

Exceptional service in the national interest

2022 Sandia FORCEE Summer Research Symposium

Estimating Seismic Source Time Functions using Time Domain Inversion with Uncertainty Quantification

Presented by: Daniel Wells

Project Mentors and Coauthors: Christian Poppeliers, Leigh Preston

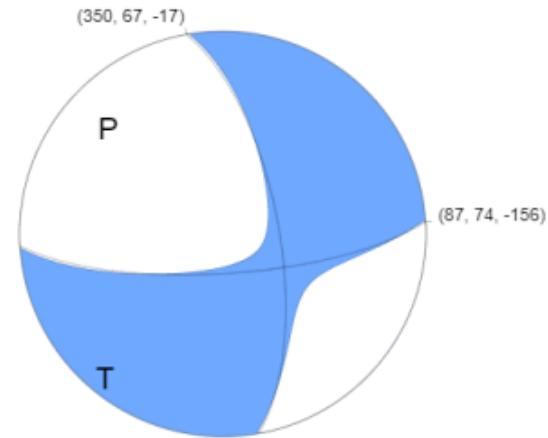
2022 FORCEE Symposium

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

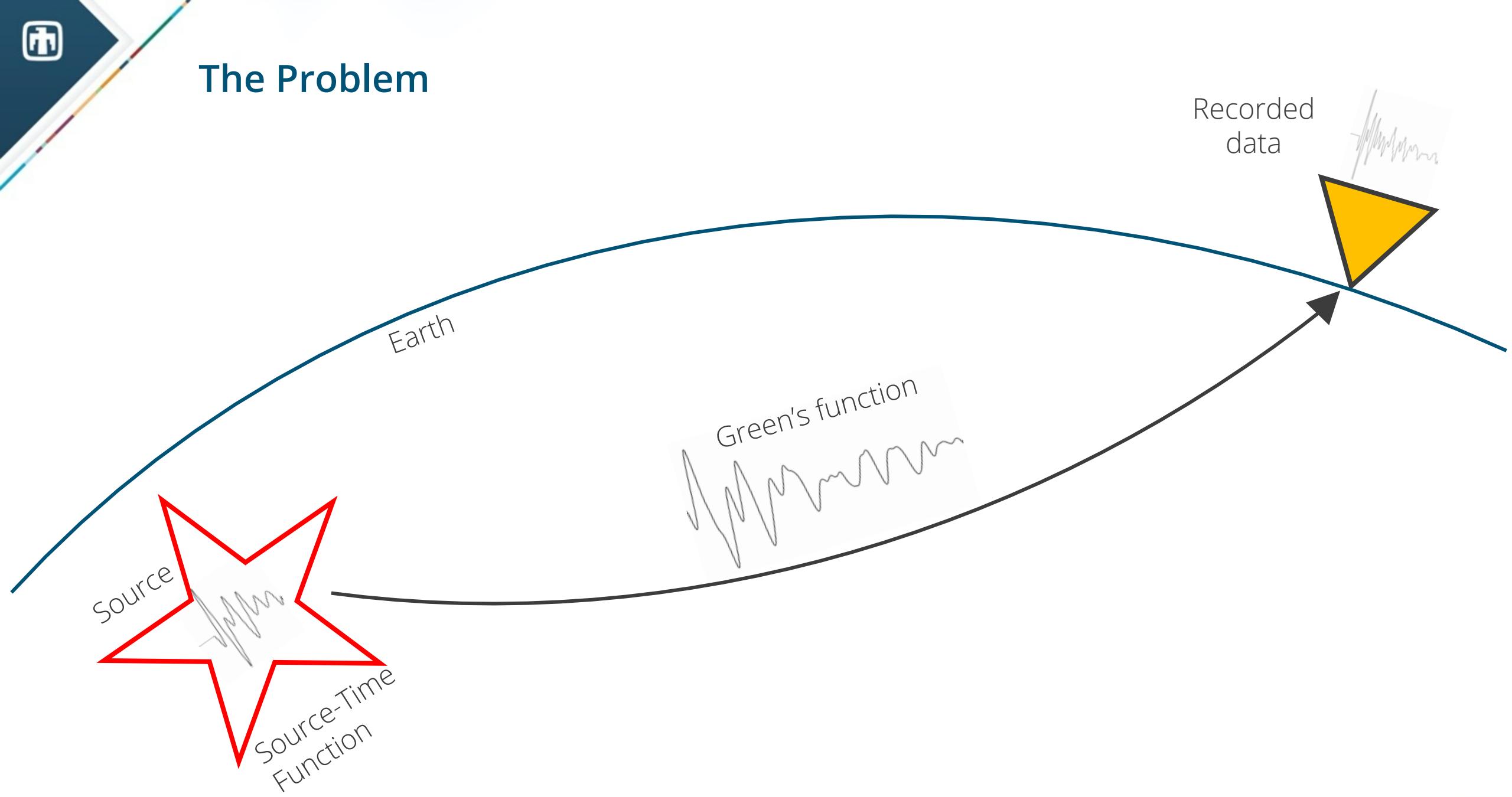
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

