This paper describes obijective technical results and analysis. Any subjective views or opinions that might be expressed in SAND2022-10565C]
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government. 3
DOTTC

AN d

The White Dwarf Photosphere Experiment

Bart Dunlap, UT Austin

Z Fundamental Science Workshop
August 3, 2022

Collaborators: Mike Montgomery (UT), Patty Cho (UT), Bryce Hobbs (UT), Jackson White (UT), Don Winget (UT),
Marc Schaeuble (SNL), Thomas Gomez (SNL), Tai Nagayama (SNL), Jim Bailey (SNL), Sonal Patel (SNL),
Georges Jaar (UNR), Patrick Dufour (U Montreal), Ivan Hubeny (UA)

TE)(A S Funded by NNSA through
SCAAD NE_NIANNNANAQ ANEE oy £ Ol
The University of Texas at Austin ‘Sandia National Laboratoriesfis ‘a\multimission-laboratory managed and operated by National Technology*&EngineerinatSolutions of Sandia, LLC, a wholly owned
: : subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

R U.S. DEPARTMENT OF

i fﬂ(\



Overview

* What do white dwarf spectra tell us?
* Mass, Temperature, Atmospheric Composition

* How do white dwarfs help answer broader astrophysical questions?
* Ages of stellar populations, exoplanets, cosmology

* Why do we think there are problems with spectroscopic mass determinations?
* Independent mass estimates disagree

* What developments are underway with the white dwarf photosphere
experiment?
* Higher densities in hydrogen
* Independent electron density diagnostic (PDV)
* Helium update

* Theory update: H2 quasi-molecular features, continuum lowering/occupation
probability



The Importance of White Dwarf Spectra
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White Dwarf Spectra = Composition, Mass, & Temperature
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White Dwarf Spectra = Composition, Mass, & Temperature
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White Dwarf Spectra = Composition, Mass & Temperature
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White Dwarf Spectra = Composition, Mass & Temperature
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/ Measurements focused on 3 main types
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White Dwarfs and Stellar Evolution
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White Dwarfs Constrain Ages of Stellar Populations
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White Dwarfs Constrain Ages of Stellar Populations
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Converting surface gravity to
mass via mass-radius relationship
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Initial-Final Mass Relation allows us to infer
progenitor mass from white dwarf mass
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Count

Host Mass of Confirmed Exoplanets (NASA Exoplanet Archive)
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Planetary detection on the main sequence is particularly

hard at high mass.
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Host Mass of Confirmed Exoplanets (NASA Exoplanet Archive)
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White Dwarfs allow us to probe this regime much more easily.



Host Mass of Confirmed Exoplanets (NASA Exoplanet Archive)
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The Initial Final Mass relation lets us translate knowledge

of white dwarf planetary systems to previous stages of
stellar evolution.



Count

Host Mass of Confirmed Exoplanets (NASA Exoplanet Archive)
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The Initial Final Mass relation lets us translate knowledge

of white dwarf planetary systems to previous stages of
stellar evolution.



White Dwarfs Reveal
Planetary Interiors

They Crush Exoplanetary

Rocky Debris & Accrete It

Spectra Give Abundances

Accurate log g Necessary to
Infer Composition

For more on planetary material in white dwarf
atmospheres, see the breakout session talk by
Simon Blouin this afternoon.
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White Dwarfs
long-term evo

Reveal Planetary Interiors and the

ution of exoplanetary systems
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A White Dwarf with Transiting Circumstellar Material Far outside the Roche Limit
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log(volume-normalized # of WDs)

Accurate White Dwarf Masses & log g Are Important
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Evidence of Inaccurate Mass & Temperature Determinations



A view from McDonald Observatory




Why are some of these brighter than others?
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Why are some of these brighter than others?

Temperature
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Why are some of these brighter than others?
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Why are some of these brighter than others?
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If we measure all of these, we can determine radius
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Mass & T.+from Broadband Photometry + Gaia Distances

le—28 J1615+4543 (Teff = 20847 K, Dist = 599 pc)
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Mass & T.+from Broadband Photometry + Gaia Distances

le—28 J1615+4543 (Teff = 20847 K, Dist = 599 pc)

8
Constrained by i
71
absolute flux level -
ol
Depends on =
. 3 h 4
angular size ot the -
=4t
star on the sky 2
2 z
3l
M=0.82 <
2L log g=8.36
Xr2ed:0'9
Ag=0.041; Ag,.., =0.041 I

1 1 1 1 1 1 1
3000 4000 5000 6000 7000 8000 9000 10000
Wavelength [A]



