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Abstract—Periodic capture of comprehensive, usable I/O per-
formance data for scientific applications requires an easy-to-use
technique to record information throughout the execution without
causing substantial performance effects. In this paper, we intro-
duce a unique framework that provides low latency monitoring
of I/O event data during run time. We implement a system-
level infrastructure that continuously collects I/O application data
from an existing I/O characterization tool to enable insights into
the I/O application behavior and the components affecting it
through analyses and visualizations. In this effort, we evaluate
our framework by analyzing sampled I/O data captured from
two HPC benchmark applications to understand the I/O behavior
during the execution life of the applications. The result shows the
utility of capturing I/O application performance and behavior.

I. INTRODUCTION

As more scientific I/O applications are developed and
used, the need for improved fidelity and throughput of these
applications is more pressing than ever. Much design effort
and investment is being put into improving not only the
I/O performance of applications but also the performance
of related system components (e.g., filesystem elements and
networks). Being able to identify, predict and analyze I/O
behaviors are critical to ensuring parallel storage systems are
utilized efficiently [1].

Variations in I/O performance for an application can be
caused by aggregate contention for resources such as file
systems and networks. Congestion in these resources may even
be caused by the access patterns of the affected application
itself [2]. This variation makes it difficult to determine the
root cause of I/O related problems and get a thorough under-
standing of throughput for system-specific behaviors and I/O
performance in similar applications across a system.

Generally, the I/O performance is analyzed post-run by
application developers, researchers and users using regression
testing or other I/O characterization tools that capture the
applications’ behavior. An example of one of these tools is
Darshan, which monitors and captures I/O information on
access patterns from HPC applications [3]. Efforts to identify
the origin of I/O performance usually come from the analyzed
data collected by these I/O characterization tools. Correlations
are then made with the environment in which they were run
or by comparison with other analyses from other application
runs. However, this approach does not enable identification of
temporally significant variation of I/O performance occurs dur-
ing an application run or correlations between such behavior

and the file system state, network congestion or other resource
contentions.

Execution logs that provide absolute timestamps (e.g. time-
series) enable users and developers to perform temporal perfor-
mance analyses, and better understand how the changing state
of system components affects I/O performance and variation,
as well as provide further insight into the I/O patterns of ap-
plications. Our Darshan LDMS Integration approach provides
time series logs of application I/O events and incorporates
absolute timestamps to provide a runtime timeseries set of
application I/O data. This paper makes the following contri-
butions:

• Describes the approach used to expose absolute times-
tamp data from an existing I/O characterization tool;

• Provides a high level overview of the implementation
process and other tools used to collect application I/O
data during run time;

• Demonstrates use cases of the Darshan-LDMS Connector
for two applications with distinct I/O behavior on a
production HPC system;

• Utilizes Darshan LDMS data to identify and better un-
derstand any root cause(s) of application I/O performance
variation run time;

• Presents how this new approach can be integrated with
other tools to benefit users to collect and assist in the
detection of application I/O performance variances across
multiple applications.

II. BACKGROUND

A. Darshan

Darshan is a lightweight I/O characterization tool that
captures I/O access pattern information from HPC applica-
tions. [3]. This tool is used to tune applications for increased
scientific productivity or performance and is suitable for
continuous deployment for workload characterization of large
systems [4]. It provides detailed statistics about various types
of file accesses made by MPI and non-MPI applications,
which can be enabled or disabled as desired. These types
include POSIX, STDIO, LUSTRE and MDHIM for non-MPI
applications and MPI-IO, HDF5 and some PnetCDF for MPI
applications [5]. This functionality provides users with a sum-
mary of I/O behavior and patterns from an application post-
run. It does not provide insights into run time I/O behavior
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and patterns or concurrent system conditions. This may limit
the ability to use this data to identify the root cause(s) of I/O
variability and when during an application run this occurs.

