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• What is ZAPP? 
• Current ZAPP projects
• Goals of the breakout sessions



ZAPP = Z Astrophysical Plasma Properties

Our goal is to perform at-parameter experiments to 
experimentally test plasma and spectra modeling

Why should we test the models? 



Plasma and spectra modeling are complex; Models are used 
without sufficient experimental validations
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Plasma and spectra modeling are complex; Models are used 
without sufficient experimental validations

• Limited validations available for approximations at extreme conditions
• This produces unknown uncertainty to the data interpretations and model predictions
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Mega-joule-class HED laboratories produce extreme 
conditions for many years, but …

Problem: Sample size used to be so small 
for benchmark experiments

[1] Yaakobi, PRL, 1977
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e.g., Laser fusion capsule [1]

T=300 eV, 
r=0.26 g/cc
Size: 19 mm
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Mega-joule-class HED laboratories produce extreme 
conditions for many years, but …

Problem: Sample size used to be so small 
for benchmark experiments

[1] Yaakobi, PRL, 1977

19 mm

e.g., Laser fusion capsule [1]

T=300 eV, 
r=0.26 g/cc
Size: 19 mm

size of cell

Exotic



What’s new: now, we can create macroscopic enough 
quantities of astrophysical matter for detailed studies

Z machine at Sandia National Lab creates 
macroscopic plasma at fairly exotic 
conditions

[1] Yaakobi, PRL, 1977

Fe opacity samples: Size ~ 1 mm sand grain

Z White Dwarf samples: ~ size of a phone

Achieved conditions: 
T=150-200 eV
ne=(1-10)x1022 e/cm3

Achieved conditions: 
T=1-3 eV
ne=(5-100)x1016 e/cm3
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ZAPP* campaigns simultaneously study multiple 
issues spanning 200x in temperature and 106x in density

White Dwarf Line-ShapesSolar Opacity

Question:
Why can’t we predict solar 
structure accurately enough? 

Achieved Conditions:
Te ~ 200 eV, ne ~ 1023 cm-3

Question:
Why doesn’t spectral fitting 
provide the correct properties for 
White Dwarfs?

Achieved Conditions:
Te ~ 1 eV, ne ~ 1017 cm-3

Photoionized Plasma

Question:
How does ionization and line 
formation occur in accreting 
objects?
 

Achieved Conditions:
Te ~ 20 eV, ne ~ 1019 cm-3

*ZAPP = Z Astrophysical Plasma Properties 

http://www.cea.fr/english_portal
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White Dwarf 
experiments: 
• T=1-3 eV
• ne=5e16-1e18 e/cc

H gas cell
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ZAPP* campaigns acquire up to 60 spectra on a single shot
White Dwarf Line-ShapesSolar Opacity Photoionized Plasma

24 Space-Resolved
Fe Absorption Spectra

16 Time-Resolved
Fe Absorption Spectra

4 Space-Resolved
Si Absorption Spectra

12 Space-Resolved
Ne Absorption Spectra

3 Streaked
H Absorption Spectra

We can repeat experiments to make sure the result; we can modify experiments to test 
hypotheses

*ZAPP = Z Astrophysical Plasma Properties 
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Wootton Center for Astrophysical Plasma Properties (WCAPP) 
provides sustained funding to train laboratory astrophysicists

• Lab astrophysicists require specialized knowledge; 
they must understand:
i. Astrophysical impact, 
ii. Model approximations and limitations, 
iii. Experimental feasibility and limitations

• CAPP* at University of Texas at Austin, provides:
• Sustained funding to train students/postdocs 
for continuous growth of laboratory 
astrophysics 

• Resources and connections to experts in 
astrophysics, theory, and experiment

* Contact R. Mancini at University of Nevada, Reno, or D. Winget and M. Montgomery at University of Texas. 



Goals of breakout sessions: Deepen mutual understanding 
between astrophysicists and ZAPP scientists

* Contact R. Mancini at University of Nevada, Reno, or D. Winget and M. Montgomery at University of Texas. 

Longstanding challenges: 
• It is hard for: 

• HED experimentalists and theorists to learn astrophysical context
• Astrophysicsts to understand what experimental results mean for their applications

Format: 

• ZAPP scientists elaborate experiments and pose questions to astrophysicists
• Astrophysicists answer questions through mini presentations and follow-up discussions


