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SUMMARY 

This paper applies sensitivity and uncertainty analysis to 
compare two model alternatives for fuel matrix degradation 
for performance assessment of a generic crystalline 
repository. The results show that this model choice has little 
effect on uncertainty in the peak 129I concentration. The small 
impact of this choice is likely due to the higher importance of 
uncertainty in the instantaneous release fraction and 
differences in epistemic uncertainty between the alternatives. 

INTRODUCTION 

 High-fidelity fuel degradation modeling is 
computationally intensive, so alternative models can provide 
tangible computational benefits, particularly for analyses 
where many simulations are required. One alternative for 
such modeling utilizes a fractional dissolution rate (FDR). 
Another modeling alternative utilizes machine learning to 
construct a surrogate model of the high-fidelity fuel matrix 
degradation (FMD) mechanistic model. Both provide 
computational efficiency compared to the high-fidelity 
mechanistic model which is intractable at a detailed 
repository scale.  

This work examines how these two modeling approaches 
to waste form degradation affect performance predictions for 
a generic crystalline repository reference case. The surrogate 
model alternative, built from high-fidelity FMD training data, 
has more detailed predictions of the waste form behavior over 
time because it incorporates degradation rates changing with 
time. We examine how these FMD model alternatives 
influence the behavior of the system.  

The United States Department of Energy (DOE) is 
developing a state-of-the-art simulation software toolkit, the 
Geologic Disposal Safety Assessment (GDSA) Framework, 
for probabilistic post-closure performance assessment (PA) 
of systems for deep geologic disposal of nuclear waste 
(https://pa.sandia.gov). The characterization and 
quantification of uncertainty (UQ) is an integral component 
of PA. Sensitivity analysis (SA) is used to identify uncertain 
parameters and processes that dominate uncertainty in 
performance metrics for performance assessment studies of 
geologic radioactive waste disposal sites. 

In previous case studies, we performed SA studies on a 
generic crystalline reference case, first studying the effects of 

epistemic uncertain parameters [1] and then extending this to 
account for the spatial heterogeneity represented by a family 
of discrete fracture networks (DFNs) [2]. This work 
represents a further extension: adding the effect of a 
constitutive chemistry model for nuclear fuel dissolution. In 
this paper, we present a SA case study that seeks to separate 
the effect of epistemic parameters, spatial heterogeneity as 
represented by DFNs, and model choice as represented by the 
form of the FMD alternative model.  

This paper summarizes the crystalline case and the two 
FMD model alternatives, presents the sensitivity and 
uncertainty analysis framework used to assess the influence 
of the FMD alternatives, and discusses how those effects 
compare to other uncertainties.  

CRYSTALLINE REFERENCE CASE 

This paper presents a generic reference case, referred to 
as the crystalline reference case, which is not representative 
of a specific site. The case is meant to be illustrative for the 
purpose of developing and demonstrating PA methods within 
the GDSA Framework. The crystalline reference case is a 
generic repository modeled in a crystalline rock formation. 
This type of repository would be placed in highly 
impermeable fractured rock, where flow occurs 
predominantly through the fractures. The repository model 
includes nuclear waste packages (WPs) which breach based 
on an uncertain normalized general corrosion rate. The WPs 
consist of a stainless steel canister and stainless steel 
overpack; they are expected to fail between ten thousand 
years and one million years post closure [3]. A key Quantity 
of Interest (QoI) is the maximum 129I concentration in the 
aquifer over time, as well as its overall peak value (the 
maximum over all time points). Transport of 129I is modeled 
from the WPs through the repository and surrounding host 
rock based on additional uncertain permeability, porosity, 
and radionuclide release parameters. The case is modeled in 
PFLOTRAN as a single-phase liquid flow and transport 
simulation. 

Fig. 1 shows an example of the crystalline model. 
Concentrations of 129I are monitored at pre-specified points 
in the model domain called observation points, and the 
maximum concentration is tracked throughout the aquifer.  
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The model domain is approximately 3000 m in length, 
2000 m in width, and 1260 m in height [4]. The repository is 
located at a depth of 585 m. Forty-two disposal drifts contain 
40 12-PWR WPs each (1680 total WPs). Drifts are backfilled 
with bentonite buffer and are surrounded by a 1.67-m thick 
disturbed rock zone. Each WP has a 5.225 metric tons of 
heavy metal (MTHM) inventory, so the total inventory for the 
crystalline reference case is 8,778 MTHM [5]. Within the 
repository, grid cells are as small as 1.67-m on a side; 
elsewhere grid cells are 15-m on a side. The model domain 
contains approximately 4.8 million grid cells. Additional 
information on the grid and dimensions may be found in a 
previous conference paper, available for download at 
https://pa.sandia.gov [4]. 

Fractured crystalline rock is modeled using stochastic 
discrete fracture networks, which are two- dimensional 
ellipses distributed in the three-dimensional model domain. 
The fracture networks are generated using dfnWorks [6], and 
mapped to the equivalent continuous porous medium domain 
using mapDFN.py, a code that approximates hydraulic 
fracture properties by calculating and assigning permeability 
and porosity on a cell-by-cell basis [4]. 