B. LDMS

The Lightweight Distributed Metric Service (LDMS) is a
low-overhead production monitoring system that can run on
HPC machines with thousands of nodes collecting system data
via LDMS daemons running data sampling plugins. Data is
typically transported from these sampler daemons to aggrega-
tor daemons using a Remote Direct Memory Access (RDMA)
transport to minimize CPU overhead on comopute nodes. Final
aggregators in a transport chain store the data to a database.
System state insights are achieved by LDMS’s synchronous
sampling with absolute timestamps. This provides a snapshot-
like view of system conditions. Transport is performed in a tree
structure where the samplers (e.g. leaves) determine the kind
of data sampled, the intermediate aggregators are used for data
transport, and the last level aggregators are used for storage.
There are a variety of sampler plugins that can be used to
collect different system metrics (e.g. memory, CPU, network).
Additional functionalities exist in LDMS, such as the Streams
publish-subscribe functionality, that enable the aggregation
of event-based application data. Our framework utilizes this
publish-subscribe functionality and the LDMS Streams API
to transport Darshan’s I/O event data that is collected from
applications during execution time and store it, along with
absolute timestamps, in a database.

C. DSOS

The Distributed Scalable Object Store (DSOS) is a database
designed to manage large volumes of HPC data [6] efficiently.
LDMS uses it to support high data injection rates to enhance
query performance and flexible storage management. DSOS
has a command line interface for data interaction and various
APIs for languages such as Python, C, and C++. A DSOS
cluster consists of multiple instances of DSOS daemons,
dsosd, that run on multiple storage servers on a single cluster.
The DSOS Client API can perform parallel queries to all dsosd
in a DSOS cluster. The results of the queried data are then
returned in parallel and sorted based on the index selected by
the user. This database and it’s Python API are used in this
framework for storing and querying the I/O event data.

D. HPC Web Services

The HPC Web Services is an analysis and visualization
infrastructure for LDMS [7], that integrates an open-source
web application, Grafana [8], with a custom back-end web
framework (Django) which calls python modules for anal-
ysis and visualization of HPC data. Grafana is an open-
source visualization tool tailored towards time-series data from
various database sources. Grafana provides charts, graphs,
tables, etc. for viewing and analyzing queried data in real
time. Using a custom DSOS-Grafana API, the python analysis
modules to be used can be specified in a Grafana query. Once
specified, that python analysis transforms any data queried

from the dashboard before returning the data to Grafana.
Grafana enables a wide variety of visualization options for the
data and allows users to save and share those visualizations to
others. Our framework leverages the HPC Web Services for
run time analyses and visualizations of I/O event data collected
by Darshan.

III. DARSHAN LDMS INTEGRATION

Darshan collects I/O application data for post-run analysis,
and LDMS has a low overhead sampling capability supported
by fast storage and a modern web interface. We chose to
enhance both Darshan and LDMS by adding a sampling capa-
bility that acts as a connector between these two applications
to support I/O runtime data sampling and visualization. In
this section, we present a high-level overview of the design
and implementation of the Darshan LDMS Integration. The
components used to create this infrastructure are:

• The I/O characterization tool, Darshan, to collect appli-
cation I/O behavior and patterns.

• LDMS to provide and transport live run time data feed
about application I/O events. [9]

• DSOS to store and query large amounts of data generated
on a production HPC system. [6]

• HPC Web Services to present run time I/O data to enable
the user to create new meaningful analyses [7].

LDMS is used to efficiently and scalably collect and trans-
port synchronous and event-based data with low-overhead.
Two key functionalities the Darshan LDMS Integration will
leverage in order to create the Darshan-LDMS Connector
are the LDMS streams publish-subscribe bus and LDMS
transport [10]. In this work, we enhanced LDMS to support
application I/O data injection and store it to DSOS. We also
modified Darshan to expose an absolute timestamp and publish
run time I/O events for each rank to LDMS Streams. This
integration will be described in detail later in paper.

