
Multifidelity DRAM 
Simulation in SST

Patrick Lavin
Sandia National Labs

Ryan Lynch • Sudhanshu Agarwal • Jeffrey 
Young • Richard Vuduc

Georgia Institute of Technology

SAND2022-10516CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.



Multifidelity Simulation

• Physical simulation is often adapted to 
different levels of detail when more or 
less is required
• E.g. Adaptive mesh refinement

• We want to harness this technique to
speed up architectural simulation

• Phase detection lets us break up 
computation into simpler pieces 
• A DGEMM-heavy region should be easier to 

model than sparse computation

Image: Rtfisher (CC BY-SA 3.0) 



Related Work
• Online Model Swapping for 

Architectural Simulation [CF ’21]
• Showed how to create a Markov model for each 

phase and swap during simulation

• Basic-block centric multifidelity 
methods
• Simulate a BB only when it is first encountered

• Sampled Simulation
• Uses offline clustering to find representative phases

• Statistical Sampling
• Use sampling theory to estimate the performance 

from a sample of the program

• Design-space exploration
• Simulate only a portion of the design-space, 

estimate the rest of the space using analytical or 
ML techniques

We want an online, component-centric approach



• We use an online, working set-based 
phase detector
• Hash each instruction pointer into a bit 

vector
• Compare bit vectors of each interval to 

find phases

• We extended DRAMSim3 to create a 
fixed-latency model for each phase
• We hope to extend it to use other simple 

models
• When a phase is encountered for a second 

time, we can use the average latency 
instead of simulating it

Phase Analysis Models



Integration of Mixed Fidelity DRAM with SST
• Currently, the phase detector is 

tightly integrated with Ariel

• Ariel traces a running process and
passes the memory references to 
memHierarchy, a memory system 
simulator

• Phase information is passed 
through memHierarchy to the 
memory backend, DRAMSim3

• We use DRAMSim3 to find the 
average latency for a phase the first 
time it is run, and create a fixed-
latency model for each phase



Results and Next Steps
• Status

• DRAMSim3 slows down the 
simulation by 2x vs. fixed-latency

• Our phase-aware model has some 
overhead, and can’t quite match this

• Getting high accuracy will require
some tuning

• Current work
• Optimize and tune implementation

• Phase parameters need to be chosen 
carefully

• Error bounds for the surrogate models
• Bootstrap method

• SST interface for phase detection
component

Simple hello-world simulation with small cache. Phase-
aware represents the current best possible runtime


