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Motivation




3 I Adaptive, Interpretable, and Extrapolative Model-Form Uncertainty Motivation

Interpretable & extrapolative Rapid development

Kennedy O’Hagan 2001

Oliver et al. 2015

Sargsyan et al. 2015

Subramanian
Mahadevan 2019



4 | Epidemiology Motivation: Model-Form Uncertainty for Predictions

Notional Plot of Infected Population, I(t) | We know the classic SIR model is under-representative of the real-world
phenomenon it is intended to simulate.

Herd Immunity

Re(t)=1 New reported cases

S(t) 1
— T 5 All time

7-day
average

Size of Infected Population

Days

Image Credit: NYT https://www.nytimes.com/interactive/2021/us/covid-cases.html [accessed 2022/04/08]

R,: The reproductive number, defined only at t = 0, when the first infectious host is presented to a population that is 100% susceptible.

R,(t) = Ro%t): The effective reproductive number, is the time varying rate at which new infectious cases will infect the resulting susceptible
population



Data-Driven Model Discrepancy




6 I Universal Differential Equations (UDEs)
UDEs

0.5
Data Infected

Data Recovered
Training Infected
Training Recovered
Forecast

- UDEs have been successfully deployed to infer
interpretable, predictive dynamics from data [[16][17]].

Nl |

0.4

« UDEs embed ML models, e.g., neural networks (NNs) within
existing scientific models:

u’ = F(u; t; HODEJ NN(u; HNN))
meinlld —u(0)||

Fraction of Population

0 20 40 60 80

where 68 = {0,pr, Onn} and d represents observation data. Neural ODEs

+ Can be formulated to respect physical principles by —
Construction . - Data Recovered

Training Infected
Training Recovered
Forecast

- Data-efficient because make sure of prior physical
information.

0.5 §

« Can be more predictive than Neural ODEs:

0.25

Fraction of Population

u’ =NN(ur9NN) 0.0 | eeeatntlll PTIEEFIEEE

m1n||d — u(QNN)” 0 20 40 60 80
ONN Days since 500 infections




7 I SciML: Machine Learning and Dynamical Systems

Physics-Informed Neural Networks (PINNs) [14]

Neural Ordinary Differential Equations (Neural ODEs) [15]

Data-driven solutions to Partial Differential Equations (PDEs)
u; + Nu] =0, xeENcR™te|0,T]

where u(t, x) denotes the latent (hidden) solution,

N'[-] is a nonlinear differential operator

Then.... u(t,x) = NN(W,b)

Universal Differential Equations (UDEs) [[16][17]]

S - SUSCEPTIBLE / I - INFECTIOUS / R - RECOVERED

A(E) 14
-

R(t)
Q(t) q(t) = NN(IRQ; W,b
Yo
Q(t)
l Q - QUARANTINED (ISOLATION)

Densely Connected

Simulating unknown dynamics for a full system of ODEs:

du _ NN(W, b

dt (W, b)
g = —-2()S(t)
2= A0SE) — i) — (DI
dR

2 = 711(®) + 700
22 = q(OI®) — ¥Q®)
Such that:

A = B 1w

St)+1I(t) +R(t) +Q(t)



8 ‘ UDEs for Epidemiology Compartmental Models [4]

= = —A®)S()
; S - SUSCEPTIBLE / | - INFECTIOUS / R - RECOVERED % — )l(t)S(t) —_ VII(t) _M
InIIZItl;C .gWi,,- * 2 Z—I; =yI(t) +v0Q(t)
R(t) d | Z—3=M— YoQ(®)

Q) &
: Such that:

Q - QUARANTINED (ISOLATION) At) =B SO I(t)lf_tz2 CETIO

Densely Connected
Loss function:

Lun (8w B ¥ v0) = |0g(I(®) = logUgaca )| + |log(R(D)) — log(Raaca)||” + [l0g(Q(®)) — log(Quata )||°
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> " Ensemble Training: Assessing Robustness and Uncertainty

Experimental Plan

1. Generate synthetic data with prespecified NN and nominal parameter values, 0* = {O;p5, Oxn}

2. Learn optimal parameters © = {Oyy, Oopr} from a subsets of observations:

[LR, QLI R]LILQLIR, Q] IR], [Q]

3. Evaluate mean-squared error (MSE) of inferred g (t) vs “true” g*(t)

Approach:

For each combination: {[I,R, Q],[I,R],[I, Q],[R, Q],[I], [R], [Q]}

Initialize model parameters ©® = {®,pz, Oy}

a. 0,pp sampled from distributions derived from the literature.
b. ©py established from Glorot initialization

Run 100 training replicates to learn: {0%,} and {0&,;}, for k = 1, ..., 100.



