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1 Introduction

Most machine learning make the implicit assumption that
they exist and operate in a closed world; i.e., the data that they
will encounter in the wild will be drawn from the same distri-
bution as it was trained on. However, the probability of that
assumption holding during deployment is low. Compounded
with the fact that machine learning models often produce
high confidence answers on examples that fall outside of their
training distribution, it is prudent to have a system that can
identify if a data example is suitable for the model to classify
in the first place. Out-of-Distribution (OOD) detection is a
family of closely-related tasks (e.g., anomaly detection, out-
lier detection, . .. ) that have been proposed solve this problem
across a multitude of settings.

We focus on the task of using outlier detection as a means
of OOD. To motivate this need, we demonstrate the problems
associated with OOD for detecting malware and malicious
PDFs. In addition to the problem above, machine learning
models have been shown to be prone to privacy leakage under
many different circumstances. When data is trained on sensi-
tive data, such as what malware a system can defend against,
protecting this data is of utmost importance.

One common approach to increasing the privacy of an ML
system is to implement differential privacy — a mathematical
construct that protects sensitive data. Most differential privacy
approaches to ML add noise to the data or in certain parts of
the learning algorithm. But, recent studies have shown that
in order to have sufficient privacy guarantees, large quanti-
ties of noise must be added which significantly impacts the
performance of the ML algorithm. Most techniques that pro-
pose a differentially private version of outlier detection fall
victim to this issue as noise is simply added to the data be-
fore being used. Nonetheless, there are techniques that do
not require adding noise and still adhering to the guarantees

of differential privacy. One approach of this manner is sub-
sampling. Subsampling relies on the inherent randomness of
the sampling procedure to ensure adherence to differential
privacy and has been shown to increase other privacy masures
(requiring less noise). We examine subsampling in addition
to strategically placed noise in DBScan to produce a more
efficient deferentially private outlier detection method.

Paragraph on correlation here....

Paragraph for motivating example goes here ... Will focus
on malware and dynamic nature of malware. An operator
needs to know when the data has shifted or when new types
of malware have been discovered and should be examined by
an nalayst.

To solve these issue we propose SDP-DBSCAN, a differ-
entially private variant of Density Based Spatial Clustering of
Applications with Noise (DBSCAN) based on subsampling
and the strategic addition of noise in the DBSCan algorithm.
Instead of adding noise to the data itself or to only the core
points, we instead add it to the thresholding function which
determines the final clusters. Further, subsampling amplifies
privacy (CITE), when it is used in a differentially private algo-
rithm, less noise needs to be added in order to meet the desired
privacy level. Therefore, our approach is able to reach the
same level of privacy as other DP-DBSCAN techniques while
achieving higher utility due to adding less noise. Additionally,
We do this because ... Further, we propose CSDP-DBSCAN,
a variant of SDP-DBSCAN that still provides differential pri-
vacy when correlated data is present in the training set. We
further examine subsampling that removes separates corre-
lated data points.

Our major contributions include: (1) a differentially pri-
vate implementation of DBSCAN that does not require the
addition of noise to the training data or core data points; (2)
a differentially private implementation of DBSCAN that ac-
counts for correlation in the training data without injecting
noise to the training data itself; and (3) the empirical evalu-
ation of both SDP-DBSCAN and CSDP-DBSCAN against
several baselines to show that they can guarantee the same
level of privacy with higher utility with less noise.
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The remainder of the paper is organized as follows. In
Section ....

2 Related Works

In this section we will detail the important works related
closely to our publication.

