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Adaptive, Interpretable, and Extrapolative Model-Form Uncertainty Motivation3

Oliver et al. 2015

Kennedy O’Hagan 2001

Sargsyan et al. 2015

Subramanian 
Mahadevan 2019

???

Interpretable & extrapolative Rapid development



Epidemiology Motivation: Model-Form Uncertainty for Predictions4

Image Credit: NYT https://www.nytimes.com/interactive/2021/us/covid-cases.html [accessed 2022/04/08] 

We know the classic 𝑆𝐼𝑅 model is under-representative of the real-world 
phenomenon it is intended to simulate. 

𝑅!: The reproductive number, defined only at 𝑡 = 0, when the first infectious host is presented to a population that is 100% susceptible.

𝑅" 𝑡 = 𝑅!
# $
%
: The effective reproductive number, is the time varying rate at which new infectious cases will infect the resulting susceptible       

population
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Universal Differential Equations (UDEs)6

• UDEs have been successfully deployed to infer 
interpretable, predictive dynamics from data [[16][17]].

• UDEs embed ML models, e.g., neural networks (NNs) within 
existing scientific models:
l

𝒖! = 𝐹 𝒖, 𝑡, 𝜃"#$ , 𝑁𝑁 𝒖, 𝜃%%
Type equation here.

min
&

𝒅 − 𝒖(𝜃)

where 𝜃 = {𝜃"#$ , 𝜃%%} and 𝒅 represents observation data. 

• Can be formulated to respect physical principles by 
construction.

• Data-efficient because make sure of prior physical 
information.

• Can be more predictive than Neural ODEs:

𝒖! = 𝑁𝑁(𝒖, 𝜃%%)
Type equation here.

min
&!!

𝒅 − 𝒖(𝜃%%)
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Universal Differential Equations (UDEs) [[16][17]]

Physics-Informed Neural Networks (PINNs) [14] Neural Ordinary Differential Equations (Neural ODEs) [15]

𝐼(𝑡)

𝑄(𝑡)

𝑅(𝑡)
𝛾&

𝛾'

𝜆(𝑡)

𝑑𝑢
𝑑𝑡 = 𝑁𝑁(𝑊, 𝑏)

𝑞 𝑡 = 𝑁𝑁(𝐼𝑅𝑄;𝑊, 𝑏)

Data-driven solutions to Partial Differential Equations (PDEs) 
Simulating unknown dynamics for a full system of ODEs:𝑢' +𝒩 𝑢 = 0, 𝑥 ∈ Ω ⊂ ℝ(, 𝑡 ∈ 0, 𝑇

where 𝑢 𝑡, 𝑥 denotes the latent (hidden) solution, 
𝒩[⋅] is a nonlinear differential operator

Then…. 𝑢 𝑡, 𝑥 = 𝑁𝑁(𝑊, 𝑏)

S - SUSCEPTIBLE / I – INFECTIOUS / R – RECOVERED 

Q – QUARANTINED (ISOLATION)

SciML: Machine Learning and Dynamical Systems

𝑆(𝑡)

!"
!# = −𝜆 𝑡 𝑆 𝑡

Type equation here.

!$
!#
= 𝜆 𝑡 𝑆 𝑡 − 𝛾$𝐼 𝑡 − 𝑞 𝑡 𝐼(𝑡)

Type equation here.

!%
!#
= 𝛾$𝐼 𝑡 + 𝛾&𝑄 𝑡

Type equation here.

!&
!# = 𝑞 𝑡 𝐼 𝑡 − 𝛾&𝑄 𝑡

Type equation here.
Such that:

𝜆 𝑡 = 𝛽
𝐼 𝑡

𝑆 𝑡 + 𝐼 𝑡 + 𝑅 𝑡 + 𝑄(𝑡)

𝑊!,#

Densely Connected

Input
𝐼 𝑡
R 𝑡
Q(𝑡)
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Spain Italy Russia UK

UDEs for Epidemiology Compartmental Models [4]

Loss function:

𝐿%% 𝜃%%, 𝛽, 𝛾) , 𝛾* = log 𝐼 𝑡 − log(𝐼+,',(𝑡))
- + log 𝑅 𝑡 − log(𝑅+,',(𝑡))

- + log 𝑄 𝑡 − log(𝑄+,',(𝑡))
-



9 Ensemble Training: Assessing Robustness and Uncertainty

Approach:

For each combination: 𝐼, 𝑅, 𝑄 , 𝐼, 𝑅 , 𝐼, 𝑄 , 𝑅, 𝑄 , 𝐼 , 𝑅 , 𝑄
l

Initialize model parameters Θ = Θ"#$ , Θ%%
a. Θ"#$ sampled from distributions derived from the literature. 
b. Θ%% established from Glorot initialization

Run 100 training replicates to learn: LΘ%%. and LΘ"#$. , for 𝑘 = 1,… , 100.