DSOS enables the ability to query the timestamped appli-
cation I/O data through a variety of APIs while Grafana will
provide a front-end interface for visualizing the stored data that
has been queried and analyzed using Python based modules
on the back-end. With these tools, users can view, edit and
share analyses of the data as well as create new meaningful
analyses.

IV. INTEGRATION TOOLS

A. Darshan

Darshan is divided into two main parts: 1) darshan-runtime
which contains the instrumentation of the characterization tool
and produces a single log file at the end of each execution
summarizing the I/O access patterns used by the applica-
tion [11]. 2) darshan-util which is intended for analyzing log
files produced by darshan-runtime [11]. The Darshan LDMS
Integration focuses on the darshan-runtime [5] as this is where
the source code of I/O event data is recorded by Darshan.

Darshan tracks the start, duration and end time of an appli-
cation run via the C function clock gettime() and converts the
result into seconds and passes the result to a struct that is then



Fig. 1: Overview of the LDMS event data collection. Applica-
tion data is pushed by publishing data to the LDMS Streams
which is then pushed through the LDMS transport to the
LDMS Streams LDMS aggregator (right) where the data is
pushed to the streams subscriber (Tag A) and stored to a
database.

used to report the summary log files [12]. Therefore, in order
to retrieve the absolute timestamp and include it into the I/O
event data during run time, a time struct pointer was added to
the function call that used clock gettime() in darshan-runtime.
This pointer was passed through all of Darshan’s modules and
the absolute timestamp was collected. This was the preferred
method as it required minimal changes to Darshan’s source
code and no additional overhead or latency between the
function call and recording of the absolute timestamp.

B. LDMS Streams

LDMSD refers to an LDMS daemon that provides the
capability of data collection, transport, and/or storage. An
LDMSD’s configuration, including plugins, determines its
functionality and capabilities [9]. Daemons on the compute
nodes run sampler plugins and transport is achieved through
multi-hop aggregation. In this work we utilized two levels of
LDMS aggregator daemons [9] with the second level utilizing
the DSOS storage plugin to store the I/O event data.

The Darshan LDMS Integration leverages the LDMS trans-
port to support the injection and transport of application I/O
data which requires a push-based method to reduce the amount
of memory consumed and data loss on the node as well as
reduce the latency between the time in which the event occurs
and when it is recorded. A pull-based method would require
buffering to hold an unknown number of events between
subsequent pulls. Also, the transported data format needs to
support variable-length events because the I/O event data will
vary in size.

We created an I/O targeted LDMS streams store that utilizes
the LDMS publish-subscribe bus capability, LDMS Streams,
to publish I/O event data. LDMS Streams is intended for
publishing and subscribing to an LDMS streams tag. This
tag needs to be specified in LDMS daemons and plugins in
order to publish event data to LDMS Streams and receive this

Fig. 2: Overview of the Darshan-LDMS Connector design and
how it collects I/O data for each read, write, open and close
events per rank from Darshan. The LDMS library must be
linked against the Darshan build in order to utilize the LDMS
Streams functionality and store plugins.

published LDMS Streams data that match the tag. This process
and the push-based method can be seen in Figure 1. Event
data can be specified as either string or JSON format. The
LDMS Streams API was modified to support long application
connections and message injections. LDMS Streams uses best
effort without a reconnect or resend for delivery and does not
cache it’s data so the published data can only be received after
subscription. LDMS Streams enables data from any source to
be injected into the LDMS transport.

C. Darshan Connector

The most recent version of Darshan allows for full tracing
of application I/O workloads using their DXT instrumentation
module which can be enabled and disabled as desired at
runtime. DXT provides high-fidelity traces for an application’s
I/O workload vs Darshan’s traditional I/O summary data and
currently traces POSIX and MPI-IO layers [5]. Our design
leverages the additional I/O tracing Darshan’s DXT module
plugin provides through the new Darshan-LDMS Connector
capability.