The Problem

- Problem Itself
 - Compute 6 independent Source-Time Functions
 - In the time domain
 - Fully quantify uncertainty
- Importance
 - Better estimate data and model limitations
 - Understand what we don't know, as much as what we do
 - Understand limitations when using seismic sources for practical applications
 - event discrimination (earthquake vs explosion)

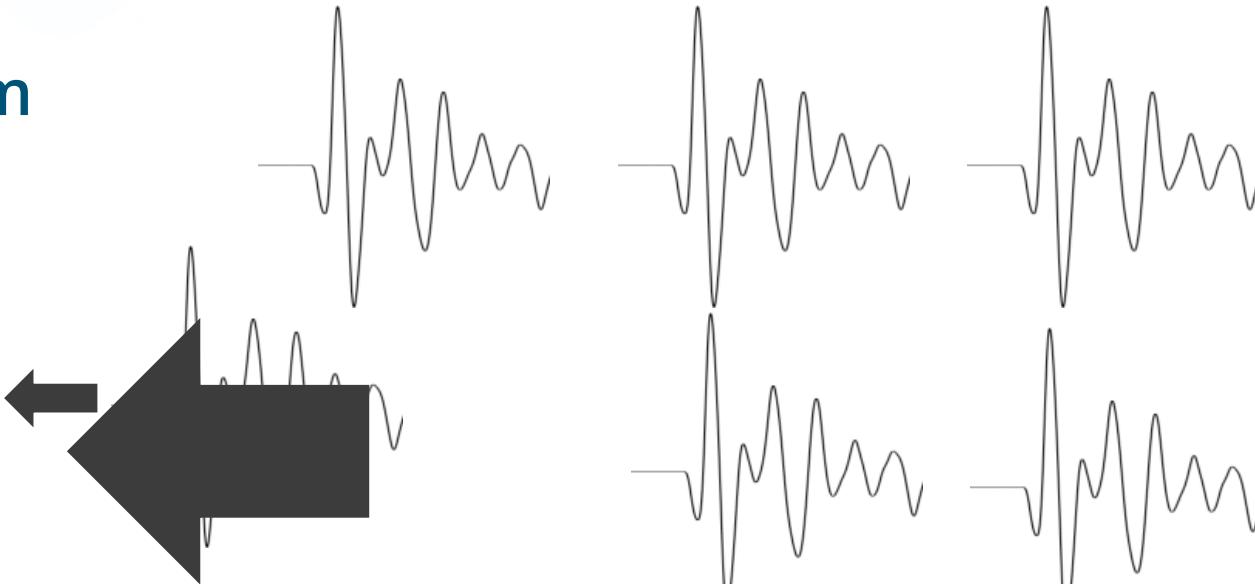


The Problem



The problem

$$M_{nj} = \begin{bmatrix} M_{xx} & M_{xy} & M_{xz} \\ M_{yx} & M_{yy} & M_{yz} \\ M_{zx} & M_{zy} & M_{zz} \end{bmatrix}$$