Experimental Plan

1. Generate synthetic data with prespecified NN and nominal parameter values, Θ⋆ = {Θ"#$⋆ , Θ%%⋆ }

2. Learn optimal parameters LΘ = {LΘ%%, LΘ"#$} from a subsets of observations: 

𝐼, 𝑅, 𝑄 , 𝐼, 𝑅 , 𝐼, 𝑄 , 𝑅, 𝑄 , 𝐼 , 𝑅 , [𝑄]

3. Evaluate mean-squared error (MSE) of inferred R𝑞(𝑡) vs “true” 𝑞⋆(𝑡)



10 Training Results: Observable States = [𝐼, 𝑅, 𝑄]

𝛽 𝛾) 𝛾*

𝑞(
𝑡)

𝐼
𝑅
𝑄
𝑆



11 Training Results: Observable States = [𝑅]

𝛽 𝛾) 𝛾*

𝑞(
𝑡)

𝑆
𝐼
𝑄

𝑅
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Model-Form Uncertainty: Combining UDE and Bayesian Statistics 13

By endowing UDEs with a Bayesian parameterization, can we represent 
model-form uncertainty?

• UDEs successfully used in a deterministic setting to find
“model corrections” or “missing dynamics”.

• Data is NOT always informative enough to identify a single “model correction”.

Challenges:

• NNs discrepancies are challenging to train even in deterministic setting.

• Bayesian methods do NOT scale well with higher dimensions



Bayesian UDE Study14

Loss function:

𝐿%% 𝜃%%, 𝛽, 𝛾) , 𝛾* = log 𝐼 𝑡 − log(𝐼+,',(𝑡))
- + log 𝑅 𝑡 − log(𝑅+,',(𝑡))

- + log 𝑄 𝑡 − log(𝑄+,',(𝑡))
-

Inferring disease parameters [𝛽, 𝛾) , 𝛾*] along with NN parameters

Prior
• Disease parameters  ∼ 𝒰(0,2)
• 51 NN parameters  ∼ 𝒩 0, 50 -

Likelihood
• Synthetic data generated from SIRQ model
• Calibration data = observations of 𝐼, 𝑅, 𝑄 first 50 days
• Likelihood assumes the following error

𝑑 = 𝑢 + 𝜖, 𝜖 ∼ 𝒩 0, 𝜎- , 2𝜎 = ±0.1𝑢



Bayesian Study Results: No Noise in Simulation Data15

%&
%'
= −𝜆 𝑡 𝑆 𝑡

Type equation here.
%(
%'
= 𝜆 𝑡 𝑆 𝑡 − 𝛾(𝐼 𝑡 − 𝑞 𝑡 𝐼(𝑡)

Type equation here.
%)
%'
= 𝛾(𝐼 𝑡 + 𝛾*𝑄 𝑡

Type equation here.
%*
%'
= 𝑞 𝑡 𝐼 𝑡 − 𝛾*𝑄 𝑡

Type equation here.
Such that:

𝜆 𝑡 = 𝛽
𝐼 𝑡

𝑆 𝑡 + 𝐼 𝑡 + 𝑅 𝑡 + 𝑄(𝑡)

𝑞 𝑡 = 𝑁𝑁(𝐼𝑅𝑄;𝑊, 𝑏)
M
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Bayesian Study Results: Indication of Complex Posterior Structure16

NUTS posterior chains Correlations

2000 steps / Average acceptance rate: 0.86 / Adaptive step size

Method: NUTS, HMC variant, derivative based
• Seeded posterior approximations at MAP point



Continued and Future Research17

Continued:
• Stochastic differential equations for noisy data generation.
• Time varying likelihoods as stochastic processes. 
• How do neural network architectures impact validation?
• Validation metrics: 
• Mahalanobis Distance
• Quantiles
• The Instantaneous Reliability Metrics

Future:
• Seeded posterior approximations small perturbations away from MAP.
• Sparsity-inducing priors.
• Estimate posterior with Gaussian mixture model.
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Thank You for Your Time and Attention!