The Darshan-LDMS Connector functionality collects both
DXT data and Darshan’s original I/O data and optionally
publishes a message in JSON format to the LDMS Streams
interface as seen in Figure 3. The absolute timestamp is also
included in this message with the given name ”timestamp”.
LDMS then transports the I/O event data across the aggre-
gators and stores it to a DSOS database where Grafana can
access and query it. the Darshan-LDMS Connector currently
uses a single unique LDMS Stream tag for this data source.
For the file level access types that DXT does not trace or that
have different name-value pairs, a value of ”N/A” or ”-1” is
given in the JSON message. For example, Darshan’s POSIX
module (IEE standard that establishes a set of guidelines



Fig. 3: Output of a MPI-IO Darshan test run in the JSON
format (top image), and the CSV file header (bottom). The
name:value pairs in light blue indicate meta data stored,
while the light purple indicates the file level access data not
applicable to POSIX. The "seg" is a list containing multiple
name:value pairs.

for compatibility and portability between operating systems)
traces the number of bytes read and written per operation
(e.g. "max_byte") and number of times access alternated
between reads and writes (e.g. "switches"). The I/O op-
erations shown in Figure 3 are ”open” and ”close” which
are not applicable to these traces. Therefore, "max_byte"
and "switches" are not present in Darshan and their
corresponding JSON message names are set to "-1" by the
Darshan-LDMS Connector.

Darshan has a large number of metrics it uses for I/O tracing
and post-processing calculations. Currently our framework
collects a subset of these metrics to publish to LDMS Streams,
as presented in Figure 3. These metrics will provide the ability
to create new I/O behavior analyses and visualizations to get
further insights of the application I/O behavior, and reveal
correlations between I/O performance variability and system
behavior. Table I depicts the names and definitions of each
metric in the JSON file. Depending on the "type" input, the
absolute directory of the Darshan file output and executable
will be recorded and published to LDMS Streams. If "type"
is set to "MET" (e.g. ”meta”), the absolute directories will be
recorded. Otherwise, it will receive the value ”N/A” if set to
"MOD"(e.g. ”module”). The "type" will be set to ”MET” for
open I/O events, which are the Darshan I/O records that have
permanent values during the application execution, such as the
rank, file and node name. The "type" is set to ”MOD” for all
other I/O events to reduce the message size and latency when
sending the data through an HPC production system pipeline.

D. Storage: DSOS Database

DSOS is built on the Scalable Object Store (SOS)
database [6] and was intended to address the domain-specific
needs of large-scale HPC monitoring. It was chosen as the
preferred monitoring database at Sandia because it allows for
interaction via a command line interface which allows for
fast query testing and data examination. DSOS also provides
scalable data ingest and the ability to query large volumes
of data which is required for the large amounts of data to

Fig. 4: Overview of the Darshan LDMS Integration where
the Darshan-LDMS Connector is used to intercept the I/O
behavior Darshan is collecting utilizes the various tools to
publish, store, analyze and view runtime I/O behavior.

be ingested and stored. To sort though the published LDMS
Streams data, combinations of the job ID, rank and timestamp
are used to create joint indices where each index provided
a different query performance. An example of this is using
job_rank_time which will order the data by job, rank, and
timestamp. This index can provide better performance when
searching for a specific job within the database.

E. Analysis and Visualization: HPC Web Services

The HPC Web Services [7] is an infrastructure that provides
the analysis and visualization components of our approach.
The front-end for the service website is Grafana [8] and
the back-end consists of Python analysis modules. The HPC
Web Services also provide instant analysis where data can be
analyzed and viewed in real time as opposed to the traditional
method of querying the results of analyzed data from a
separate database.

