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SUMMARY

This paper applies sensitivity and uncertainty analysis to
compare two model alternatives for fuel matrix degradation
for performance assessment of a generic crystalline
repository. The results show that this model choice has little
effect on uncertainty in the peak '*’I concentration. The small
impact of this choice is likely due to the higher importance of
uncertainty in the instantaneous release fraction and
differences in epistemic uncertainty between the alternatives.

INTRODUCTION

High-fidelity = fuel  degradation modeling is
computationally intensive, so alternative models can provide
tangible computational benefits, particularly for analyses
where many simulations are required. One alternative for
such modeling utilizes a fractional dissolution rate (FDR).
Another modeling alternative utilizes machine learning to
construct a surrogate model of the high-fidelity fuel matrix
degradation (FMD) mechanistic model. Both provide
computational efficiency compared to the high-fidelity
mechanistic model which is intractable at a detailed
repository scale.

This work examines how these two modeling approaches
to waste form degradation affect performance predictions for
a generic crystalline repository reference case. The surrogate
model alternative, built from high-fidelity FMD training data,
has more detailed predictions of the waste form behavior over
time because it incorporates degradation rates changing with
time. We examine how these FMD model alternatives
influence the behavior of the system.

The United States Department of Energy (DOE) is
developing a state-of-the-art simulation software toolkit, the
Geologic Disposal Safety Assessment (GDSA) Framework,
for probabilistic post-closure performance assessment (PA)
of systems for deep geologic disposal of nuclear waste
(https://pa.sandia.gov). The characterization and
quantification of uncertainty (UQ) is an integral component
of PA. Sensitivity analysis (SA) is used to identify uncertain
parameters and processes that dominate uncertainty in
performance metrics for performance assessment studies of
geologic radioactive waste disposal sites.

In previous case studies, we performed SA studies on a
generic crystalline reference case, first studying the effects of

epistemic uncertain parameters [1] and then extending this to
account for the spatial heterogeneity represented by a family
of discrete fracture networks (DFNs) [2]. This work
represents a further extension: adding the effect of a
constitutive chemistry model for nuclear fuel dissolution. In
this paper, we present a SA case study that seeks to separate
the effect of epistemic parameters, spatial heterogeneity as
represented by DFNs, and model choice as represented by the
form of the FMD alternative model.

This paper summarizes the crystalline case and the two
FMD model alternatives, presents the sensitivity and
uncertainty analysis framework used to assess the influence
of the FMD alternatives, and discusses how those effects
compare to other uncertainties.

CRYSTALLINE REFERENCE CASE

This paper presents a generic reference case, referred to
as the crystalline reference case, which is not representative
of a specific site. The case is meant to be illustrative for the
purpose of developing and demonstrating PA methods within
the GDSA Framework. The crystalline reference case is a
generic repository modeled in a crystalline rock formation.
This type of repository would be placed in highly
impermeable fractured rock, where flow occurs
predominantly through the fractures. The repository model
includes nuclear waste packages (WPs) which breach based
on an uncertain normalized general corrosion rate. The WPs
consist of a stainless steel canister and stainless steel
overpack; they are expected to fail between ten thousand
years and one million years post closure [3]. A key Quantity
of Interest (Qol) is the maximum '*’I concentration in the
aquifer over time, as well as its overall peak value (the
maximum over all time points). Transport of '°I is modeled
from the WPs through the repository and surrounding host
rock based on additional uncertain permeability, porosity,
and radionuclide release parameters. The case is modeled in
PFLOTRAN as a single-phase liquid flow and transport
simulation.

Fig. 1 shows an example of the crystalline model.
Concentrations of %I are monitored at pre-specified points
in the model domain called observation points, and the
maximum concentration is tracked throughout the aquifer.

Discrete Fracture Networks
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The model domain is approximately 3000 m in length,
2000 m in width, and 1260 m in height [4]. The repository is
located at a depth of 585 m. Forty-two disposal drifts contain
40 12-PWR WPs each (1680 total WPs). Drifts are backfilled
with bentonite buffer and are surrounded by a 1.67-m thick
disturbed rock zone. Each WP has a 5.225 metric tons of
heavy metal (MTHM) inventory, so the total inventory for the
crystalline reference case is 8,778 MTHM [5]. Within the
repository, grid cells are as small as 1.67-m on a side;
elsewhere grid cells are 15-m on a side. The model domain
contains approximately 4.8 million grid cells. Additional
information on the grid and dimensions may be found in a
previous conference paper, available for download at
https://pa.sandia.gov [4].

