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Multifidelity Simulation

• Physical simulation is often adapted to 
different levels of detail when more or 
less is required
• E.g. Adaptive mesh refinement

• We want to harness this technique to
speed up architectural simulation

• Phase detection lets us break up 
computation into simpler pieces 
• A DGEMM-heavy region should be easier to 

model than sparse computation
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Related Work
• Online Model Swapping for 

Architectural Simulation [CF ’21]
• Showed how to create a Markov model for each 

phase and swap during simulation

• Basic-block centric multifidelity 
methods
• Simulate a BB only when it is first encountered

• Sampled Simulation
• Uses offline clustering to find representative phases

• Statistical Sampling
• Use sampling theory to estimate the performance 

from a sample of the program

• Design-space exploration
• Simulate only a portion of the design-space, 

estimate the rest of the space using analytical or 
ML techniques

We want an online, component-centric approach



• We use an online, working set-based 
phase detector
• Hash each instruction pointer into a bit 

vector
• Compare bit vectors of each interval to 

find phases

• We extended DRAMSim3 to create a 
fixed-latency model for each phase
• We hope to extend it to use other simple 

models
• When a phase is encountered for a second 

time, we can use the average latency 
instead of simulating it

Phase Analysis Models



Integration of Mixed Fidelity DRAM with SST
• Currently, the phase detector is 

tightly integrated with Ariel

• Ariel traces a running process and
passes the memory references to 
memHierarchy, a memory system 
simulator

• Phase information is passed 
through memHierarchy to the 
memory backend, DRAMSim3

• We use DRAMSim3 to find the 
average latency for a phase the first 
time it is run, and create a fixed-
latency model for each phase



Results and Next Steps
• Status

• DRAMSim3 slows down the 
simulation by 2x vs. fixed-latency

• Our phase-aware model has some 
overhead, and can’t quite match this

• Getting high accuracy will require
some tuning

• Current work
• Optimize and tune implementation

• Phase parameters need to be chosen 
carefully

• Error bounds for the surrogate models
• Bootstrap method

• SST interface for phase detection
component

Simple hello-world simulation with small cache. Phase-
aware represents the current best possible runtime


