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HED opacity is challenging in theory, experiments, and 
translating its implications to solar/stellar applications

Q. What is high-energy-density (HED) plasma? 

Q. Experiments: Why is HED opacity experiments challenging? 

Q. Theory: Why is HED opacity theory (Fe, O) challenging? 

Q. Impact on astrophysics: Why is assessing the impact challenging? 

Questions to Solar physicists  Aldo Serenelli



Topics to cover

• How opacity experiments work

• Oxygen opacity 
• Why is oxygen opacity challenging? 
• Preliminary status of oxygen opacity measurement

• Why is assessing astrophysical impact challenging? 
 Solar Rosseland-mean opacity error would change with radius



High-temperature Fe opacities are measured using the Z-
Pinch opacity science platform

[2] Nagayama et al., Phys Plasmas 21, 056502 (2014)
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High temperature introduces randomness in perturbation
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Oxygen opacity depends on accuracy of density effects
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• Stronger perturbation
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Preliminary analysis provides transmission from three oxygen opacity experiments 
at two different areal densities
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• Multiple experiments test reproducibility
• Different areal densities help assess accuracy and expand dynamic range
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Preliminary oxygen opacity measurements are reproducible 
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Refined analysis in progress
There are 12 more spectra to include from these three shots



Preliminary Z measurements provide the first tests of oxygen opacity models at 
high energy density conditions
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Models appear to overpredict continuum lowering and ionization.
However:
1) The experiment results are preliminary, not final
2) The plasma temperature and density determination is also preliminary
3) Plasma gradients require careful evaluation

The models don’t even agree with each other



Topics to cover

• How opacity experiments work

• Oxygen opacity 
• Why oxygen opacity challenging? 
• Current status

• Why is assessing astrophysical impact challenging? 
 Solar Rosseland-mean opacity error would change with radius



Uncertainty of solar Rosseland mean opacity is complex due 
to multiple sources of uncertainty

 Single-model uncertainty: How can we propagate uncertainties in different aspect of theory 
to final opacity calculation? 

 Model-model inconsistency: How can we incorporate the differences between opacity 
models into solar Rosseland-mean opacity uncertainty? 

 Model-data discrepancy: How can we propagate model inaccuracy inferred by 
measurements to solar Rosseland-mean opacity (RMO) uncertainty? 
 Model-data discrepancy in frequency-resolved opacity can reveal model weaknesses
 Experiments cannot test opacities of all elements at all conditions
 Propagating the measured model-data discrepancy to solar RMO uncertainty at all radii seems 

infeasible

We use experiments to test opacity physics and use validated opacity 
models to provide accurate solar models



CZB solar opacity is most important at 18Å
… this is not exactly correct



dB/dT peak location depends on its abscissa. 
Its peak location has limited meaning ….
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What’s conserved is the probability, i.e., dB/dT x dx:  

Wrong: Opacity at 18Å is most important  Correct: 68% of dB/dT curve falls between [494, 1353] eV
                                                                    or.     [9.16, 25.1] Å

T=193 eV, ne=1e23



Caution in interpreting probability density, e.g., dB/dT.
Median and mode have limited meanings …

Photon energy [eV] Photon wavelength [Å]

Mean: 924 eV ≠ 17.82 Å
Mode: 738 eV ≠ 10.76 Å

Median: 862.6 eV = 14.37 Å

Only percentiles or probability between some interval have physical meaning. 

* Bayesian analogy: uniform prior in photon-energy axis is not uniform in wavelength axis. 



What are three major opacity donors 
at the convection-zone base?  



Solar Rosseland-mean opacity at CZB is dominated by …
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Oxygen is more important below 820 eV (> 15 Å); 
Iron is more important above 820 eV (< 15 Å)
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HED opacity is challenging in theory, experiments, and 
translating its implications to solar/stellar applications
Q. What are high-energy-density (HED) plasmas? 