For questions or follow-up discussions:

Erin Acquesta, eacques@sandia.gov

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

mailto:eacques@sandia.gov
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Motivation
• Universal Differential Equations (UDEs) a novel model paradigm combining classical systems of differential 

equations with a data-driven discrepancy term. [Rackauckas2020,Dandekar2020]
• UDEs provide deterministic calibration of the differential equations parameters while simultaneously learning a 

nonlinear discrepancy term at the source of discrepancy.  
• Bayesian neural networks have been integrated with UDEs to provide uncertainty for the solution of the state 

trajectories with respect to the uncertainty in the weights and the biases of the neural network. [Dandekar2021]
• Active Research: Extend the methods for deterministic calibration accounting for model discrepancy at the source 

with Bayesian statistics to develop Bayesian calibration for situations where we can break open the black box and 
learn the model discrepancy at the source. 

Kennedy and O’Hagan
• 20 year old state-of-the-art in Bayesian Calibration that accounts for a discrepancy term, when the computer 

model is treated as a black box. 
• Even Kennedy and O’Hagan state in their original paper: if you can open the black box and put the discrepancy 

term directly at the source you can arguably do better, but their method should be more generalizable 
[Kennedy2001].
• Opportunity when we open the black box: methods that do so, may help with the identifiability that the KOH 

framework has between parameters and model discrepancy. 

What does “Better” mean? How do we compare the methods? Especially for systems of differential equations, 
when we put the discrepancy term at the source we change the behavior of the mathematical model.
• Larger state space
• More parameters
• Different bifurcation and phase portraits
• Parameter estimation for one model form ≠ Parameter estimation for another model form



26 Outline
• Classic Compartmental Models for Infectious Disease Transmission

• Classic notation
• Interpretation
• Mathematical representations for disease phenomena

• UDEs for learning discrepancy term  for Infectious Disease Transmission, accounting for the effects of 
quarantine. 
• QSIR [Quarantine-Susceptible-Infectious-Recovered(Removed)] 
• 𝑞 𝑡 : a nonlinear transmission rate for which the Infectious population transitions to Quarantine.

• The effective reproductive number is compared between SIR and QSIR
• 𝑅( 𝑡 = 𝑅)

" #
*

• Notional numerical example
• Synthetic data is generated with a known 𝑞 𝑡 = 𝑁𝑁(𝑄𝑆𝐼𝑅, Θ** ≔ (𝑊, 𝑏))
• Kennedy and O’Hagan Bayesian calibration is applied to the SIR model that will account for the 

discrepancy in the solution space with a Gaussian Process (GP).
• Examples are provided that illustrate the challenge of learning the ground truth parameter 

estimations because the discrepancy term is a nonlinear function in differential space. 
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𝑑𝑆
𝑑𝑡 = −𝛽

𝐼 𝑡
𝑁 𝑆(𝑡)

Type equation here.

𝑑𝐼
𝑑𝑡 = 𝛽

𝐼 𝑡
𝑁 𝑆(𝑡) − 𝛾𝐼 𝑡

Type equation here.

𝑑𝑅
𝑑𝑡 = 𝛾𝐼 𝑡
Type equation here.

𝑁 = 𝑆 𝑡 + 𝐼 𝑡 + 𝑅 𝑡 ,
𝑑𝑁
𝑑𝑡 = 0

Classic Compartmental Models: 𝑅0 and Phase Portraits

𝑆(𝑡) I(𝑡) R(𝑡)

𝑅0 = 𝛽
1
𝛾 , 𝑅1 𝑡 = 𝛽

1
𝛾
𝑆 𝑡
𝑁

The bifurcation of the dynamical system determines the model 𝑅0

Then 𝑅1(𝑡) determines the time varying rate at which the 
disease spreads as a function of the proportion of the 
population that is susceptible at that time. 

𝑅0 = 3 𝑅0 = 0.5

Image Credit: Hethcote 2000    

Phase Portraits of SIR when 𝑅0 > 1 and 𝑅0 < 1

Phase Portraits remind us that the 
trajectories are not only determined by the 
nominal parameter values, 
but also the initial value of the states. 