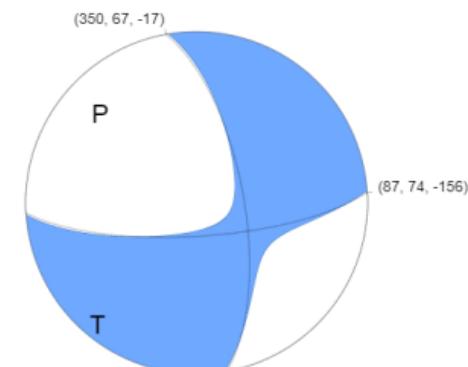


1 coefficient STF, function of t 1 basis function

$$M_{nj}(t) = M_{nj} \phi(t - t_o) \quad \text{Assumes 1 STF}$$

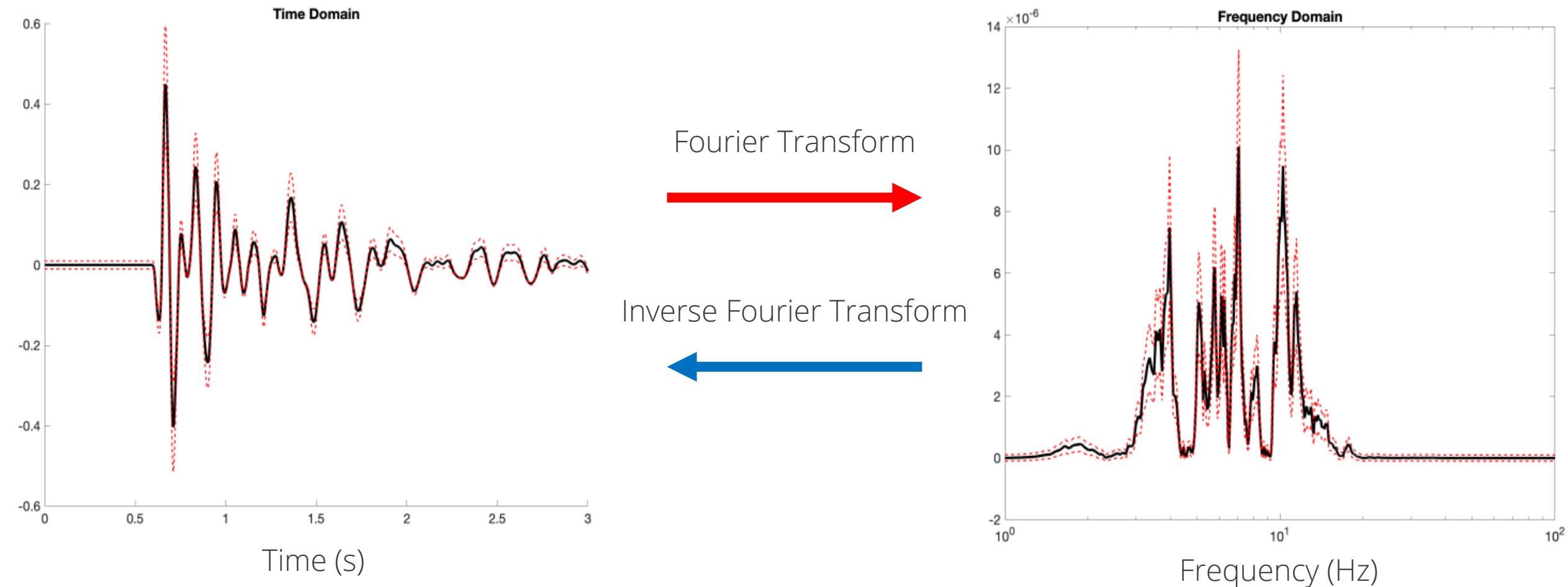
STF, function of t
N coefficients N basis functions

$$M_{nj}(t) = \sum_{k=1}^N s_{knj} \phi_k(t - t_o) \quad \text{Assumes 6 different STFs, built with N basis functions and N coefficients}$$



Prior Work

Time and frequency domain – without full uncertainty quantification



Methods – Least Squares

$$\begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \\ \vdots \\ u_{2n-1} \end{bmatrix} = \begin{bmatrix} G_1 & 0 & 0 & 0 \\ G_2 & G_1 & 0 & 0 \\ \vdots & G_2 & G_1 & 0 \\ G_n & \vdots & G_2 & G_1 \\ 0 & G_n & \vdots & G_2 \\ 0 & 0 & G_n & \vdots \\ 0 & 0 & 0 & G_n \end{bmatrix} \begin{bmatrix} m_1 \\ m_2 \\ \vdots \\ m_n \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{u}_1 \\ \mathbf{u}_2 \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} \mathbf{m}_1 \\ \mathbf{m}_2 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{u}_1 \\ \mathbf{u}_2 \\ \vdots \\ \mathbf{u}_{N-1} \\ \mathbf{u}_N \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1M-1} & A_{1M} \\ A_{21} & A_{22} & \cdots & A_{2M-1} & A_{2M} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ A_{N-1,1} & A_{N-1,2} & \cdots & A_{N-1,M-1} & A_{N-1,M} \\ A_{N,1} & A_{N,2} & \cdots & A_{N,M-1} & A_{N,M} \end{bmatrix} \begin{bmatrix} \mathbf{m}_1 \\ \mathbf{m}_2 \\ \vdots \\ \mathbf{m}_{M-1} \\ \mathbf{m}_M \end{bmatrix}$$

Forward problem:

$$\mathbf{u} = \mathbf{A}\mathbf{m}$$

Inverse problem:

$$\mathbf{m} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{u}$$

Regularized, smoothed Inverse problem:

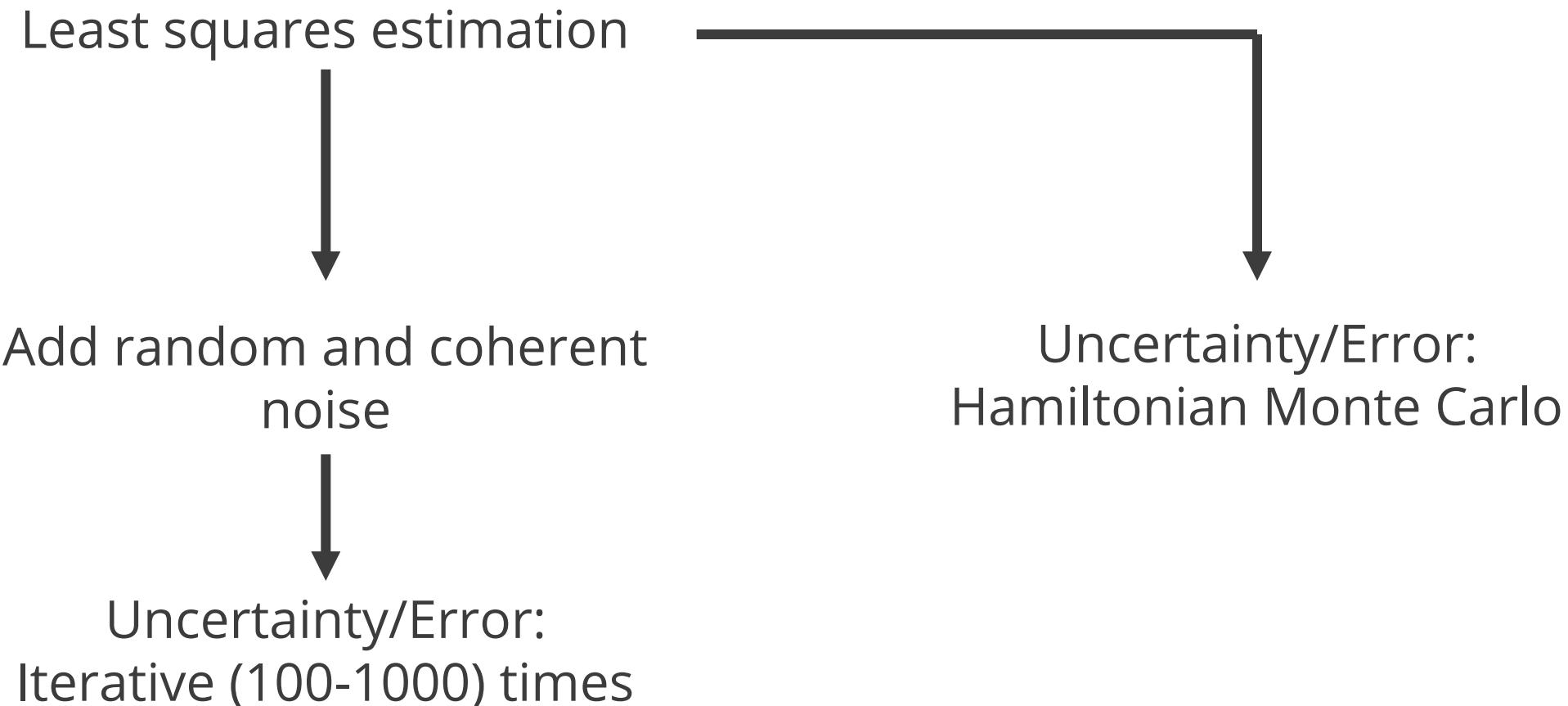
$$\mathbf{m} = (\mathbf{A}^T \mathbf{A} + \alpha \mathbf{I} + \beta \mathbf{L}^T \mathbf{L})^{-1} \mathbf{A}^T \mathbf{u}$$

$$\mathbf{m} = (\mathbf{A}^T \mathbf{A} + \alpha \mathbf{I} + \beta \mathbf{L}^T \mathbf{L})^{-1} \mathbf{A}^T \mathbf{u}$$

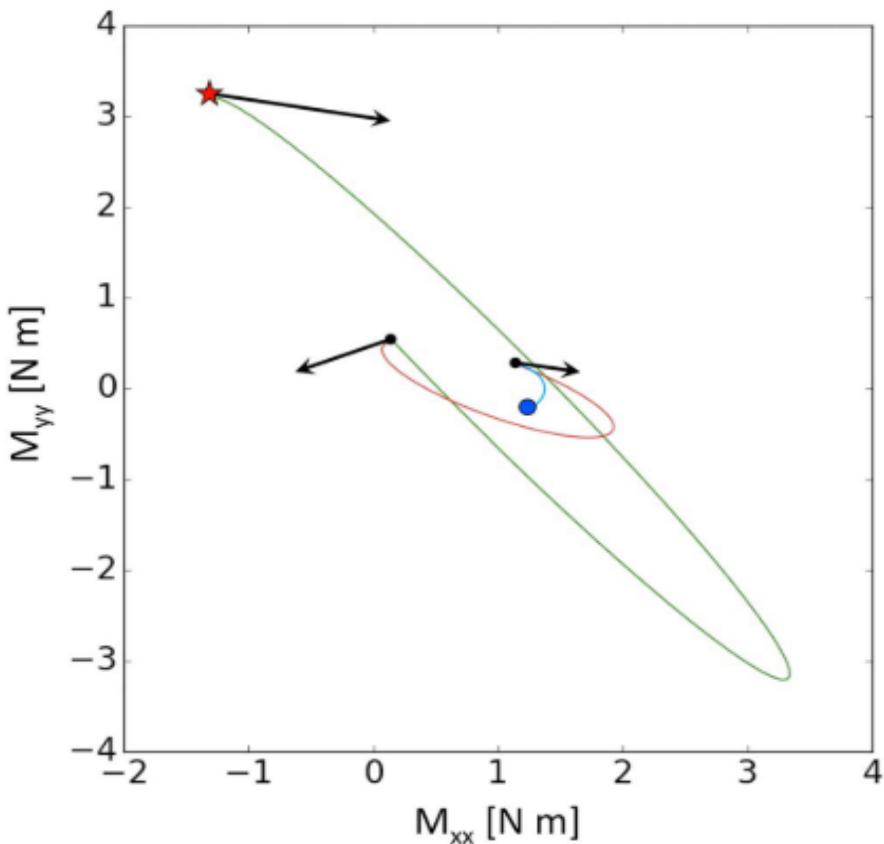
Regularizing term

Smoothing term

Methods – Least Squares



Methods – Hamiltonian Monte Carlo (HMC)