Grafana is an open-source visualization application that
provides various charts, graphs and alerts for supported data
sources. It can support multiple data formats but is best suited
for timeseries data. It has storage plugins for many database
technologies in order to query and render data from multiple
data sources. The Darshan LDMS Integration implemented a
storage plugin for the DSOS database in order to query this
data and visualize it on the Grafana web interface [8] using
the HPC Web Services infrastructure. An overview of the this
integration can be seen in Figure 4.

Python analysis modules are used to produce meaningful
visualizations on the queried data from the DSOS database.
With these modules, queried data is converted into a pan-
das dataframe to allow for easier application of complex
calculations, transformations and aggregations on the data.
The type of analysis module is specified in the Grafana
web interface. These python modules applied to our Darshan
LDMS Integration data will demonstrate how runtime I/O data
can provide further insights and understanding into application



uuid User ID of the job run
exe Absolute directory of the application executable
module Name of the Darshan module data being collected
ProducerName Name of the compute node the application is running on
switches Number of times access alternated between read and write
file Absolute directory of the filename where the operations are performed
rank Rank of the processes at I/O
flushes Number of ”flush” operations. It is the HDF5 file flush operations for H5F, and the dataset flush operations for H5
record_id Darshan file record ID of the file the dataset belongs to
max_byte Highest offset byte read and written per operation
type The type of JSON data being published: MOD for gathering module data or MET for gathering static meta data
job_id The Job ID of the application run
op Type of operation being performed (i.e. read, write, open, close)
cnt The count of the operations performed per module per rank. Resets to 0 after each ”close” operation
seg A list containing metrics names per operation per rank
seg:pt_sel HDF5 number of different access selections
seg:dur Duration of each operation performed for the given rank (i.e. a rank takes ”X” time to perform a r/w/o/c operation)
seg:len Number of bytes read/written per operation per rank
seg:ndims HDF5 number of dimensions in dataset’s dataspace
seg:reg_hslab HDF5 number of regular hyperslabs
seg:irreg_hslab HDF5 number of irregular hyperslabs
seg:data_set HDF5 dataset name
seg:npoints HDF5 number of points in dataset’s dataspace
seg:timestamp End time of given operation per rank (in epoch time)

TABLE I: Metrics defined in the JSON file published to the Darshan LDMS Integration.

I/O behavior, patterns, performance variability, and any corre-
lations these may have with behaviors of system components.

V. EXPERIMENTAL METHODOLOGY

This section presents our experimental methodology to eval-
uate our framework using two applications: HACC-IO, and the
Darshan MPI-IO benchmark. We performed the experiments
on a Cray HPC cluster using NFS and Lustre file systems.

A. Applications

• HACC-IO is the I/O proxy for the large scientific appli-
cation: Hardware Accelerated Cosmology Code (HACC),
an N-body framework that simulates the evolution of
mass in the universe with short and long-range interac-
tions [13]. The long-range solvers implement an under-
lying 3D FFT. HACC-IO is an MPI code that simulates
the POSIX, MPI collective, and MPI independent I/O
patterns of fault tolerance HACC checkpoints. It takes
a number of particles per rank as input, writes out the
simulated checkpoint information into a file, and then
reads it back for validation. We ran HACC-IO with
several configurations to simulate different workloads on
the NFS and Lustre file systems. Table IIb shows the
different run configurations.

• MPI-IO-TEST benchmark is a Darshan utility that exists
in the code distribution to test the MPI I/O performance
on HPC machines. It can produce iterations of messages
with different block sizes sent from various MPI ranks.
It can also simulate collective and independent MPI I/O
methods. We experimented with NFS vs. Lustre and col-
lective vs. independent MPI I/O. We ran the benchmark
with four configurations on 22 nodes and set the number

of iterations to 10 and the block size to 16MB. Table IIa
shows the different configuration used.