This will be further emphasized in the 
notional numerical examples. 

Endemic 
Equilibriu

m

“Disease Free” 
Equilibrium
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𝑑𝑆
𝑑𝑡 = −𝛽

𝐼 𝑡
𝑁 𝑆(𝑡)

Type equation here.

𝑑𝐼
𝑑𝑡 = 𝛽

𝐼 𝑡
𝑁 𝑆(𝑡) − 𝛾𝐼 𝑡

Type equation here.

𝑑𝑅
𝑑𝑡 = 𝛾𝐼 𝑡
Type equation here.

𝑁 = 𝑆 𝑡 + 𝐼 𝑡 + 𝑅 𝑡 ,
𝑑𝑁
𝑑𝑡 = 0

Classic Compartmental Models: Two model forms

𝑆(𝑡) I(𝑡) R(𝑡) 𝑆(𝑡) I(𝑡) R(𝑡)

Q(𝑡)
𝑑𝑆
𝑑𝑡 = −𝛽

𝐼 𝑡
𝑁 𝑆(𝑡)

Type equation here.

𝑑𝐼
𝑑𝑡
= 𝛽

𝐼 𝑡
𝑁

𝑆 𝑡 − 𝛾)𝐼 𝑡 − qI t
Type equation here.

𝑑𝑄
𝑑𝑡 = 𝑞𝐼 𝑡 − 𝛾*𝑄(𝑡)
Type equation here.

𝑑𝑅
𝑑𝑡 = 𝛾)𝐼 𝑡 + 𝛾*𝑄(𝑡)

𝑅0 = 𝛽
1
𝛾

Type equation here.

𝑅1 𝑡 = 𝛽
1
𝛾
𝑆 𝑡
𝑁

𝑅0 = 𝛽
1

𝛾) + 𝑞
Type equation here.

𝑅1 𝑡 = 𝛽
1

𝛾) + 𝑞
𝑆 𝑡
𝑁

𝑁 = 𝑆 𝑡 + 𝐼 𝑡 + 𝑄 𝑡 + 𝑅 𝑡
Type equation here.

𝑑𝑁
𝑑𝑡 = 0

For these two model forms to generate similar trajectories we require the following conditions:
• 𝛾 = 𝛾) + 𝑞 : forcing residence time in 𝐼(𝑡) to be the same for both models
• 2

3"
≪ 𝜀 : requiring that 𝑅(𝑡) population results in similar trajectories

Resulting in a model where 𝑸(𝒕) is obsolete 
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Regardless of model form, all compartmental model lack the ability to capture the variability of transition 
rates that are better captured by time dependent transmission rates. 

𝑅( 𝑡 = 1
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Quarantine Rate as a function of time

𝑆(𝑡) I(𝑡) R(𝑡)

Q(𝑡)

𝑑𝑆
𝑑𝑡 = −𝛽

𝐼 𝑡
𝑁 𝑆(𝑡)

Type equation here.

𝑑𝐼
𝑑𝑡 = 𝛽

𝐼 𝑡
𝑁 𝑆 𝑡 − 𝛾)𝐼 𝑡 − q(t)I t

Type equation here.

𝑑𝑄
𝑑𝑡 = 𝑞(𝑡)𝐼 𝑡 − 𝛾*𝑄(𝑡)
Type equation here.

𝑑𝑅
𝑑𝑡 = 𝛾)𝐼 𝑡 + 𝛾*𝑄(𝑡)

𝑁 = 𝑆 𝑡 + 𝐼 𝑡 + 𝑄 𝑡 + 𝑅 𝑡
Type equation here.

𝑑𝑁
𝑑𝑡 = 0

• If 𝑞 𝑡 = 𝑞 a constant rate for all time, then 𝑅0 = 𝛽 2
3#45

• A formal analysis is required to verify the bifurcation of the QSIR 
model with time varying quarantine rate, 𝑞 𝑡

• For the purpose of our analysis, we consider the comparison of 
model solutions with regards to the solutions for the state 
trajectories as well as the effective reproductive number:  

𝑅1 𝑡 = 𝛽 2
3#45(')

8 '
%

• We still have 2
3#45(')

determines the time varying residence 

time in 𝐼(𝑡).  
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UDEs for compartmental models for infectious disease

𝑆(𝑡) I(𝑡) R(𝑡)

Q(𝑡)

𝑑𝑆
𝑑𝑡 = −𝛽

𝐼 𝑡
𝑁 𝑆(𝑡)

Type equation here.