Example model space trajectory of two model parameters, based on kinetic and potential energy

Fichtner and Simute, 2018

$$u_i(\mathbf{x}, t) = \sum_{j=1}^6 M_j(t) * G_{ij}(\mathbf{x}, t)$$

↑
Calculated displacement
↑
Moment tensor component
↑
Green's function set

Forward Problem:
computing displacement

Potential Energy:

$$U(\mathbf{q}) = \frac{1}{2T} \sum_{r=1}^{N_r} \sum_{n=1}^3 \int_0^T \sigma_d^{-2} [u_n(\mathbf{x}_r, t; \mathbf{q}) - u_n^{\text{obs}}(\mathbf{x}_r, t)]^2 dt$$

↑
1 scalar
↑
Integrate over time, and sum over each component
↑
Calculated displacement
↓
Observed displacement
↓
Synthetic vs data misfit

Kinetic Energy:

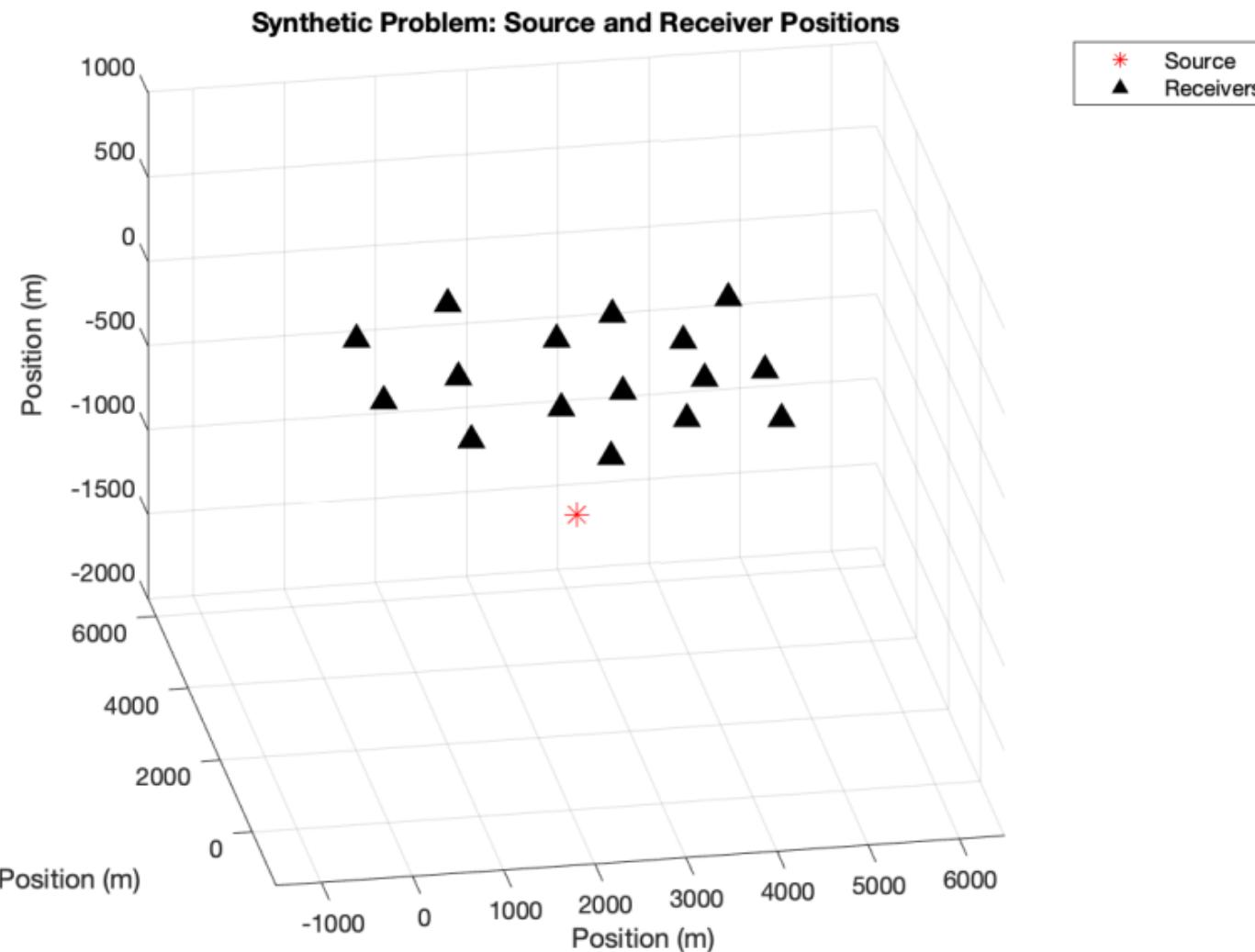
$$K(\mathbf{p}) = \frac{1}{2} \sum_{i,j=1}^n p_i M_{ij}^{-1} p_j$$

↑
Mass matrix
↓
momentum

Total Energy:

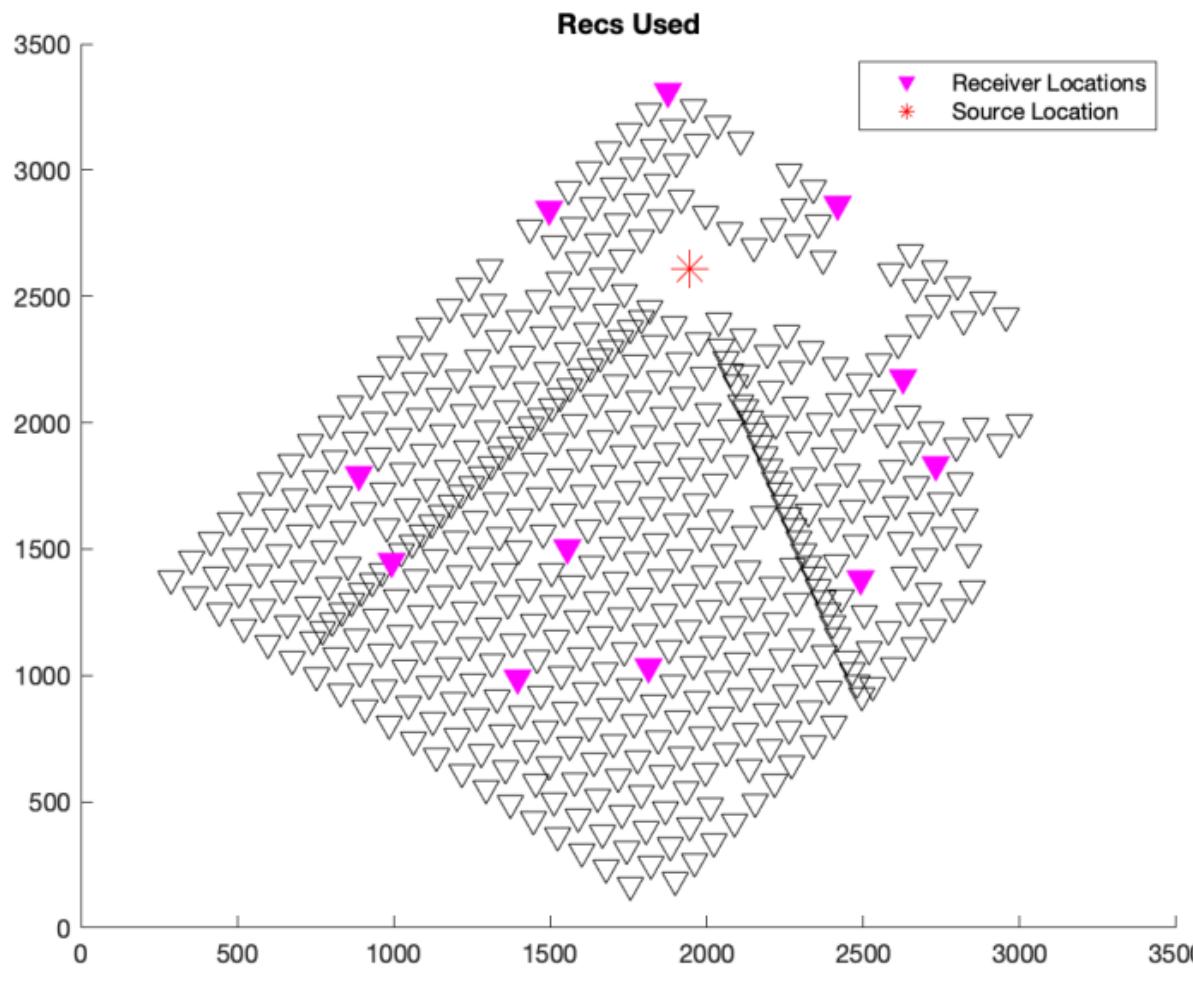
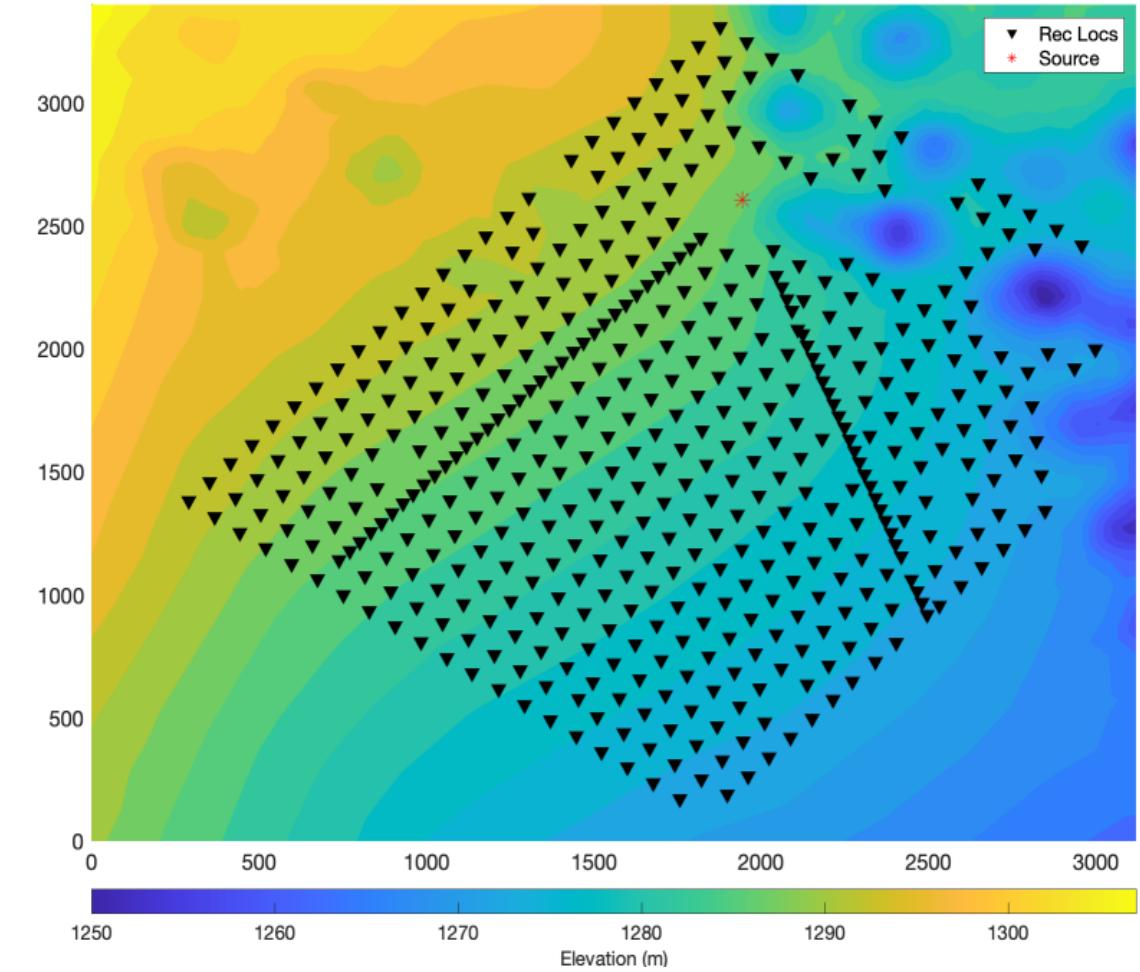
$$H = K + U$$

