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e What is ZAPP?
* Current ZAPP projects
e @Goals of the breakout sessions
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Our goal is to perform at-parameter experiments to
experimentally test plasma and spectra modeling

‘Why should we test the models? ‘
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Plasma and spectra modeling are complex; Models are used @{uﬁgm
o o o o o o aboratories
without sufficient experimental validations

Atomic data

* Energy

* Oscillator strength
* Cross-section

* Rate
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Plasma and spectra modeling are complex; Models are used @{%agd.
o o o o o o aboratories
without sufficient experimental validations

* Line broadening

Population = Probability for * Stark
an ion being in each atomic * Doppler
state * Natural

* Radiation transport

: : €, =emissivity
Atomic data Population/EOS Spectra, €,, K,
K, =opacity

Energy  LTE/NLTE
Oscillator strength

Cross-section
Rate




Plasma and spectra modeling are complex; Models are used @{i‘aﬁ“.
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Atomic data Population/EOS

Energy
Oscillator strength
Cross-section

Rate

 LTE/NLTE
Astrophysical use:

* Interpreting observed spectra

* Modeling astrophysical objects (EOS, mean opacity)
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Plasma and spectra modeling are complex; Models are used @ﬁ:{}ﬂ‘ﬁ‘a.

o ° o . o o Laboratories
without sufficient experimental validations
Not sufficiently validated

{ Density effects J { Radiation, F, J

Line.
IPD ZShapes
Atomic data Population/EQS Spectra, €,,, K,
* Energy ~« LTE/NLTE
* Oscillator strength “ Astrophysical use:
° EFC;SS-S@CUON Tl __ * Interpreting observed spectra
 Rate

* Modeling astrophysical objects (EOS, mean opacity)

* Limited validations available for approximations at extreme conditions
* This produces unknown uncertainty to the data interpretations and model predictions
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What’s new: now, we can create macroscopic enough

quantities of astrophysical matter for detailed studies
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Z machine at Sandia National Lab creates

macroscopic plasma at fairly exotic

gonrcitions : :
Fe opacity samples: Size ~ 1 mm sand grain

Achieved conditions:
T=150-200 eV
n,=(1-10)x10%? e/cm3

Achieved conditions:
T=1-3 eV
n,=(5-100)x10'® e/cm3
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ZAPP* campaigns simultaneously study multiple @ﬁg{}ﬂ‘:‘a.
o o o o . Laboratories
issues spanning 200x in temperature and 10°x in density

Solar Opacity White Dwarf Line-Shapes Photoionized Plasma

Question: Question: Question:

Why can’t we predict solar Why doesn’t spectral fitting How does ionization and line

structure accurately enough? provide the correct properties for formation occur in accreting
White Dwarfs? objects?

Achieved Conditions: Achieved Conditions: Achieved Conditions:

T.~200eV, n_~ 1023 cm T.,~1eV,n,~10Y cm3 T,~20eV,n,~ 109 cm3
M &y
‘I\ K

*ZAPP = Z Astrophysical Plasma Properties


http://www.cea.fr/english_portal

The SNL Z machine uses 27 million Amperes to create x-rays @ﬁ:{}g“:‘a.

Laboratories

P~ 220TW (£10%), V.., ~ 1.6 MJ (£7%)

Sanford, PoP (2002); Bailey et al., PoP (2006); Slutz et al., PoP (2006); Rochau et al., PPCF (2007)
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simultaneously Solar opacity sample

* T=150-200 eV

/° ne=7e21-1e23 e/cc

Si foil

Fe foil
Photoionized plasma
NNV experiments
* T=30-40 eV
N * ne=5el6-1lel7 e/cc
* {=100-1000

X-ray
source
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The SNL Z machine uses 27 million Amperes to create x-rays, @ﬁ:{}ﬂ‘;‘a.
o . Laboratories
and perform multiple benchmark experiments |
simultaneously Solar opacity sample
White Dwarf e T=150-200 eV

experiments: / * ne=7e21-1e23 e/cc
e T=1-3 eV Fe foil
* ne=5el6-1el8 e/cc Si foil

M
X-ray
AR source

H gas cell

Photoionized plasma

AYAY < experiments
 T=30-40 eV
A * ne=5el6-1el7 e/cc

« (=20-1000

P~ 220TW (£10%), Y., ~ 1.6 MJ (+7%)

Single shot can perform multiple experiments at T=1-200 eV and ne=5e16-1e23 e/cc

Sanford, PoP (2002); Bailey et al., PoP (2006); Slutz et al., PoP (2006); Rochau et al., PPCF (2007)
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ZAPP* campaigns simultaneously study multiple issues @ e
Solar Opacity White Dwarf Line-Shapes Photoionized Plasma

Question: Question: Question:

Why can’t we predict solar Why doesn’t spectral fitting How does ionization and line

structure accurately enough? provide the correct properties for formation occur in accreting
White Dwarfs? objects?

Achieved Conditions: Achieved Conditions: Achieved Conditions:

T.~200eV, n_~ 103 cm3 T.,~1eV,n,~ 107 cm?3 T.,~20eV,n,~ 10 cm3

UNIVERSITY OF
MICHIGAN

*ZAPP = Z Astrophysical Plasma Properties
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ZAPP* campaigns acquire up to 60 spectra on a single shot @lﬁﬁdt'
Solar Opacity White Dwarf Line-Shapes Photoionized Plasma

4 Space-Resolved

24 Space-Resolved 3 Streaked
Si Absorption Spectra

Fe Absorption Spectra H Absorption Spectra

16 Time-Resolved
Fe Absorption Spectra
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12 Space-Resolved
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We can repeat experiments to make sure the result; we can modify experiments to test
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Wootton Center for Astrophysical Plasma Properties (WCAPP)@ {“;i}:,‘:z?énes
provides sustained funding to train laboratory astrophysicists

* Lab astrophysicists require specialized knowledge;
they must understand:
I. Astrophysical impact,
ii. Model approximations and limitations,
iii. Experimental feasibility and limitations

Don Winget Roberto

* CAPP* at University of Texas at Austin, provides:
» Sustained funding to train students/postdocs
for continuous growth of laboratory
astrophysics
* Resources and connections to experts in
astrophysics, theory, and experiment

McDonald Observatory Office of Science

THE UNIVERSITY OF TEXAS AT AUSTIN

* Contact R. Mancini at University of Nevada, Reno, or D. Winget and M. Montgomery at University of Texas.



Goals of breakout sessions: Deepen mutual understanding @ {%gdt'
between astrophysicists and ZAPP scientists

Longstanding challenges:

* |tis hard for:

 HED experimentalists and theorists to learn astrophysical context
* Astrophysicsts to understand what experimental results mean for their applications

Format:

* ZAPP scientists elaborate experiments and pose questions to astrophysicists
* Astrophysicists answer questions through mini presentations and follow-up discussions

* Contact R. Mancini at University of Nevada, Reno, or D. Winget and M. Montgomery at University of Texas.