 

 
Fig. 1 Cut-away of a DFN realization mapped to porous medium 
grid colored by permeability, showing the full repository and far 
half of the model domain. The three-dimensional structures inside 
the domain are the repository, five deterministic deformation zones 
(two are colored red due to their high permeability, three 
subvertical zones are cream-colored), the fractures of a 
stochastically generated fracture network colored peach/orange 
throughout the model domain, and four teal observation points 
placed in the granite just below the aquifer (not pictured). 

The discrete fracture networks are generated 
probabilistically over the domain, drawing from distributions 
of fracture characteristics such as fraction density, radius, 
orientation, and centroid location. Details about the DFN 
characterization and generation process can be found in [1, 
2]. 

All DFNs are generated to have similar bulk properties, 
However, their generation introduces spatial heterogeneity; 
DFNs generated with the same distributions for fracture radii, 
orientations, and centroid locations are still significantly 
different from each other. The spatial heterogeneity between 

DFNs is a significant source of uncertainty affecting the 
QoIs, as discussed in the Results section.  

 
FUEL MATRIX DEGRADATION ALERNATIVES 
 
Fractional Dissolution Rate 

The fractional dissolution rate model uses a fractional 
dissolution rate and the radionuclide concentrations in the 
waste form to determine the mass dissolution rate for each 
waste form [7, 8]. It is a fairly simple analytic model which 
is heavily dependent on the fractional dissolution rate of spent 
nuclear fuel, denoted as rateUNF.  

  
Artificial Neural Network (ANN) surrogate 

The Fuel Matrix Degradation model [9] is a complex 
chemistry model for calculating spent fuel degradation rates 
as a function of radiolysis, alteration layer growth, and 
diffusion reactants through alteration layer. It incorporates 
mixed potential and analytical radiolysis models. It must be 
called each time step for each WP, making it a very costly 
process model. To combat this cost, time-series FMD training 
data was obtained offline from the full process model and 
used to train an artificial neural network surrogate model 
alternative to the FMD model.  

The ANN had 400k training points consisting of six 
inputs (fuel temp, dose rate, chemical species concentrations) 
and one output (UO2 surface flux/fuel dissolution rate) [10, 
11]. A two-layer ANN with 64 nodes per layer was utilized, 
resulting in 4673 parameters (weights and bias terms) that 
were estimated based on the training data. The surrogate 
ANN alternative to the FMD model was called from 
PFLOTRAN with a similar API as the full FMD model. 
Examples of prediction accuracy with the ANN surrogate are 
shown in Fig. 2. Note that the mean absolute error on the 
testing set was 8.26 × 10−4 mol/m2/year and a relative test 
error of about 25%. This ANN has some error but matches 
the overall trend well.  

 
Fig. 2 Comparison of ANN surrogate to full process model results. 

UNCERTAINTY AND SENSITIVITY ANALYSIS  
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SA for the crystalline reference case was performed 
using 1000 PFLOTRAN simulations for each FMD model 
alternative. The uncertainties for these 1000 simulations were 
sampled from a dual-loop structure, which separates spatial 
uncertainties from parametric uncertainties. The outer loop 
consists of 25 spatial realizations, which comprise 
uncertainty in the DFNs and the assignment of WP 
degradation rates between WPs. Forty simulations were 
performed for each of these spatial realizations using 
different samples for the glacial aquifer permeability 
(kGlacial), disturbed rock zone permeability (permDRZ), 
buffer porosity (pBuffer), buffer permeability (permBuffer), 
instant release fraction (IRF), and WP normalized corrosion 
rate parameters (meanWPrate, stdWPrate).  

The same 1000 samples were used in the PFLOTRAN 
simulations for each of the FMD model alternatives with one 
exception. Simulations with the FDR model included an 
additional uncertain parameter, the fractional dissolution rate 
(rateUNF). Hence, simulation-to-simulation differences 
demonstrate the extent to which the alternative model choice 
affects performance metrics.  

Global SA was performed on each set of 1000 
simulations using a second order polynomial chaos 
expansion (PCE) surrogate to estimate main and total effect 
Sobol’ indices with Dakota [12]. The main effect index 
describes the proportion of the variance in the QoI that the 
PCE surrogate attributes to a variable on its own. The total 
effect index describes the proportion of the variance in the 
QoI that the PCE attributes to a variable and its two-way 
interaction with other variables. 

The DFNs present a challenge for SA because DFN 
uncertainty is not defined parametrically. Quantities 
summarizing important features of the DFNs were calculated 
and included as proxy variables in the SA so the PCE 
surrogate could account for some of the influence of DFN 
uncertainty. These quantities are the average number of 
intersections between fractures (AveDegree), the number of 
fractures intersecting the repository (Intersections), and the 
relative shortest travel time (STT) [1]. Because the DFNs are 
repeated samples (there are 40 epistemic simulations per 
DFN), SA results may be biased towards attributing variance 
to DFN summary quantities. Because of this, the SA is run 
twice, once without DFN quantities and once with them. We 
interpret the results together assuming the true sensitivity 
indices are between the estimated values for the two analyses. 
 
