores, requiring capillary
pressure to approach infinity at the residual.

Of course, dead end pores and thin films exist, and
isolated pockets of water are retained in porous media.
Residual water is associated with dead-end pores that have a
non-zero radius and thereby a finite, no matter how large,
capillary pressures. Adsorbed films also exist, though the
Young-Laplace equation does not model these. While it is
analytically convenient residual saturation to be
commensurate in the relative permeability and capillary
pressure models, it is not physically realistic to do so.

There are, however, experimental challenges in
measuring capillary pressure below residual. Gravitational
drainage is generally not enough, and some additional water



may be removed by centrifugal methods. However, flow
below this threshold will be dominated by film flow or vapor
phase transport. As originally suggested by Muskat and
Meres’, liquid transport below the residual should be
modeled using source/sink terms in the mass balance, rather
than via ad hoc extensions to the Darcy model. While the
relative permeability of the gas phase approaches a maximum
at residual liquid saturation, transport of vapor may be
reduced at saturations below residual by additional vapor
pressure lowering.

To date, PFLOTRAN has been programmed with the
analytic expressions from Brooks-Corey and van Genuchten,
and while residual values are allowed to differ in the two
expressions, the resulting relative permeability is not
consistent with either equations 5 or 6. Provided that the
piecewise extension to the capillary pressure model occurs at
a large capillary pressure, the impact on relative permeability
is a minor perturbation as it is inversely proportional to
square of capillary pressure.

RESULTS

Allowing the residual saturations to be dissimilar and
extending the capillary pressure below residual was found to
be sufficient to resolve the numerical instability in the UZ
model. Using a reference case with 24 pressurized water
reactor spent fuel waste packages, simulations were
conducted on Sandia National Laboratories Skybridge
cluster, which hosts Intel Xeon processors (E5-2670 2.60
GHz, 20 MB L2 caches). Using the conventional Newton
solver and the truncated or flat capillary pressure, the
simulation failed to complete in 48 hours. Using either the
linear or exponential extensions, such simulations completed
in 33.8 and 31.8 minutes respectively.

In addition to modifying the physical model, recently, a
more robust numerical method, Newton Trust Region Dogleg
Cauchy, was implemented into PETSc to be utilized by
PFLOTRAN!®. This algorithm, the UZ simulation with the
capillary pressure extension completed despite the
discontinuity in the capillary pressure derivative. It
nevertheless requires considerably more computational
resources (551.0 minutes). Combining NTRDC with smooth
capillary extensions, but the original relative permeability
expression provided the highest performance, with
simulations requiring only 19.4 or 18.3 minutes., reducing
computation time by approximately 42% over the traditional
Newton solver.

CONCLUSIONS

In this work, the basis for the decoupling of residual
saturation for relative permeability from the residual
saturation for capillary potential has been presented. While
previously described as an ad hoc approach, this approach is
supported by the original works of Burdine and Mualem.
Rather, the need for an infinite capillary pressure appears as

a matter of convenience in the Brooks-Corey and van
Genuchten models.

In doing so, the cessation of liquid flow at residual
saturation can be adequately modeled in terms of relative
permeability alone. This permits capillary pressure to be
described by any number of extensions to the empirical
models below this relative permeability residual. While more
robust numerical algorithms can resolve capillary pressure
models with discontinuities in slope, it is nevertheless
advantageous to use smooth extensions where possible.
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