



Sandia  
National  
Laboratories

# Evaluation of the US COVID-19 vaccine allocation strategy

Audrey L. McCombs

M. R. Islam, T. Oraby, M. M. Chowdhury, M. al-Mamun, M. G. Tyshenko, C. Kadelka

Joint Statistical Meetings, American Statistical Association  
8 August 2022  
Washington, D.C.



Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

# Introduction: Background to CDC Allocation



- Advisory Committee on Immunization Practices (ACIP)
  - Ensure equity in allocation and distribution
  - Reduce the burden on vulnerable groups
  - Maintain infrastructure and social order
  - Reduce mortality
  - Ensure transparency
- 4 Phases:
  - 1a. Healthcare personnel, and long-term care facility residents
  - 1b. Frontline essential workers, and 75+ year-olds
  - 1c. Other essential workers, 16-64 year-olds with comorbidities, and 65-74 year-olds
  2. 16-64 year-olds without comorbidities

# Introduction: Model Overview



- Compartmental Disease Model (20 compartments)
- US population stratified by characteristics in CDC allocation (17 groups)
- Four phases
- Important characteristics of COVID-19 pandemic:
  - Age-dependent susceptibility to infection
  - Age- and comorbidity-dependent CFR
  - Social contact rates
  - Case-dependent social-distancing levels
  - Speed of the vaccine roll-out
  - Vaccine hesitancy
  - Time-varying transmissibility of virus

# Introduction: Model Overview



- ~17.5 million potentially optimal strategies
  - $4^{17} \approx 1.7 \times 10^{10}$  total possible, then reduced
- Four primary metrics:
  - Total deaths
  - Total infections
  - Total cases
  - Years of life lost (YLL)
- Secondary metric: equitability
- Model parameters
  - Most derived from literature
  - Four parameters estimated using an elitist genetic algorithm, fit to data

# Methods: 17 Population Groups



Stratify the US population by:

1. Age (4 classes)
  1. 0-15 years
  2. 16-64 years
  3. 65-74 years
  4. 75+ years
2. Comorbidity (2 classes: with and without)
3. Job type (4 classes in 16-64 age group)
  1. Healthcare workers
  2. Frontline essential workers
  3. Other essential workers
  4. All others
4. Living situation (2 classes in 65-74 and 75+ age groups: congested living or not)

# Methods: 20 Compartments



**S**: Susceptible

**E**: Exposed, recently infected but not yet spreading the virus

**P**: Pre-clinical, not yet showing symptoms but spreading the virus

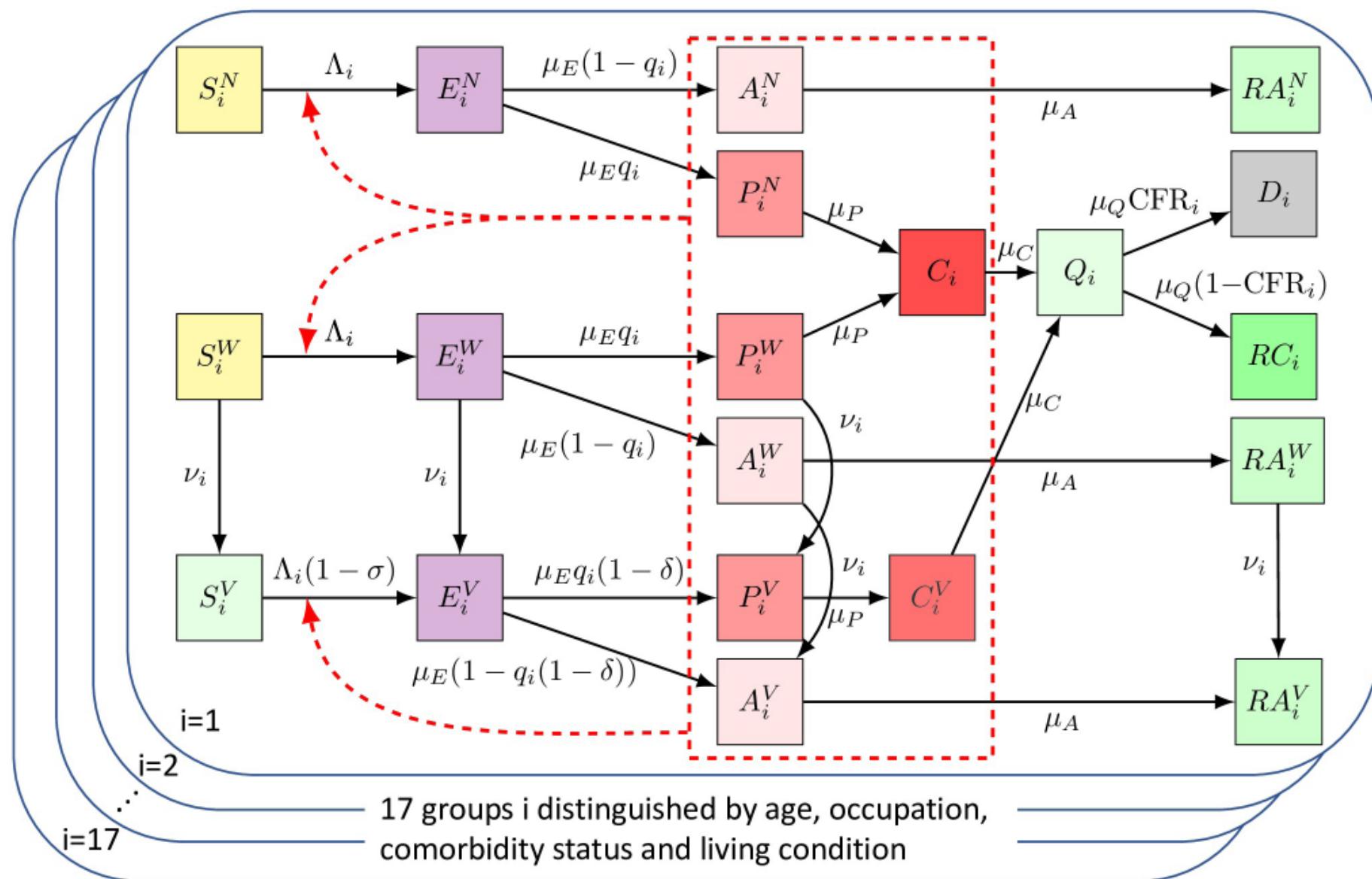
**A**: Asymptomatic, not symptomatic but spreading the virus