𝑑𝐼
𝑑𝑡 = 𝛽

𝐼 𝑡
𝑁 𝑆 𝑡 − 𝛾)𝐼 𝑡 − q(t)I t

Type equation here.

𝑑𝑄
𝑑𝑡 = 𝑞(𝑡)𝐼 𝑡 − 𝛾*𝑄(𝑡)
Type equation here.

𝑑𝑅
𝑑𝑡 = 𝛾)𝐼 𝑡 + 𝛾*𝑄(𝑡)

𝑁 = 𝑆 𝑡 + 𝐼 𝑡 + 𝑄 𝑡 + 𝑅 𝑡
Type equation here.

𝑑𝑁
𝑑𝑡 = 0

𝑞 𝑡 ≈ 𝒩𝒩 𝑆𝐼𝑅, Θ𝒩𝒩

𝒖! = 𝑭 𝒖, 𝑡, 𝚯"#$ ,𝒩𝒩 𝒖,𝚯𝒩𝒩
min

𝚯$%&,𝚯𝒩𝒩
𝒅 − 𝒖(𝚯"#$ , 𝚯𝒩𝒩)

𝚯𝒩𝒩 = 𝑊, 𝑏 : the weights and biases of the neural network
𝚯"#$ = {𝛽, 𝛾) , 𝛾*} : ODE parameters
𝒅 : data for observable states 

• Neural network architecture: 
• 1 hidden layer, 20 neurons, and a ReLU activation function
• Densely connected

𝑞(𝑡)
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UDEs for compartmental models for infectious disease

𝑆(𝑡) I(𝑡) R(𝑡)

Q(𝑡)

𝑑𝑆
𝑑𝑡 = −𝛽

𝐼 𝑡
𝑁 𝑆(𝑡)

Type equation here.

𝑑𝐼
𝑑𝑡
= 𝛽

𝐼 𝑡
𝑁

𝑆 𝑡 − 𝛾)𝐼 𝑡 −𝒩𝒩 𝑆𝐼𝑅, Θ𝒩𝒩 I t
Type equation here.

𝑑𝑄
𝑑𝑡 = 𝒩𝒩 𝑆𝐼𝑅, Θ𝒩𝒩 𝐼 𝑡 − 𝛾*𝑄(𝑡)
Type equation here.

𝑑𝑅
𝑑𝑡 = 𝛾)𝐼 𝑡 + 𝛾*𝑄(𝑡)

𝑁 = 𝑆 𝑡 + 𝐼 𝑡 + 𝑄 𝑡 + 𝑅 𝑡
Type equation here.

𝑑𝑁
𝑑𝑡 = 0

To motivate the discussion on model form and parameter 
estimation:
• Synthetic data was generated to evaluate K&O approach to 

Bayesian calibration. 
• A neural network was still utilized for 𝑞 𝑡 ≈ 𝒩𝒩 𝑆𝐼𝑅, Θ𝒩𝒩

• 1 hidden layer, 20 neurons, and a Rectified Linear Unit 
(ReLU) activation function

• Function plotted below
• Θ"#$ = 𝛽, 𝛾) , 𝛾* = {0.15, 0.013, 0.01}
• The effects of quarantine has its greatest impact in reducing 

residence time in 𝐼 𝑡 .
• Residence time spreading infection also plotted below.  

• K&O was then applied to classic SIR
• Attempt to learn 𝛽 and 𝛾) assuming discrepancy can be 

modeled by a GP in the solution space.
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UDEs for compartmental models for infectious disease

𝑆(𝑡) I(𝑡) R(𝑡)

Q(𝑡)𝑑𝑆
𝑑𝑡 = −𝛽

𝐼 𝑡
𝑁 𝑆(𝑡)

Type equation here.

𝑑𝐼
𝑑𝑡 = 𝛽

𝐼 𝑡
𝑁 𝑆 𝑡 − 𝛾)𝐼 𝑡 −𝒩𝒩 𝑆𝐼𝑅, Θ𝒩𝒩 I t

Type equation here.

𝑑𝑄
𝑑𝑡 = 𝒩𝒩 𝑆𝐼𝑅, Θ𝒩𝒩 𝐼 𝑡 − 𝛾*𝑄(𝑡)
Type equation here.