2.1 Out-of-Distribution Detection and outlier
detection

¢ The Connection between Out-of-Distribution General-
ization and Privacy of ML Models [9]

 Other previous approaches (including outlier detection,

anomaly detection, ...) and their differences

2.2 Differential Privacy

» The Algorithmic Foundations of Differential Privacy [3]

* Practical applications of DP

2.3 Privacy Amplification by Subsampling

* Privacy Amplification by Subsampling: Tight Analyses
via Couplings and Divergences [1]

* On the Intrinsic Differential Privacy of Bagging [8]
« Differentially Private Bagging: Improved Utility and
Cheaper Privacy than Subsample-and-Aggregate [5]

2.4 Differential Privacy and Correlation

* No Free Lunch in Data Privacy [6]

* Dependence Makes You Vulnerable: Differential Privacy
Under Dependent Tuples [7]

* Correlated Differential Privacy: Hiding Information in
Non-IID Data Set [16]

Differentially Private Outlier Detection in Correlated
Data [2]

 Correlated Data in Differential Privacy: Definition and
Analysis [15]

3 Problem Formulation

In this section, we formulate and present our approach to
differentially private out of distribution detection.
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Figure 1: Overview of architecture for SDP-DBSCAN.

3.1 DBSCAN
3.2 Differential Privacy

¢ Introduce DP (main definition from Dwork)
* Introduce type of noise used (Laplace)

* Introduce any composition algorithms we need (or intro-
duce later in correlated section)

3.2.1 Privacy Amplification by Subsampling

¢ Introduce theory behind privacy amplification

e Many do subsample and aggregate, but in tests w/o cor-
relation taken into effect we only subsample once (i.e.,
not PATE). Additionaly, noise is added suring inference
time which can exhaust a privacy budget and the model
will need to be retrained.

3.3 SDP-DBSCAN

We now present our approach to differentially private DB-
SCAN using sampling, SDP-DBSCAN. An overview of the
architecture can be found in Fig. 1.

* Formulate our method for non-correlated data
- Subsample once
- Add noise to neighbor count (DBSCAN)
— Derive sensitivity

- if not out of distribution feed data point to classification
algorithm

- otherwise classify as “Unknown"

* Algorithm



3.4 Correlation Analysis

¢ Introduce theory behind correlation and DP

e Correlated features

L]

Correlated Points

* More like PATE, have to so subsample and aggregate

3.5 CSDP-DBSCAN

We now present our method CSDP-DBSCAN that is able
to provide DP guarantees while using SDP-DBSCAN on
correlated data. An overview of the architecture can be found
in Fig. 2.

» Formulate our method for correlated data
- Subsample once
- Add noise to neighbor count (DBSCAN)
— Derive sensitivity

- if not out of distribution feed data point to classification
algorithm

- otherwise classify as “Unknown"
* Diagram

* Algorithm

4 Experiments

We compare our methods against the baselines along accuracy,
recall/precision, ...

4.1 Datasets
We test SDP-DBSCAN against three different datasets:

e MNIST/EMNIST

PDFRate [12]
e Genomics [11]
* Microsoft Malware Classification Challenge.

We test CSDP-DBSCAN on synthetic data. Specifically, the
synthetic dataset will be a collection of points (and their as-
sociated ’label’) that have correlations so we can test CSDP-
DBSCAN more concretely.

4.2 Baselines

We compare both SDP-DBSCAN and CSDP-DBSCAN
against three baselines:

« DP-DBSCAN [10, 14]: DP-DBSCAN adds noise to
each dimension of the direct density-reachable points
in the dataset by differential privacy technique so that
the published data can conform to the privacy budget
requirement, thereafter the privacy of the data is pro-
tected during clustering. Since DP-DBSCAN publishes
the approximation of data points density, the attackers
cannot deduce the sensitive properties of the data points
even if they grasp some information through the knowl-
edge background. However, when the privacy budget
parameter € is small (i.e., the added noise is too large),
the accuracy of DP-DBSCAN clustering algorithm will
decrease. Moreover, when the data size is large and the
density is non-uniform, the clustering efficiency will also
decrease.

e I-DP-DBSCAN [4]: The Improved DP-DBSCAN (I-
DP-DBSCAN) algorithm achieves differential privacy
by injecting Laplacian noise into the Euclidean distance
of every two data objects.

¢« DP-MCDBSCAN [10]: In order to solve the drawbacks
of DP-DBSCAN where the initial core object is ran-
domly selected, we propose a DP-MCDBSCAN (Differ-
ential Privacy Preservation Multicore DBSCAN Cluster-
ing) algorithm which determines multiple core objects
as the initial object to cluster through the furthest dis-
tance selection method. Our algorithm ensures that the
initial cluster centers are dispersed as far as possible so
that the initial core objects selected are not in the same
cluster, reducing the influence of the initial core objects
selection on the clustering result.

e DP-Kmeans [13]: Given a d-dimensional dataset, parti-
tion the domain into M equal-width grid cells, and then
releases the noisy count in each cell, by adding Laplacian
noise to each cell count.