Data - Synthetic

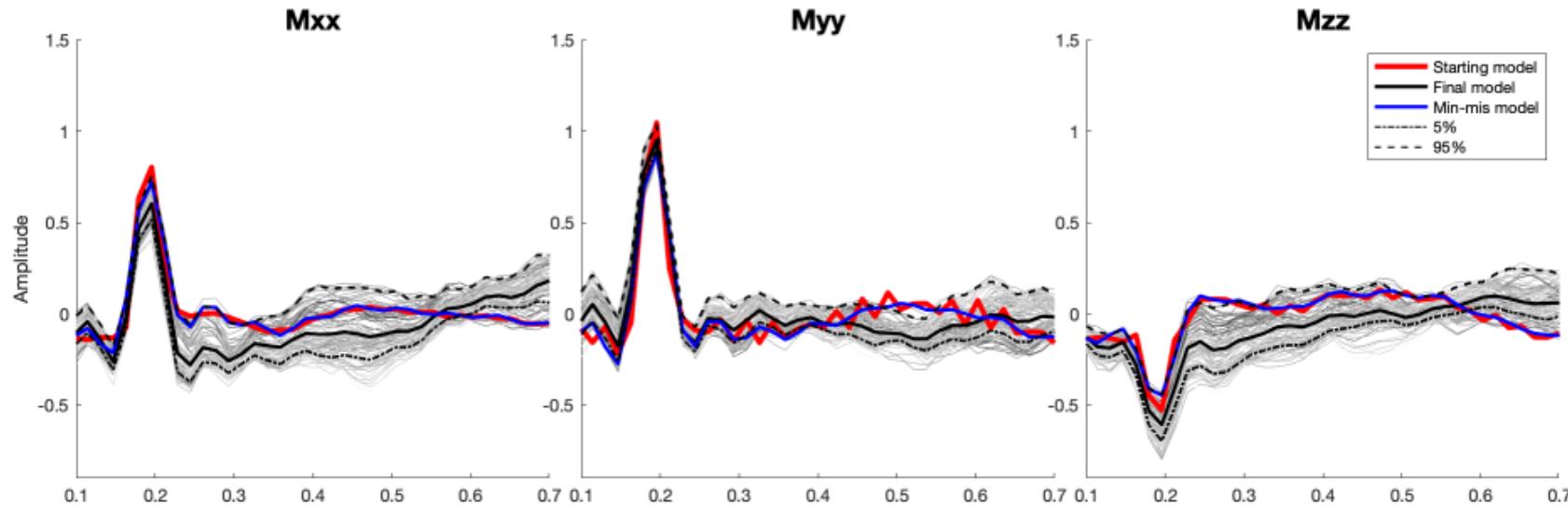
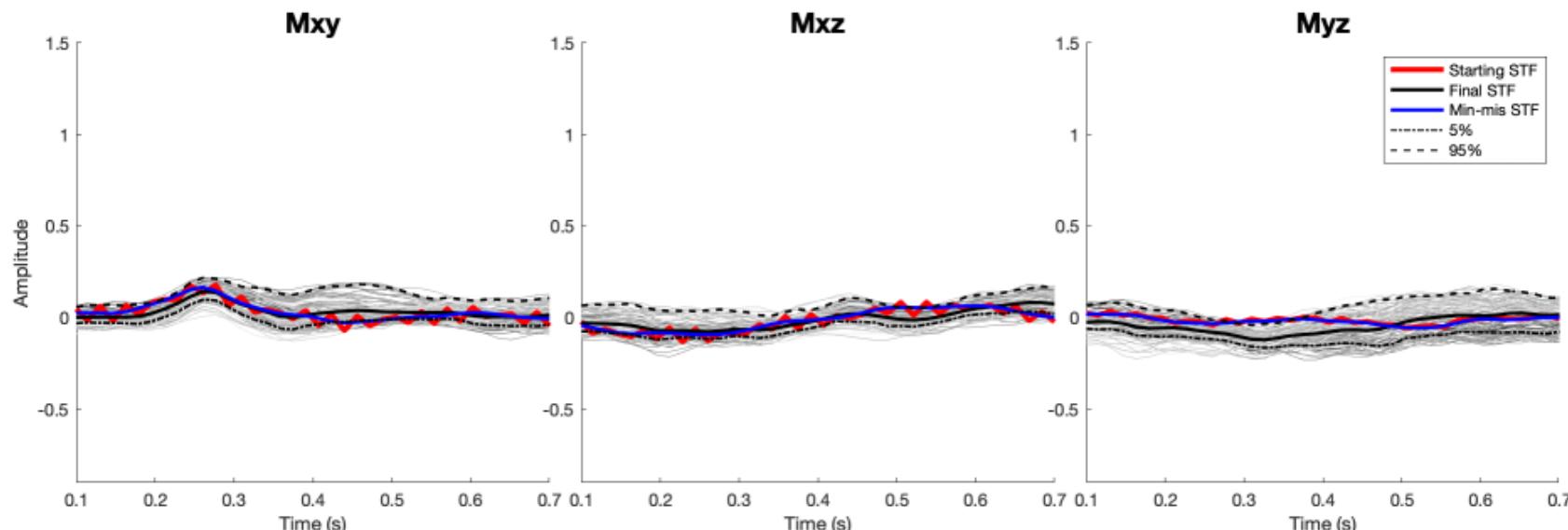