B. Evaluation System
We experiment using several I/O loads on a Cray XC40

system (Voltrino) at Sandia National Laboratories. The system
has 24 diskless nodes with Dual Intel Xeon Haswell E5-
2698 v3 @ 2.30GHz 16 cores, 32 threads/socket, 64 GB
DDR3-1866MHz memory. The interconnect is the Cray Aries
with a DragonFly topology. The machine connects to two file
systems: a network file system (NFS) and a Lustre file system
(LFS).

C. Enviroment
We configured the HPC cluster Voltrino with LDMS sam-

plers on the compute nodes and one LDMS aggregator on
the login node. LDMS uses the Cray UGNI RDMA interface
to transfer Darshan streams data, and other system state
metrics, from the compute nodes to the aggregator on the login
node. The aggregator on the login node transmits the data to
another LDMS aggregator on a monitoring cluster, Shirley, for
analysis and storage. Shirley also hosts the HPC web services
consisting of the Grafana application and DSOS database.

We ran the applications with our enhanced Darshan library
that wraps the I/O functions dynamically, for each MPI rank,
to sample I/O data and transmit it, using the streams API,
to the LDMS running on the node local to the transmitting
MPI rank. We set the LD_Preload environment variable
to point to the Darshan library shared objects, which contain
the sampling wrappers, prior to running the applications.

VI. RESULTS

This section describes the significance of collecting run
time application I/O event data using our Darshan LDMS



Integration approach. We present performance analyses that
show how the new metrics, captured in a time series along
with absolute timestamps, can provide more insight into I/O
behavior than summary statistics alone. Additionally, such
representation can facilitate the correlation of I/O performance
with system component behaviors (e.g., network and filesys-
tem congestion) which can also be represented in a Grafana
dashboard.

Without the Darshan-LDMS Connector, it would not be
possible to create the meaningful analyses and visualizations
shown in Figures6-8. In contrast, Figure 5 shows the aggregate
I/O behavior which can be created with Darshan alone. This
figure does not provide the timeseries data and thus in-depth
insights into I/O behavior like the Darshan LDMS Integration
does. Note that the Darshan eXtended Trace (DXT) plugin
that we leverage in this work does provide time series capture
capability. However, due to memory constraints it will not
typically be able to capture these time series for a whole job
run. Additionally the timestamps in the DXT time series are
relative to the job start rather than absolute.

A. Experiments and Overhead

Each application was tested on both the Lustre and the NFS
file system with several configurations for each application
run. All application experiments were repeated 5 times for
both the Darshan-LDMS Connector and Darshan only (i.e.
no LDMS implementation) scenarios. In total there were 40
experiments run with a separate job submission for each. The
details of these runs are shown in Table II.

The average of the 5 execution times (e.g., Average Runtime
(s)) for Darshan and the Darshan-LDMS Connector (dC in
the table) was used to calculate the percent overhead of
LDMS. Because of the system availability, the runtimes with
Darshan were only performed and recorded 1-2 weeks before
the experiments with the Darshan-LDMS Connector. As seen
from Table IIa, the overhead of LDMS on Darshans’ MPI-
IO-TEST benchmark for three experiments shows a decrease
in overall runtime with the Darshan-LDMS Connector. Since
this is not feasible, the runtime improvement seen with the
Darshan-LDMS Connector is most likely due to the NFS
and Lustre file systems performance variation where (and
when) these experiments were performed. This behavior will
be further investigated by conducting a new set of randomized
experiments during dedicated time on a system to minimize
variability due to competing applications and the effects of
resource performance variations.