0 | Training Results: Observable States = [I, R, Q]

0.25
Samples
we = Mean
0.15 1
~
)
\—/
oy
0.10 A
0.05 1
0.00 - .

0 25 50 75
Days since 500 infections

p

125

40 A

20 A

I

175

action of population

Vi

20

25 50 75 100 125 150 175 200
Days since 500 infections

Samples e Truth —— Mean

Yo

20 A




11

Training Results: Observable States = [R]

Populations included in training Populations not included in training

1.0 A .
o — R
o
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Bayesian Study
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Model-Form Uncertainty: Combining UDE and Bayesian Statistics

« UDEs successfully used in a deterministic setting to find
“model corrections” or “missing dynamics”.

- Data is NOT always informative enough to identify a single “model correction”.

By endowing UDEs with a Bayesian parameterization, can we represent
model-form uncertainty?

Challenges:
* NNs discrepancies are challenging to train even in deterministic setting.

- Bayesian methods do NOT scale well with higher dimensions



14 ‘ Bayesian UDE Study

S - SUSCEPTIBLE / I - INFECTIOUS / R - RECOVERED

AC®)
33—

q(t) = NN(IRQ: W, b

Q(t)

Q - QUARANTINED (ISOLATION)

)41

—p

Yq

Loss function:

as

= —A(t)S(t)

% = A)S@) =y I(t) — q(O)I(t)

dR

T Yil(®) +yoQ(t)

L _ G(OI() —y,Q(t)

dt

Such that:

1(t)
S@&)+1(t)+R(@)+Q(t)

A) =B

LNN(QNN;,B»VI;VQ) = ||108(1(t)) — log(ldata(t))uz + ||108(R(t)) — log(Rdata(t))”Z + ||log(Q(t)) - log(Qdata(t))”Z

Inferring disease parameters [f,y;,yo] along with NN parameters

Prior Likelihood
« Disease parameters ~ U(0,2) « Synthetic data generated from SIRQ model
« 51 NN parameters ~ N(0, (50)%)  Calibration data = observations of I, R, Q first 50 days

» Likelihood assumes the following error

d=u+e¢e,

e ~N(0,0%), 20 = +0.1u
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Bayesian Study Results: No Noise in Simulation Data

=== | 1 E
ds | :
== —A(t)S(t) A

" q(t; 61)
dl i _g | True q(t)
= = AOS@) =y I(t) = q(OI(2) g

: % ! —
dR | : __A ————
= =y, I(t) + 7,0Q(t : 0 - -
— = 1i1(©) +7,0() o : - T
40 Days after 500 infections
— =q(t)I(t) — t
= A1) =700 o
Such that:

1(t)
At) =p

S()+1(t) +R()+Q(t)

q(t) = NN(IRQ; W, b)

Days after 500 infections



16 | Bayesian Study Results: Indication of Complex Posterior Structure

Method: NUTS, HMC variant, derivative based
« Seeded posterior approximations at MAP point

NUTS posterior chains Correlations

2000 steps / Average acceptance rate: 0.86 / Adaptive step size



17 I Continued and Future Research

Continued:
« Stochastic differential equations for noisy data generation.
- Time varying likelihoods as stochastic processes.
* How do neural network architectures impact validation?
 Validation metrics:

* Mahalanobis Distance

* Quantiles

* The Instantaneous Reliability Metrics

Future:

» Seeded posterior approximations small perturbations away from MAP.
* Sparsity-inducing priors.

- Estimate posterior with Gaussian mixture model.
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Thank You for Your Time and Attention!

For questions or follow-up discussions:

Erin Acquesta, eacques@sandia.gov

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NAO0O03525.
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Motivation

Universal Differential Equations (UDEs) a novel model paradigm combining classical systems of differential
equations with a data-driven discrepancy term. [Rackauckas2020,Dandekar2020]

UDEs provide deterministic calibration of the differential equations parameters while simultaneously learning a
nonlinear discrepancy term at the source of discrepancy.