- All receivers are at 0m depth ($Z = 0$)
- Source is at 800m depth ($Z = -800$ m)
- Sources are scattered in various horizontal directions

Data – Real: Source Physics Experiment Dry Alluvium Geology



Results – Synthetic Data



Results – Real Data

Work in Progress – Coming Soon!

Impact of these data to the Problem Statement

- Methodology works on synthetic data
- HMC achieves the same uncertainty quantification goal as iterative linear inversion
 - Faster
 - Makes fewer assumptions
- Real data will demonstrate proof of concept

Conclusions

- New, robust time domain method for uncertainty quantification
- As effective as iterative methods with stochastic perturbations
- Method works on synthetic data
- Will demonstrate concept on real data

Acknowledgements

The authors would like to thank Elizabeth Berg and Andrea Darrh for their help and contributions to this project.

Thank you for your attention!

Questions? Email me at dewells@sandia.gov

References:

Fichtner, A., Zunino, A., & Gebraad, L. (2019). Hamiltonian Monte Carlo solution of tomographic inverse problems. *Geophysical Journal International*, 216(2), 1344–1363. <https://doi.org/10.1093/gji/ggy496>

Fichtner, A., & Simutė, S. (2018). Hamiltonian Monte Carlo Inversion of Seismic Sources in Complex Media. *Journal of Geophysical Research: Solid Earth*, 123(4), 2984–2999. <https://doi.org/10.1002/2017JB015249>

Poppeliers, C., & Preston, L. (2021). The effects of earth model uncertainty on the inversion of seismic data for seismic source functions. *Geophysical Journal International*, 224(1), 100–120. <https://doi.org/10.1093/gji/ggaa408>

ABOUT THE SANDIA ANGLES TEMPLATES

Create impactful presentations, reports, and visuals with Sandia branded PowerPoint templates.

FEATURES

- 16:9 HD widescreen format
- Embedded [Sandia font & colors](#)
- Professional photo and text layouts available in the [Sample Layouts deck](#)
- Access fully editable charts, maps, and icons in the [PowerPoint Graphics Library](#)
- Easy to use placeholders crop photos without distortion
Note: To reduce file sizes, templates do not include Images. UUR photos can be accessed at Sandia's [Flickr](#) page.
- Before submitting to Sandia Review and Approval, ensure only the appropriate markings are applied to content slides and Slide Masters.

Questions?

Get immediate support from Creative Services.

NM: (505) 844-7167 | **CA:** (925) 294-1010 | creative.sandia.gov

Revised 03.04.21

Want more?

Browse additional design templates at
creative.sandia.gov