The HACC-IO application, seen in Table IIb was similar to
the MPI-IO-TEST benchmark regarding a shorter runtime with
the Darshan-LDMS Connector for both file systems. Again,
this is most likely due to differences in Lustre and NFS
file system loading during different experiments. The other
two experiments, NFS with 10 million particles and Lustre
with 5 million particles, show an overhead of 0.84% and
12.01%, respectively. The experiment with 0.84% overhead
indicates no significant effect on the applications runtime. In
contrast, the experiment with 12.01% overhead shows a longer

MPI-IO-TEST
File System NFS Lustre

Nodes 22 22
Block Size 16*1024*1024 16*1024*1024
Iterations 10 10
Collective Yes No Yes No

Avg. Messages 50390 6397 25770 15676
Rate (msgs/sec) 37 7 95 38

Average Runtime(s)
Darshan 1376.67 880.46 249.97 428.18

dC 1355.35 858.68 270.98 414.35
% Overhead -1.55% -2.47% 8.41% -3.23%

Standard Deviation(s)
Darshan 48.18 29.43 2.85 31.49

dC 96.63 76.58 1.07 8.17
% Variance -5.25% -8.10% 9.22% 2.39%

(a) MPI-IO

HACC-IO
File System NFS Lustre

Nodes 16 16
Particles/Rank 5000000 10000000 5000000 10000000
Avg. Messages 1663 1774 1995 /1711
Rate (msgs/sec) 2 1 3 2

Average Runtime(s)
Darshan 882.46 1353.87 417.14 1616.87

dC 775.24 1365.24 467.24 1027.44
% Overhead -12.15% 0.84% 12.01% -36.45%

Standard Deviation(s)
Darshan 37.08 87.24 25.03 154.53

dC 53.68 46.97 142.77 256.62
% Variance -14.65% 4.08% -17.25% -47.36%

(b) HACC-IO

TABLE II: Overview of each experiment configuration, target
file system, average elapsed time(s) and standard deviation(s)
from 5 runs, calculated overhead of LDMS and variance of
the runs.

runtime with the Darshan-LDMS Connector which is most
likely due to performance variation in both file systems which
we will investigate in the near future. The variance across
all experiments is so large that the performance overhead
calculations are inconclusive.

B. Analysis and Grafana Output

Figure 5 shows the number of I/O requests per node for
close and open operations for two jobs using the same input for
the HACC-IO application on Lustre using 10 million particles
per rank. The root cause of this variation is under investigation
as we would expect identical runs to have identical behavior
with respect to location and number of open and close events.

Figure 6 shows the duration of the reads and writes per
rank for each execution (job_id metric) of the MPI-IO
benchmark without using collective operations. We notice
a similar behavior for the I/O operations duration for all
jobs except the second one (job_id 2). It presents a mean
duration of 6.75 seconds for reads and 78s for writes, while
the other jobs had a mean duration of 0.05s for reads and 54s
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Fig. 5: The amount of I/O operations for HACC-IO using the
same input.
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Fig. 6: Jobs for the MPI-IO benchmark without collective
operations presented variability in the number and duration
of I/O operations.

for writes. With the collected logs, we can perform a spatial
performance analysis to understand the variability in the I/O
behavior per system component, in this case, per node and
rank.

Using the absolute timestamps collected we can temporally
view where, in the application execution, the variability of a
job occurred and better understand the I/O behavior. Figure
7 presents the duration and occurrence of I/O operations
throughout the MPI-IO benchmark for job_id 2. We can
identify the application I/O pattern of performing writes during
the ten iterations, and the likewise the ten read iterations at the
end though these are smaller and less distinct than the writes.
It can also be seen that in general writes became progressively
slower over the application execution time.

The same job is also represented in Figure 8 using the
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Fig. 7: Distribution of read and write operations throughout
the execution time for MPI-IO job_id 2, can reveal the
application I/O pattern, and where in time, relative to the
beginning of the application execution, there were faster and
slower operations.

Grafana interface. This figure presents an aggregate time series
across all ranks of the number of I/O writes (blues), reads
(green), and bytes sent. This time series shows the read and
write behaviors throughout execution time which provides
further insights into I/O occurrences and size. For example, we
can identify the two instances in which a write above 20GB
occurs and the single instance in which a read above 10GB
occurs. A developer or user can then use this information to
create new and meaningful analyses about their applications
I/O operations and patterns. Grafana offers an interactive front-
end view where users can easily filter to visualize specific time
intevals and metrics. Such representation using the absolute
timestamps facilitates the correlation of I/O performance with
system component state and behavioral characteristics (e.g.,
congestion in networks and filesystems) which can also be
represented in Grafana dashboards.