Q. Experiments: Why is HED opacity experiments challenging? 

Q. Theory: Why is HED opacity theory (Fe, O) challenging? 

Q. Impact on astrophysics: Why is assessing the impact challenging? 

Questions to Solar physicists  Aldo Serenelli

A. HED plasmas are hot, dense plasmas 

A. HED experiments are hard to diagnose or hard to get opportunities 

A1. HED plasmas could have billions of bound-bound transitions (Fe)
A2. HED plasmas have complex density effects (O)

A. Solar opacity depends on composition, temperature, density, and 
frequency in a complex way
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In fact, there are many potential sources of systematic 
errors in our experiments too



In fact, there are many potential sources of systematic 
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Experimental evidence

Condition reproducibility: [1] Nagayama et al, Phys Plasmas (2014) [2] Nagayama et al, HEDP (2016)



In fact, there are many potential sources of systematic 
errors in our experiments too

Simulation found they were negligible

Numerical evidence

Nagayama et al, High Energ Dens Phys (2016)
Iglesias et al, High Energ Dens Phys (2016)

Nagayama et al, Phys Rev E 93, 023202 (2016)
Nagayama et al, Phys Rev E 95, 063206 (2017)



In fact, there are many potential sources of systematic 
errors in our experiments too

Simulation found they were negligible

Numerical evidence

Nagayama et al, High Energ Dens Phys (2016)
Iglesias et al, High Energ Dens Phys (2016)

Nagayama et al, Phys Rev E 93, 023202 (2016)
Nagayama et al, Phys Rev E 95, 063206 (2017)

• We have checked everything the best we can, with dedicated experiments and simulations. 
• Experiments are difficult enough that people will question them until discrepancies are gone.
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temperature, low density plasma, but …
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HED theory is challenging due to: (i) too many excited states
and (ii) density effects
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Opacity contribution from ground states are relatively simple
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Contribution from excited states significantly adds complexity
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Contribution from excited states significantly adds complexity
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This is why O opacity 
calculation is challenging



Oxygen opacity at the base of the solar convection zone 
depends on accuracy of density effects

Fe O

• O opacity depends on density effects (IPD and line-shape)
 BF accuracy depends on pressure ionization (1 bound e)
 Window accuracy depends on line-shape accuracy



HED opacity is challenging in theory, experiments, and 
translating its implications to solar/stellar applications
Q. What are high-energy-density (HED) plasmas? 

Q. Experiments: Why is HED opacity experiments challenging? 

Q. Theory: Why is HED opacity theory (Fe, O) challenging? 

Q. Impact on astrophysics: Why is assessing the impact challenging? 

Questions to Solar physicists  Aldo Serenelli

A. HED plasmas are hot, dense plasmas 

A. HED experiments are hard to diagnose or hard to get opportunities 

A1. HED plasmas could have billions of bound-bound transitions (Fe)
A2. HED plasmas have complex density effects (O)

A. Solar opacity depends on composition, temperature, density, and 
frequency in a complex way



Uncertainty of solar Rosseland mean opacity is complex due 
to multiple sources of uncertainty
 Single-model uncertainty: How can we propagate uncertainties in different 

aspect of theory to final opacity calculation? 

Model-model inconsistency: How can we incorporate the differences between 
opacity models into solar Rosseland-mean opacity uncertainty? 

Model-data discrepancy: How can we propagate model inaccuracy inferred by 
measurements to solar Rosseland-mean opacity (RMO) uncertainty? 
 Model-data discrepancy in frequency-resolved opacity can reveal model weaknesses
 Experiments cannot test opacities of all elements at all conditions
 Propagating the measured model-data discrepancy to solar RMO uncertainty at all radii 

seems infeasible

We use experiments to test opacity physics and use validated opacity 
models to provide accurate solar models
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Various questions that we asked to Aldo Serenelli

Q1.  What are some astrophysical applications of interest to you that rely 
heavily on opacity accuracy? 

- Elements, conditions, and spectral ranges? 
- How does opacity inaccuracy affect your conclusions? 

Q2.  What are a few of the most common opacity-dependent methods to 
infer ages of stars, galaxies, or the universe?  What role does opacity 
play in these methods?

Q3.  What opacity models (e.g., OP, OPAL) are widely used by stellar/solar 
physicists?

Q4.  How complete are solar/stellar models (e.g. tachocline, convection 
behavior, rotation, 3D effects)?  How does opacity or variance in opacity 
affect different aspects of a model?



More questions on solar abundance problem