Bayesian neural networks have been integrated with UDEs to provide uncertainty for the solution of the state
trajectories with respect to the uncertainty in the weights and the biases of the neural network. [Dandekar2021]
Active Research: Extend the methods for deterministic calibration accounting for model discrepancy at the source
with Bayesian statistics to develop Bayesian calibration for situations where we can break open the black box and
learn the model discrepancy at the source.

Kennedy and O’Hagan

20 year old state-of-the-art in Bayesian Calibration that accounts for a discrepancy term, when the computer
model is treated as a black box.
Even Kennedy and O’Hagan state in their original paper: if you can open the black box and put the discrepancy
term directly at the source you can arguably do better, but their method should be more generalizable
[Kennedy2001].
« Opportunity when we open the black box: methods that do so, may help with the identifiability that the KOH
framework has between parameters and model discrepancy.

What does “Better” mean? How do we compare the methods? Especially for systems of differential equations,
when we put the discrepancy term at the source we change the behavior of the mathematical model.

Larger state space

More parameters

Different bifurcation and phase portraits

Parameter estimation for one model form # Parameter estimation for another model form
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Outline

Classic Compartmental Models for Infectious Disease Transmission

« Classic notation

* Interpretation

« Mathematical representations for disease phenomena
UDEs for learning discrepancy term for Infectious Disease Transmission, accounting for the effects of
quarantine.

* QSIR [Quarantine-Susceptible-Infectious-Recovered(Removed)]

« q(t): a nonlinear transmission rate for which the Infectious population transitions to Quarantine.

The effective reproductive number is compared between SIR and QSIR

S(t
+ Re(t) = Re>D

Notional numerical example
« Synthetic data is generated with a known q(t) = NN(QSIR,Oyy == (W, b))
« Kennedy and O’Hagan Bayesian calibration is applied to the SIR model that will account for the
discrepancy in the solution space with a Gaussian Process (GP).
« Examples are provided that illustrate the challenge of learning the ground truth parameter
estimations because the discrepancy term is a nonlinear function in differential space.



Clagsic Compartmental Models: R, and Phase Portraits I

The bifurcation of the dynamical system determines the model R|

1 1\ S(t)

Ro=B(5) Re(®=p(7) "
ds _ 10 ¢ =Py =P
dt N Then R,(t) determines the time varying rate at which the
dl 1(t) disease spreads as a function of the proportion of the
- Py SO~ vI(t) population that is susceptible at that time. |
dr = yI(t) Phase Portraits of SIRwhen R; >1and R, < 1 i
dt : 1

dN RO == 3
N =S(t) 4+ 1(t) + R(¢), EZO
Phase Portraits remind us that the

trajectories are not only determined by the | (.
nominal parameter values, ’H
but also the initial value of the states.

“Disease Free”

This will be further emphasized in the
Equilibrium

notional numerical examples.

Equilibriu

Endemic
m ) Qeusee ptible fraction, s

Fig. 2 Phase plane portrait for the classic SIR epidemic model with contact number o = 3.

Fig. 5 Phase plane portrait for the classic SIR endemic model with contact number o = 0.5.

Image Credit: Hethcote 2000



Classic Compartmental Models: Two model forms I

|
é — _ @ dS 1(t)
TR IS =B "S® ‘
dal  I(t) dl I I
a~ Py sO-ro = p 5 s~y - ) |
N0 a0
dt Frie ql(t) —yoQ(¢t) N=St)+I1t)+0(t)+R() !
dR dN
N =S(t)+1(t) + R(b), C;—]Zzo E:yll(t)+yQQ(t) E:O
1 | 1
e T |
VSO (1 \S®
R.(t) =p (;)T R.(t) =P (Vz n q) N

For these two model forms to generate similar trajectories we require the following conditions:
« y =y, +q : forcing residence time in I(t) to be the same for both models

. yl—Q < ¢ :requiring that R(t) population results in similar trajectories

Resulting in a model where Q(t) is obsolete




Notional Plot of Infected Population, I(t)
- We know the classic SIR model is under-representative of the
Herd Immunity real-world phenomenon it is intended to simulate.
Re(t) =1
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= . - Image Credit: NYT https://www.nytimes.com/interactive/2021/us/covid-cases.html [accessed 2020/07/12]
Days
Regardless of model form, all compartmental model lack the ability to capture the variability of transition [

rates that are better captured by time dependent transmission rates.