**C**: Clinical, symptomatic and spreading the virus

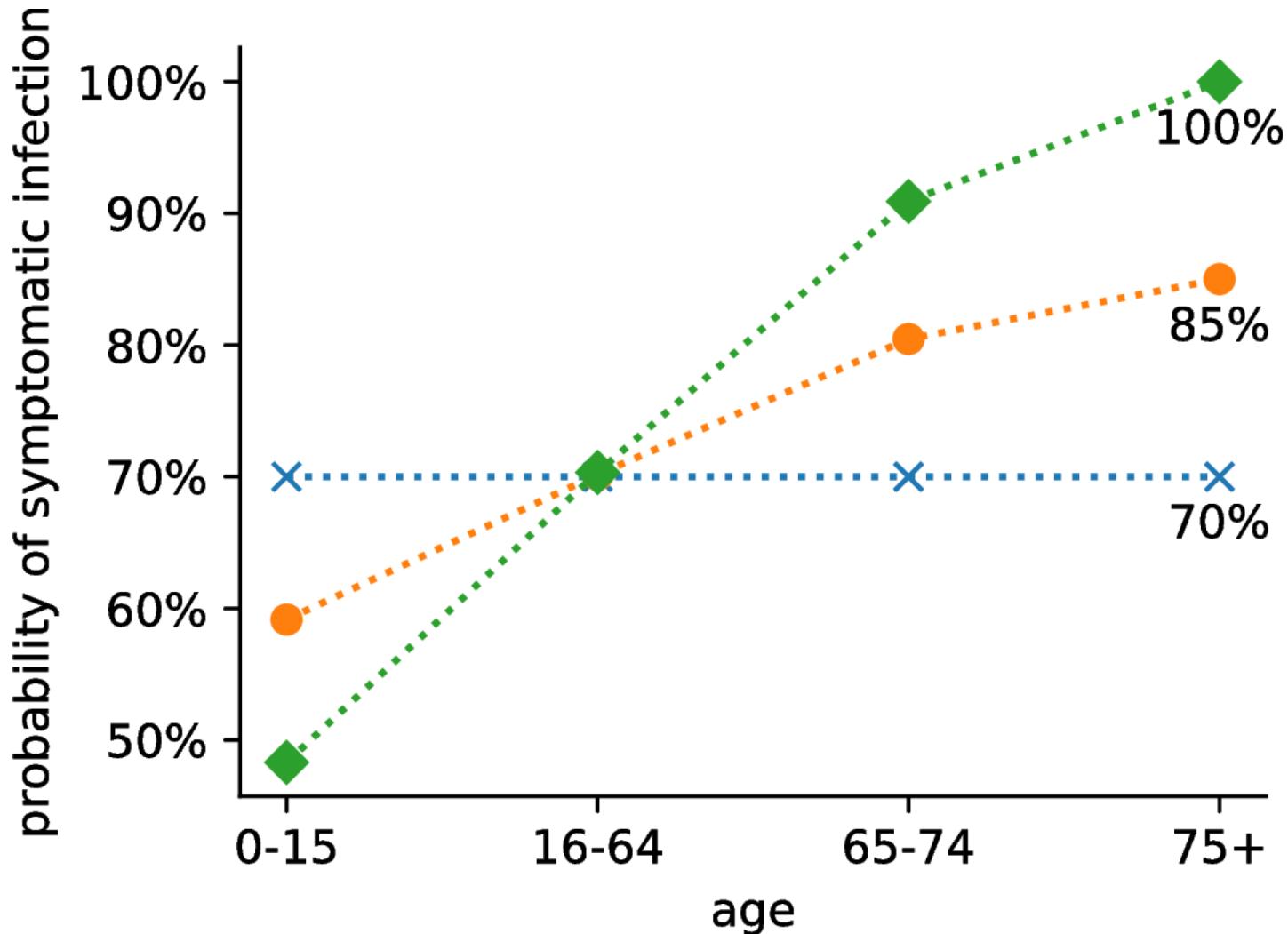
**Q**: Quarantine, symptomatic but not spreading the virus due to isolation or hospitalization