Without the kind of data provided by the Darshan-LDMS
Connector, it would not be possible to create the meaningful
analyses and visualizations shown in Figures6-8. In contrast,
Figure 5 shows the aggregate I/O behavior which can be
created with Darshan alone without the DXT plugin. This
figure does not illustrate the timeseries data and thus, in-depth
insights into I/O behavior like the Darshan LDMS Integration
does.

VII. RELATED WORK

Extensive work has been performed to improve I/O per-
formance and behavior. The PASSION Runtime Library for
parallel I/O proposed by Syracuse University [14] works to
optimize I/O intensive applications through Data Prefetching
and Data Sieving. The authors of ”IOPin: Runtime Profiling of
Parallel I/O in HPC Systems” propose dynamic instrumenta-
tion to show the interactions between a parallel I/O application
and the file system [15]. ”Design and Implementation of a
Parallel I/O Runtime System for Irregular Applications” [16]



Fig. 8: Graphana visualization of MPI-IO job_id 2 writes (blue) and reads (green) operations and number of bytes per
operation, using the absolute timestamp metric collected with Darshan LDMS Integration.

presents two different collective I/O techniques for improving
I/O performance.

Darshan was our preferred I/O characterization tool because
the Darshan’s eXtended Tracing (DXT) [5] instrumentation
module provides high-fidelity traces for an application’s I/O
workload vs Darshan’s traditional I/O summary data [5]. It also
collects timestamped data which made it possible to expose
the absolute timestamp for collecting runtime timeseries data.

Other open-source I/O tools that collect runtime timeseries
data do exist. The linux command, iostat [17] collects system
I/O device statistics and generates reports about the I/O loads
between physical disks. The ioprof [18] tool provides insights
into I/O workloads. However, these tools do not provide
the extensive I/O tracing capability (e.g. detailed statistics of
individual I/O operations) that is provided by this framework.

This work differs from these approaches because we lever-
age and enhance existing applications and tools to design an
infrastructure that creates runtime analyses and visualizations
from detailed traces of application I/O events during execution
time. The Darshan LDMS Integration integrates LDMS’s
absolute timestamped data collection and storage capabili-
ties [10] with Darshan [4] to collect runtime application I/O
data. Further, our choice of the DSOS database for storage of
our event-based application I/O data enables efficient queries
of large volumes of data as well as python analysis modules
and an open-source web application for runtime analyses and
visualizations.

VIII. FUTURE WORK

This paper covered the design and implementation of the
Darshan-LDMS Connector which collected I/O data from the
Darshan I/O characterization tool to create new time series
data sets that enable further insights into I/O behavior and
patterns. Five key components were used to develop this
design: the application I/O event data collector (Darshan),
lightweight data transport (LDMS Streams), efficient stor-
age (DSOS), analysis (Python modules), and visualization

(Grafana). Results of this design add enhancements to both
LDMS and Darshan tools as well as create new insights and
provide a better understanding of application I/O performance
and behavior.

Our next steps are to further expand the Darshan-LDMS
Connector and it’s capabilities by including more I/O event
data and demonstrating advanced insights into correlations
between I/O performance and system behavior and providing
the capability for overhead reduction through sampling and/or
aggregation techniques that still provide enough resolution
for a user to gain run time insight into the I/O behavioral
characteristics of an application and to correlate these char-
acteristics with those of related system components. We will
also be performing more overhead analysis over a variety of
I/O intensive applications.

The Darshan LDMS Integration will be made available as
an optional ”module” plugin to the Darshan tool so Darshan
users can collect time series data without increasing memory
impact on compute nodes and better understand applications
I/O performance across HPC systems and clusters.
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