RESULTS  

The maximum 129I concentration in the aquifer is plotted 
over time in Fig. 3 for simulations with the FDR model 
(black) and with the ANN surrogate (pink dashed). The 
concentrations are very similar between the simulations with 
the two alternatives to the FMD model, but some differences 
are apparent towards the end of the simulation, where there 
is more variability in concentrations for the FDR model 
simulations. The mean and standard deviation of the 
concentrations at 1 million years are 3.66 × 10−9 [M] and 

6.74 × 10−9 [M] respectively for the FDR simulations and 
3.41 × 10−9[M] and 5.00 × 10−9 [M] respectively for the 
ANN simulations.  

 
Fig. 3 Maximum 129I concentrations [M] comparison between the 
simulations with the ANN and FDR model. 

The difference in uncertainty between simulations for 
FMD model alternatives is also seen in peak 129I 
concentration empirical cumulative distribution functions 
(ECDFs) plotted in Fig. 4. The grey curves are the ECDFs for 
each spatial realization; red/black curves show the ECDFs for 
all simulations with the ANN surrogate (red) and the FDR 
model (black). The domains for the FDR ECDFs are wider, 
indicating more variation in peak 129I concentrations within a 
spatial realization when the FDR model is used.  

 
Fig. 4 Peak 129I ECDF functions for each spatial realization (grey) 
and overall (black/red) for the ANN and FDR simulations.  

The increased uncertainty in the FDR simulations is 
likely due to the incorporation of uncertainty in that model 
via the rateUNF parameter. No analogous uncertainty is 
currently included in the ANN surrogate model.  

Sobol’ indices are plotted for the ANN surrogate 
simulations in Fig. 5. The top results are for the analysis 
without the DFN quantities, and the bottom results are for the 
analysis with the DFN quantities. These results indicate that 
kGlacial and IRF are the dominant parametric uncertainties 



driving variation in peak 129I concentrations. The 
Intersections and AveDegree quantities are the dominant 
spatial uncertainties.  

 
 
Fig. 5 Sobol’ index estimates for peak 129I concentrations for the 
simulations with the ANN model 

These results can be compared to those for FDR 
simulations, plotted in Fig. 6. For these simulations, the 
dominant uncertainty becomes the FDR parameter 
uncertainty, rateUNF, with kGlacial and IRF having minor 
effects. The analysis with the DFN quantities identifies the 
same important spatial uncertainties as for the ANN 
simulations. Scatter plots of all of the input parameters versus 
the peak 129I concentration support these SA results (see 
[13]).  

The analysis for peak 129I concentration was repeated for 
the maximum 129I concentration at each time step. These 
results are plotted in  Fig. 7. Only the results without the DFN 
quantities are included here because these results highlight 
the importance of the rateUNF uncertainty as well as the 
timing of importance for IRF and rateUNF. Results with the 
DFN quantities are in [13]. According to these results, the 
IRF parameter significantly contributes to the maximum 129I 
concentration regardless of which FMD model is used. 
However, this parameter drops in importance towards the end 
of the simulation, where kGlacial becomes significant for the 
ANN simulations and rateUNF becomes significant for the 
FDR simulations.  

This analysis provides an explanation for why there is so 
little difference between the 129I concentrations for the ANN 
and FDR simulations in Fig. 3 until the end of simulation; the 

IRF dominates 129I release early on, so the FMD model only 
begins to have a significant effect in the second half of the 
simulation time. 

 
 
Fig. 6 Sobol’ index estimates for peak 129I concentrations for the 
simulations with the FDR model 

 

 
Fig. 7 Time-dependent SA results for the max 129I concentration 
[M] for ANN simulations (top) and FDR simulations (bottom) 

The uncertainty and SA results show that, overall, the 
choice for FMD model alternative only has a minor effect on 
129I concentrations. The timing for release of 129I is similar 
between the two models, but the mean and variance of the 
peak 129I concentration are slightly smaller at 1M years for 

ANN Peak 129I Concentration in Aquifer [M] 
Analysis without graph quantities 

Peak 129I Concentration in Aquifer [M] 
Analysis with graph quantities 

FDR Peak 129I Concentration in Aquifer [M] 
Analysis without graph quantities 

Peak 129I Concentration in Aquifer [M] 
Analysis with graph quantities 

ANN 

FDR 



the ANN surrogate alternative. The similar high-level 
behavior of the models may be due to WP breach and 
instantaneous release dominating concentrations for much of 
the simulation time. 

We expect the ANN model to provide a more detailed 
prediction of the waste form behavior over time because it 
incorporates dose rates changing with time and accounts for 
the chemistry in the local environment. Future work on the 
FMD model alternatives will include uncertainty in the 
environmental chemistry for the ANN model. This may affect 
the relative effects of the different FMD model alternatives, 
which could be assessed using a similar SA study.   
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