Fractured crystalline rock is modeled using stochastic
discrete fracture networks, which are two- dimensional
ellipses distributed in the three-dimensional model domain.
The fracture networks are generated using dfnWorks [6], and
mapped to the equivalent continuous porous medium domain
using mapDFN.py, a code that approximates hydraulic
fracture properties by calculating and assigning permeability
and porosity on a cell-by-cell basis [4].
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Fig. 1 Cut-away of a DFN realization mapped to porous medium
grid colored by permeability, showing the full repository and far
half of the model domain. The three-dimensional structures inside
the domain are the repository, five deterministic deformation zones
(two are colored red due to their high permeability, three
subvertical zones are cream-colored), the fractures of a
stochastically generated fracture network colored peach/orange
throughout the model domain, and four teal observation points
placed in the granite just below the aquifer (not pictured).

The discrete fracture networks are generated
probabilistically over the domain, drawing from distributions
of fracture characteristics such as fraction density, radius,
orientation, and centroid location. Details about the DFN
characterization and generation process can be found in [1,
2].

All DFNs are generated to have similar bulk properties,
However, their generation introduces spatial heterogeneity;
DFNs generated with the same distributions for fracture radii,
orientations, and centroid locations are still significantly
different from each other. The spatial heterogeneity between

DFNs is a significant source of uncertainty affecting the
Qols, as discussed in the Results section.

FUEL MATRIX DEGRADATION ALERNATIVES

Fractional Dissolution Rate

The fractional dissolution rate model uses a fractional
dissolution rate and the radionuclide concentrations in the
waste form to determine the mass dissolution rate for each
waste form [7, 8]. It is a fairly simple analytic model which
is heavily dependent on the fractional dissolution rate of spent
nuclear fuel, denoted as rateUNF.

Artificial Neural Network (ANN) surrogate

The Fuel Matrix Degradation model [9] is a complex
chemistry model for calculating spent fuel degradation rates
as a function of radiolysis, alteration layer growth, and
diffusion reactants through alteration layer. It incorporates
mixed potential and analytical radiolysis models. It must be
called each time step for each WP, making it a very costly
process model. To combat this cost, time-series FMD training
data was obtained offline from the full process model and
used to train an artificial neural network surrogate model
alternative to the FMD model.

The ANN had 400k training points consisting of six
inputs (fuel temp, dose rate, chemical species concentrations)
and one output (UO; surface flux/fuel dissolution rate) [10,
11]. A two-layer ANN with 64 nodes per layer was utilized,
resulting in 4673 parameters (weights and bias terms) that
were estimated based on the training data. The surrogate
ANN alternative to the FMD model was called from
PFLOTRAN with a similar API as the full FMD model.
Examples of prediction accuracy with the ANN surrogate are
shown in Fig. 2. Note that the mean absolute error on the
testing set was 8.26 X 10™* mol/m?/year and a relative test
error of about 25%. This ANN has some error but matches
the overall trend well.
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Fig. 2 Comparison of ANN surrogate to full process model results.

UNCERTAINTY AND SENSITIVITY ANALYSIS
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SA for the crystalline reference case was performed
using 1000 PFLOTRAN simulations for each FMD model
alternative. The uncertainties for these 1000 simulations were
sampled from a dual-loop structure, which separates spatial
uncertainties from parametric uncertainties. The outer loop
consists of 25 spatial realizations, which comprise
uncertainty in the DFNs and the assignment of WP
degradation rates between WPs. Forty simulations were
performed for each of these spatial realizations using
different samples for the glacial aquifer permeability
(kGlacial), disturbed rock zone permeability (permDRZ),
buffer porosity (pBuffer), buffer permeability (permBuffer),
instant release fraction (/RF), and WP normalized corrosion
rate parameters (meanWPrate, stdWPrate).

The same 1000 samples were used in the PFLOTRAN
simulations for each of the FMD model alternatives with one
exception. Simulations with the FDR model included an
additional uncertain parameter, the fractional dissolution rate
(rateUNF). Hence, simulation-to-simulation differences
demonstrate the extent to which the alternative model choice
affects performance metrics.

Global SA was performed on each set of 1000
simulations using a second order polynomial chaos
expansion (PCE) surrogate to estimate main and total effect
Sobol” indices with Dakota [12]. The main effect index
describes the proportion of the variance in the Qol that the
PCE surrogate attributes to a variable on its own. The total
effect index describes the proportion of the variance in the
Qol that the PCE attributes to a variable and its two-way
interaction with other variables.