Quarantine Rate as a function of time

ds (¢

dl I

= 1256~ - a1
dQ

2 = 1O1®) =790

dR

P yiI(t) + YoQ(1)

N=S{t)+1(t)+ Q(t) + R(t)
dN 0
— =

If q(t) = q a constant rate for all time, then R, = (y iq)
1

A formal analysis is required to verify the bifurcation of the QSIR
model with time varying quarantine rate, q(t)

For the purpose of our analysis, we consider the comparison of
model solutions with regards to the solutions for the state
trajectories as well as the effective reproductive number:

Re(t):ﬁ( - )S(t)

vitq(t)/ N

We still have (
time in I(t).

! ) determines the time varying residence
yit+a(t)




UDEs for compartmental models for infectious disease q(t) = NN (SIR,O )

u' = F(u, t, OODE'NN(u’ @NN))

min d—u(®,H:, 0O
{GODE»ONN}” (Oope, On )l

O, = {W,b} : the weights and biases of the neural network
Oope = {B, V1, Yo} : ODE parameters

ds 1(t) d : data for observable states ]
FEANTIRS ‘
dl I

— =P %S(ﬂ ~7:1(8) — a1

dq

— = a1 ~ o0

dR

ar Yil(t) +yoQ(t)

i
N=S@)+1(t)+Q(t) + R(t) |

dt * Neural network architecture:
* 1 hidden layer, 20 neurons, and a ReLU activation function
* Densely connected



dS

dt
dl

dt
d@

dt

dt

for compartmental models for infectious disease

1(t)
=—p—5)

= B2 5@ il (©) = NV (SR, 0,010

= NN (SIR, O35 )I(t) —yoQ(t)

=y I(t) +yoQ(t)

N=St)+1(t)+Q(t) + R(t)

dN
dt

To motivate the discussion on model form and parameter
estimation:
» Synthetic data was generated to evaluate K&O approach to
Bayesian calibration.
» A neural network was still utilized for q(t) = NN (SIR, © )
* 1 hidden layer, 20 neurons, and a Rectified Linear Unit
(ReLU) activation function
» Function plotted below
* Oopr = {B.71,7¢} ={0.15,0.013,0.01}
» The effects of quarantine has its greatest impact in reducing
residence time in I(t).
» Residence time spreading infection also plotted below.
« K&O was then applied to classic SIR
 _Attempt to learn B and y; assuming discrepancy can be

Residence Time for I(t)

rypodetediBy a GP in thes

60
50 |
40 F
— 30
ol [

|' 10 }

- g 1 1 1 1
150 200 0 50 100 150
Days since 500 Infections

50 100
Days since 500 infections



s I(t)

ac- PO

dl 1

—=F (Tt)s(t) — 9y, () = NNV (SIR, 05 )1(0)
d

d—f = NN (SIR, On)I(t) —yoQ(t)

dR

T vl () +vo0(t)

N=St)+1(t)+Q(t) + R(t)

Rate of Quarantine
dN

— =0
dt

(t)
AN

0.10

for compartmental models for infectious disease

K&O was then applied to classic SIR
» Attempt to learn 8 and y assuming discrepancy can be
modeled by a GP in the solution space.

£ €@ €

dS
dt
dl

dt

dt

1(t)
—p TS(t)

1(t)
ﬁTS(t) —yI(t)

YI(t)

N =5(t)+1(t) + R(t),

dN

— =0
dt

y(t:) = n(t;, Oopg) + (1)) + &

n(t;, ©opg): Solution of the state
trajectories for S(t;),1(t;), and R(t;)

y(t;): Synthetic data generate with the
QSIR model and a nonlinear transmission
rate

[Sdata (ti)» Idata (ti) + Qdata (ti): R(ti)]

5(t;): Model discrepancy is assumed to
follow a Gaussian Process
GP(us,Xs): fit to the correlated
residuals
25 = ¢R

R;; = o-K(t-t))*

&;: process error (e.g., noise)
g = 0foralli (i.e., noise-free case)




0.25

Trac|<ing SIR Model Fit to UDE nonlinear Quarantine Rate g (t)
34

0.20

Ground “Truth” Original Parameters for UDE for QSIR:
f =0.15 y=0.013, § =01 = Ry=115
5(0)

[5(0),1(0),R(0),Q(0)] = [1.999480e6, 500, 10, 10] = N~ 0.99974
q(t): plotted in “Rate of Quarantine” figure -

0.15 ¢

q(t)