𝑑𝑅
𝑑𝑡 = 𝛾)𝐼 𝑡 + 𝛾*𝑄(𝑡)

𝑁 = 𝑆 𝑡 + 𝐼 𝑡 + 𝑄 𝑡 + 𝑅 𝑡
Type equation here.

𝑑𝑁
𝑑𝑡

= 0

K&O was then applied to classic SIR
• Attempt to learn 𝛽 and 𝛾 assuming discrepancy can be 

modeled by a GP in the solution space.

𝑑𝑆
𝑑𝑡 = −𝛽

𝐼 𝑡
𝑁 𝑆(𝑡)

Type equation here.

𝑑𝐼
𝑑𝑡 = 𝛽

𝐼 𝑡
𝑁 𝑆(𝑡) − 𝛾𝐼 𝑡

Type equation here.

𝑑𝑅
𝑑𝑡 = 𝛾𝐼 𝑡
Type equation here.
Type equation here.
𝑁 = 𝑆 𝑡 + 𝐼 𝑡 + 𝑅 𝑡 ,
𝑑𝑁
𝑑𝑡 = 0

𝑆(𝑡) I(𝑡) R(𝑡)

𝒚 𝑡< = 𝜼 𝑡< , Θ"#$ + 𝛿 𝑡< + 𝜀<

• 𝜼 𝑡! , Θ"#$ : Solution of the state 
trajectories for 𝑆 𝑡! , 𝐼 𝑡! , and 𝑅(𝑡!)

• 𝒚 𝑡! :  Synthetic data generate with the 
QSIR model and a nonlinear transmission 
rate
• [𝑆%&'& 𝑡! , 𝐼%&'& 𝑡! + 𝑄%&'& 𝑡! , 𝑅(𝑡!)]

• 𝛿 𝑡! : Model discrepancy is assumed to 
follow a Gaussian Process
• 𝐺𝑃 𝜇( , Σ( : fit to the correlated 

residuals
• Σ( = 𝜙𝑅
• 𝑅!) = 𝑒*+ '*'/

0

• 𝜀!: process error (e.g., noise)
• 𝜀! = 0 for all 𝑖 (i.e., noise-free case)
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Tracking SIR Model Fit to UDE nonlinear Quarantine Rate 𝑞(𝑡)

Ground “Truth” Original Parameters for UDE for QSIR:
𝛽 = 0.15, 𝛾 = 0.013, 𝛿 = 0.1 ⇒ 𝑅0 ≈ 11.5
𝑆 0 , 𝐼 0 , 𝑅 0 , 𝑄(0) ≈ 1.999480𝑒6, 500, 10, 10 ⇒ 8 0

%
≈ 0.99974

𝑞 𝑡 : plotted in “Rate of Quarantine” figure à

Kennedy and O’Hagan parameter estimation for SIR :
𝛽2 = 0.1350, 𝛾2= 0.0151 ⇒ 𝑅0 2 ≈ 8.9
𝛽- = 0.1476, 𝛾- = 0.0130 ⇒ 𝑅0 - ≈ 11.3
𝑆 0 , 𝐼 0 , 𝑅 0 ≈ 1.999480𝑒6, 510, 10 ⇒ 8 0

%
≈ 0.99974

Close Approximation to 𝐼 𝑡 + 𝑄(𝑡) with SIR:
𝛽= = 0.1200, 𝛾= = 0.0180 ⇒ 𝑅0 = ≈ 6.67
𝑆 0 , 𝐼 0 , 𝑅 0 = ≈ 1.998163𝑒6, 1711, 125 ⇒ 8 0

% =
≈ 0.99920072

Close Approximation to 𝑅1(𝑡) with SIR:
𝛽> = 0.1300, 𝛾> = 0.0130 ⇒ 𝑅0 > = 10
𝑆 0 , 𝐼 0 , 𝑅 0 > ≈ 1.992834𝑒6, 6572, 593 ⇒ 8 0

% >
≈ 0.99768227
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Kennedy and O’Hagan parameters estimations for SIR :

𝑆 0 , 𝐼 0 , 𝑅 0 ≈ 1.999480𝑒6, 510, 10 ⇒ 8 0
%
≈ 0.99974

𝛽- = 0.1476, 𝛾- = 0.0130 ⇒ 𝑅0 - ≈ 11.3𝛽2 = 0.1350, 𝛾2= 0.0151 ⇒ 𝑅0 2 ≈
8.9
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Close Approximations Allowing Initial State to change:

𝛽= = 0.1200, 𝛾= = 0.0180 ⇒ 𝑅0 = ≈ 6.67
𝑆 0 , 𝐼 0 , 𝑅 0 = ≈ 1.998163𝑒6, 1711, 125

⇒ 8 0
% =

≈ 0.99920072

𝛽> = 0.1300, 𝛾> = 0.0130 ⇒ 𝑅0 > = 10
𝑆 0 , 𝐼 0 , 𝑅 0 > ≈ 1.992834𝑒6, 6572, 593

⇒ 8 0
% >

≈ 0.99768227
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Results of K&O Bayesian Calibration 

Result with “weak” prior centered at 
(0.15,0.013)

Result with ”strong” prior
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Comparison of resulting solutions w/o discrepancy 

• Black line corresponds to the data
• Dashed red is the solution from SIR with the “true” values: 0.15,0.013.
• Dotted blue is a solution based on optimization of squared-error-loss. 
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Example of neural network loss function realizations for each iteration of the optimization algorithm



UDEs



Key Theoretical Foundation of SciML41

Universal Approximation Theorem [[11],[12],[13]]: 
j

(one version) Fix a continuous function 𝜎:ℝ → ℝ (activation function) and positive 
integers 𝑑, 𝐷. The function 𝜎 is not a polynomial if and only if, for every continuous 
function 𝑓:ℝ! → ℝ/ (target function), every compact set 𝐾 of ℝ!, and every 𝜀 > 0
there exists a continuous function 𝑓0: ℝ! → ℝ/ (the layer output) with representation

𝑓0 = 𝑊1 ∘ 𝜎 ∘ 𝑊2

where 𝑊1, 𝑊2 are composable affine maps and ∘ denotes component-wise composition, 
such that the approximation is bounded

sup
3∈5

||𝑓 𝑥 − 𝑓0(𝑥) || < 𝜀

While the Universal Approximation Theorem is a necessary condition for neural networks to be function
approximators, in practice this is not a sufficient condition.



42 Ensemble Training: Robust Learning and Uncertainty Quantification
Approach:

For each combination: 𝐼, 𝑅, 𝑄 , 𝐼, 𝑅 , 𝐼, 𝑄 , 𝑅, 𝑄 , 𝐼 , 𝑅 , 𝑄
l

Initialize model parameters Θ = Θ"#$ , Θ%%
a. Θ"#$ sampled from distributions derived from the literature. 
b. Θ%% established from Glorot initialization

Run 100 training replicates to learn: oΘ%%. and oΘ"#$. , for 𝑘 = 1,… , 100.

Challenge: 
Optimization is sensitive to initialization and can get 
stuck in a local minima. 

Mitigation: 
Filter out outlier ensemble members (those with very 
large MSE).



Noisy Data Generation



Stochastic Differential Equations for Noisy Data Generation44

%&
%'
= −𝜆 𝑡 𝑆 𝑡

Type equation here.
%(
%'
= 𝜆 𝑡 𝑆 𝑡 − 𝜇+(𝐼 𝑡 − 𝜎+(, 𝐼 𝑡 − 𝑞 𝑡 𝐼(𝑡)

Type equation here.
%)
%'
= 𝜇+(𝐼 𝑡 + 𝜎+(, 𝐼 𝑡 + 𝜇+*𝑄 𝑡 + 𝜎+*, 𝑄 𝑡

Type equation here.
%*
%'
= 𝑞 𝑡 𝐼 𝑡 − 𝜇+*𝑄 𝑡 − 𝜎+*, 𝑄(𝑡)

Type equation here.
Such that:

𝜆 𝑡 = 𝜇-
𝐼 𝑡

𝑆 𝑡 + 𝐼 𝑡 + 𝑅 𝑡 + 𝑄(𝑡)
+ 𝜎-

, 𝐼 𝑡
𝑆 𝑡 + 𝐼 𝑡 + 𝑅 𝑡 + 𝑄(𝑡)

𝑞 𝑡 = 𝑁𝑁(𝐼𝑅𝑄;𝑊, 𝑏)

𝛽 ∼ 𝒩 𝜇-, 𝜎-,

𝛾( ∼ 𝒩(𝜇+(, 𝜎+(, )