The DFNs present a challenge for SA because DFN
uncertainty is not defined parametrically. Quantities
summarizing important features of the DFNs were calculated
and included as proxy variables in the SA so the PCE
surrogate could account for some of the influence of DFN
uncertainty. These quantities are the average number of
intersections between fractures (AveDegree), the number of
fractures intersecting the repository (Intersections), and the
relative shortest travel time (STT) [1]. Because the DFNs are
repeated samples (there are 40 epistemic simulations per
DFN), SA results may be biased towards attributing variance
to DFN summary quantities. Because of this, the SA is run
twice, once without DFN quantities and once with them. We
interpret the results together assuming the true sensitivity
indices are between the estimated values for the two analyses.

RESULTS

The maximum '?°I concentration in the aquifer is plotted
over time in Fig. 3 for simulations with the FDR model
(black) and with the ANN surrogate (pink dashed). The
concentrations are very similar between the simulations with
the two alternatives to the FMD model, but some differences
are apparent towards the end of the simulation, where there
is more variability in concentrations for the FDR model
simulations. The mean and standard deviation of the
concentrations at 1 million years are 3.66 X 10~° [M] and

6.74 X 107° [M] respectively for the FDR simulations and
3.41 X 107°[M] and 5.00 x 107° [M] respectively for the
ANN simulations.
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Fig. 3 Maximum '*’I concentrations [M] comparison between the
simulations with the ANN and FDR model.

The difference in uncertainty between simulations for
FMD model alternatives is also seen in peak %I
concentration empirical cumulative distribution functions
(ECDFs) plotted in Fig. 4. The grey curves are the ECDFs for
each spatial realization; red/black curves show the ECDFs for
all simulations with the ANN surrogate (red) and the FDR
model (black). The domains for the FDR ECDFs are wider,
indicating more variation in peak %I concentrations within a
spatial realization when the FDR model is used.
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Fig. 4 Peak ">’ ECDF functions for each spatial realization (grey)
and overall (black/red) for the ANN and FDR simulations.

The increased uncertainty in the FDR simulations is
likely due to the incorporation of uncertainty in that model
via the rateUNF parameter. No analogous uncertainty is
currently included in the ANN surrogate model.

Sobol’ indices are plotted for the ANN surrogate
simulations in Fig. 5. The top results are for the analysis
without the DFN quantities, and the bottom results are for the
analysis with the DFN quantities. These results indicate that
kGlacial and IRF are the dominant parametric uncertainties



driving variation in peak 'l concentrations. The
Intersections and AveDegree quantities are the dominant
spatial uncertainties.
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Fig. 5 Sobol’ index estimates for peak '*’I concentrations for the
simulations with the ANN model

These results can be compared to those for FDR
simulations, plotted in Fig. 6. For these simulations, the
dominant uncertainty becomes the FDR parameter
uncertainty, rateUNF, with kGlacial and IRF having minor
effects. The analysis with the DFN quantities identifies the
same important spatial uncertainties as for the ANN
simulations. Scatter plots of all of the input parameters versus
the peak '?°I concentration support these SA results (see
[13D.

The analysis for peak '?°I concentration was repeated for
the maximum '?°I concentration at each time step. These
results are plotted in Fig. 7. Only the results without the DFN
quantities are included here because these results highlight
the importance of the rateUNF uncertainty as well as the
timing of importance for IRF and rateUNF. Results with the
DFN quantities are in [13]. According to these results, the
IRF parameter significantly contributes to the maximum %I
concentration regardless of which FMD model is used.
However, this parameter drops in importance towards the end
of the simulation, where kGlacial becomes significant for the
ANN simulations and rateUNF becomes significant for the
FDR simulations.

This analysis provides an explanation for why there is so
little difference between the '1 concentrations for the ANN
and FDR simulations in Fig. 3 until the end of simulation; the

IRF dominates '?’I release early on, so the FMD model only
begins to have a significant effect in the second half of the
simulation time.
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Fig. 6 Sobol’ index estimates for peak '*°I concentrations for the
simulations with the FDR model
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Fig. 7 Time-dependent SA results for the max '*°I concentration
[M] for ANN simulations (top) and FDR simulations (bottom)

The uncertainty and SA results show that, overall, the
choice for FMD model alternative only has a minor effect on
129 concentrations. The timing for release of %I is similar
between the two models, but the mean and variance of the
peak %1 concentration are slightly smaller at 1M years for



the ANN surrogate alternative. The similar high-level
behavior of the models may be due to WP breach and
instantaneous release dominating concentrations for much of
the simulation time.

We expect the ANN model to provide a more detailed
prediction of the waste form behavior over time because it
incorporates dose rates changing with time and accounts for
the chemistry in the local environment. Future work on the
FMD model alternatives will include uncertainty in the
environmental chemistry for the ANN model. This may affect
the relative effects of the different FMD model alternatives,
which could be assessed using a similar SA study.
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