0.05

0.00 b——on" .

a/,

Rate of Quarantine

|

Kennedy and O’Hagan parameter estimation for SIR :
B, = 0.1350, y;=0.0151 = [Ry]; = 8.9
B, = 0.1476, y, = 0.0130 = [Ry], = 11.3
S(0)

[5(0),1(0), R(0)] ~ [1.999480e6, 510, 10] = ="~ 0.99974

Close Approximation to I(t) + Q(t) with SIR:
Bz = 0.1200, y5; = 0.0180 = [Ry]s ~ 6.67

[S(0),1(0), R(0)]5 ~ [1.998163e6, 1711,125] = [%] ~ 0.99920072
3

Close Approximation to R, (t) with SIR:
B. = 0.1300, y, = 0.0130 = [Ry], =10

[S(0),1(0), R(0)], ~ [1.992834e6, 6572,593] = [%] ~ 0.99768227
4

50 100 150
Days since 500 infections

200




Kenhnedy and O’Hagan parameters estimations for SIR :
3£5€0),1(0), R(0)] ~ [1.999480e6, 510, 10]

= =
N

S(0)

~ 0.99974

p; = 0.1350, y;=0.0151

8.9
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Close Approximations Allowing Initial State to change:

38, %= 0.1200, y; = 0.0180 = [Ry]z = 6.67 B, = 0.1300, y, = 0.0130 = [Ry], =10 :
[$(0),1(0),R(0)]; = [1.998163e6, 1711,125] [S(0),1(0),R(0)], =~ [1.992834¢6, 6572,593]
= |22, ~0.99920072 = [=2] ~ 0.99768227
N 13 N 14
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é 1.00x10° | é 1.00x10° t
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Results of K&O Bayesian Calibration
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Result with “weak” prior centered at
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Comparison of resulting solutions w/o discrepancy

38
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» Black line corresponds to the data
« Dashed red is the solution from SIR with the “true” values: 0.15,0.013.
» Dotted blue is a solution based on optimization of squared-error-loss.



ExarIple of neural network loss function realizations for each iteration of the optimization algorithm
39
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41 ‘ Key Theoretical Foundation of SciML

Universal Approximation Theorem [[11],[12],[13]]:

(one version) Fix a continuous function ¢: R = R (activation function) and positive

N > owpn integers d, D. The function ¢ is not a polynomial if and only if, for every continuous
G “‘*:i;}u':rg function f: R? — RP (target function), every compact set K of R%, and every ¢ > 0
RG :-‘*\R} 7 = there exists a continuous function f,: R - RP (the layer output) with representation

, \ﬁ:}/ 4 where W,, W; are composable affine maps and o denotes component-wise composition,

A \Eﬁ such that the approximation is bounded

Pensely. connected sup ||f () —fe() |l <e

While the Universal Approximation Theorem is a necessary condition for neural networks to be function
approximators, in practice this is not a sufficient condition.



“2 " Ensemble Training: Robust Learning and Uncertainty Quantification

Approach:

For each combination: {[I,R, Q],[I,R],[I,Q],[R, Q],[I], [R], [Q]}

Initialize model parameters 0 = {®,pg, Onn}

a. 0,pp sampled from distributions derived from the literature.
b. Oy established from Glorot initialization

Run 100 training replicates to learn: {8%,} and {0§,.}, for k = 1, ..., 100.

0.25 1 Filtered samples

Challenge: g . \ Outlier samples
Optimization is sensitive to initialization and can get £ 0.20 A ‘f‘\\ * Data
stuck in a local minima. 2.

2 0.15

= 3

8§ 0.10 1 \
Mitigation: g \\
Filter out outlier ensemble members (those with very = 0.051 N\
large MSE). 0.00 - N

0 25 50 75 100 125 150 175 200
Days since 500 infections
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Stochastic Differential Equations for Noisy Data Generation

d
d—f — —A(8)S(t)

% = A(t)S(t) — uyll(t) — U)EII(t) —q(0)I(t) B~ N(/Jg

2 = 1 I(©) + A1) + 11,0Q(E) + 07,Q() i~ Ny

i)

2
Uyl )

22 = q(OI() = 11,0Q() — 02,Q(1)

Such that:

o = 1) : 1)

PSS + 100 + R + Q(b) T S+ I1(t) + R(t) + Q(b)

q(t) = NN(IRQ; W, b)