4.3 Experiments on Non-Correlated Data

In order to show that SPD-DPBSCAN provides DP guaran-
tees without loosing utility, we perform four different tests:
1) injecting noise into the neighbor counts only; 2) subsam-
pling plus noise injection to the neighbors; 3) injecting noise
into the data only; and 4) subsampling plus noise injection
to the data. We perform these experiments across three dif-
ferent datasets (MNIST/EMNIST, Genomics, and PDFRate)
as well as on all of the mentioned baselines. Additionally, we
will perform the experiments on a range of epsilon values to
show that SPD-DBSCAN provides higher utility than other
baselines when epsilon is small.
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Figure 2: Overview of architecture for CSDP-DBSCAN.

4.3.1 Noisy Neighbors

In this experiment, we will test the effectiveness of our DP
0OOD methods by introducing noise to the neighbor counts in
DBSCAN. We will choose a range of epsilon values to try and
calculate the utility of the DP-DBSCAN with noisy neighbors
to correctly identify outliers. In our datasets we will know
which points are out of distribution before hand (e.g., if the
data comes from the emnist class it is out of distribution from
the training set of MNIST), so we will be able to calculate the
accuracy of the DP enforced mechanism.

4.3.2 Subsampling + Noisy Neighbors

This experiment builds on the previous, but instead of using all
of the training data, we will take a subsample and then perform
DP OOD detection and classification. This experiment it to
show that subsampling allows for less noise to be added to the
neighbors in order to reach the same DP privacy level which
will (most likely) result in higher accuracy.

4.3.3 Noisy Data

As a foil to our adding of noise to the neighbor counts, we will
test the standard method of adding noise to the training data
before processing it through DBSCAN. Again we will try
multiple different epsilon levels and compare our approach
against the baselines along accuracy.

4.3.4 Subsampling + Noisy Data

Additionally, we will repeat the immediate test above but with
subsampling to once again show the power of subsampling.

4.4 Experiments on Correlated Data

In the correlation experiments, we will specifically partition
the data into subsets that do not contain any correlated data
within itself. In this manner we will then have k different
partitions, and we will make use of DP composition theorems
to combine the answer from all of the different partitions. The
experiments are the same as above - the only changes being
the forced separation of the data and the analysis on multiple
subsets, not just one. Also, in addition to testing different
epsilon values, we will test different number of splits of the
data into non-correlated partitions.

4.4.1 Noisy Neighbors

4.4.2 Subsampling + Noisy Neighbors
4.4.3 Noisy Data

4.4.4 Subsampling + Noisy Data

S Results

We will include the following tables, figures, and writings for
our results:

* Comparison table with accuracy, precision/recall, ... for
different epsilons for the non-correlated data experi-
ments (results for SDP-DBSCAN, I-DP-DBSCAN, DP-
MCDBSCAN, and DP-KMeans) on all datasets

* Comparison table with accuracy, precision/recall, ...
for different epsilons for the correlated data experi-
ments (results for CSDP-DBSCAN, I-DP-DBSCAN,
DP-MCDBSCAN, and DP-KMeans) on all datasets



e Graph comparing accuracy vs epsilon for the non-
correlated data experiments

» Graph comparing accuracy vs epsilon and accuracy vs
num-splits for the correlated data experiments

6 Analysis

Note: this section could possibly be integrated into the meth-
ods section.

6.1 Theoretical Analysis of SDP-DBSCAN

Here we will prove why subsampling + adding noise to the
neighbors adheres to differential privacy. Specifically, we will
show that our derived privacy level (g,d) is an improvement
over the other baselines.

6.2 Theoretical Analysis of CSDP-DBSCAN

Here we will prove why our separation strategy works to deal
with correlated data and derive our privacy bounds.

7 Conclusion
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