Mass & T.+from Broadband Photometry + Gaia Distances

le—28 J1615+4543 (Teff = 20847 K, Dist = 599 pc)
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Mass & T.+from Broadband Photometry + Gaia Distances

le—28 J1615+4543 (Teff = 20847 K, Dist = 599 pc)
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Photometric and Spectroscopic Temperatures
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Photometric and Spectroscopic Masses Disagree
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Fits to white dwart spectral lines ook pretty
good, but...
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Individual Balmer lines give different results
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The White Dwart Photosphere Experiment on the

/-machine
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The White Dwart Photosphere Experiment on the

/-machine Actross a range of n, during each expetiment.
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Analysis of the WDPE absorption spectra reveal
trends similar to those observed in stellar spectra
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Analysis of the WDPE absorption spectra reveal
trends similar to those observed in stellar spectra
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Hydrogen data at higher densities can more easily test
theories of line shapes and occupation probability

Previous data at higher densities
showed larger disagreement
among theories.
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Figure 1.  Electron density, ne, as a function of time throughout our experiments
22553 and z2832. We infer n. using different theoretical line-profile calculations.
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Hydrogen data at higher densities can more easily test
theories of line shapes and occupation probability

z2832, B0—90 ns
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Hydrogen data at higher densities can more easily test
theories of line shapes and occupation probability

Previous data at higher densities — Continuum LOS

showed larger disagreement — Emission LOS
— Absorption LOS
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Hydrogen data at higher densities can more easily test
theories of line shapes and occupation probability

Previous data at higher densities
showed larger disagreement
among theories.

Data had to be taken at the 5 mm
line of sight, where gradients
across the beam are larger.
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Hydrogen data at higher densities can more easily test
theories of line shapes and occupation probability

=— Continuum LOS
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Effect of the Pseudo-continuum

1e10 p =1.10e-06 g/cm?3, Lemke tables, Synspec fits
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These calculations use the code Synspec, part of the Tlusty suite (lvan Hubeny),
which is used to fit the observed spectra of white dwarf stars.



Achieved higher n, in H at 10 mm line of sight

* Previous attempts at higher fill pressure did not lead to increased n, at
the 10 mm LOS, possibly because of self-shielding.

* Increased pressure (from 10 Torr to 25 Torr) and decreased window
thickness (from 1.4 um to 0.7 um)
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Fits to emission data suggest n_, > 10 cm

Hitting upper bounds of my current model grid...
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Achieved higher n, in H at 10 mm line of sight

* Fill pressure = 18 Torr.

* More contamination visible.

* Cell sensor indicated increase in pressure after lockup; gas cabinet
sensor did not show increase.
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Achieved higher n,in H at 10 mm line of sight

* Fill pressure =35 Torr
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Importance of independent ne diagnostic

 We don’t want to have to rely on theoretical Hbeta lineshapes
* This is especially important at higher densities
* In our carbon experiments, we don’t have Hbeta

* Pure He experiments would be useful



Fielding PDV on the WDPE

Replaced baffle with rigid
piece to mount reflective
tape.




First PDV results (z3721)




Helium atmosphere (DB) white dwarfs also indicate
oroblems with spectroscopic mass
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Measuring Helium lines with the WDPE on Z

Spectral power [W/A]
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Measuring Helium lines with the WDPE on Z
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Fits to He | 5015 compared with Hbeta
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He | 5015 line widths compared to theory
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Fits to He | 5875 compared with Hbeta
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He | 5875 line widths compared to theory
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Effect of neutral density
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Effect of neutral density
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Theoretical Developments



The effect of screening on line shapes
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Hydrogen Line Shape Uncenrtainties in
White Dwarf Model Atmospheres
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The effect of occupation probability on line shapes
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H2 quasi-molecular features

HB Line Shape Combination Example
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Light from pinch is used to backlight plasma in cell

Dual core fiber allows
direct measurement

Long fiber delays of backlighting signal
light and directs it
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Light from pinch is used to backlight plasma in cell

Long fiber delays
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Pinch light successfully fielded as backlight for absorption spectrum
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Hydrogen absorption measured with backlight
from z pinch
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Pinch as backlight enables several possibilities

* |t should increase signal-to-noise and remove self-emission uncertainty

* Allows absorption measurement at late time when our standard
backlighting wedge has cooled off

* Allows the possibility of high S/N absorption measurements along other
lines of sight (e.g., downward lines of sight with short plasma lengths)

* With more shielding or distance, we should be able to capture peak
brightness for a significant gain in S/N.

* Capturing the peak would also allow for a brief backlighting pulse, which
could allow absorption and emission on the same system and LOS.



Naive application shows attenuated spectrum
brighter than backlight spectrum
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Spectral lines from lens are removed ~ well in
resulting transmission spectrum
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Spectra can be scaled based on early-time data
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