**RC**: Recovered after having shown symptoms

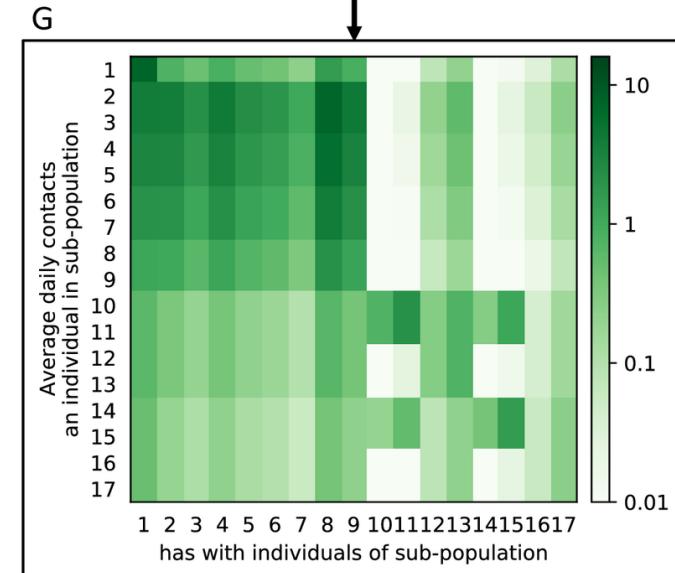
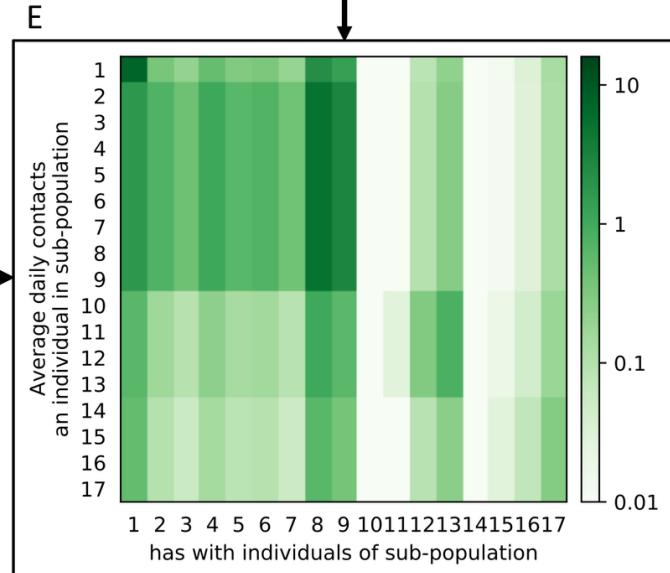
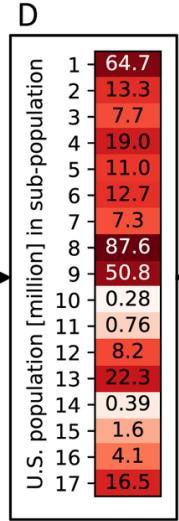
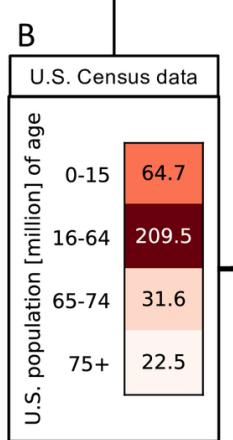
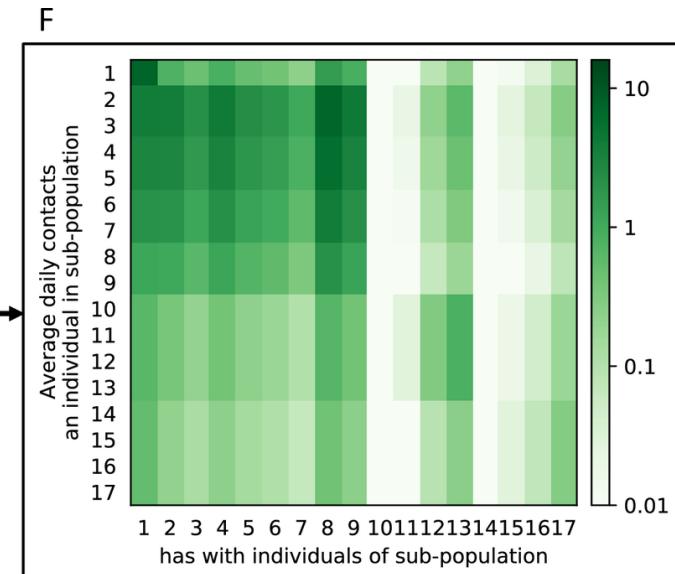
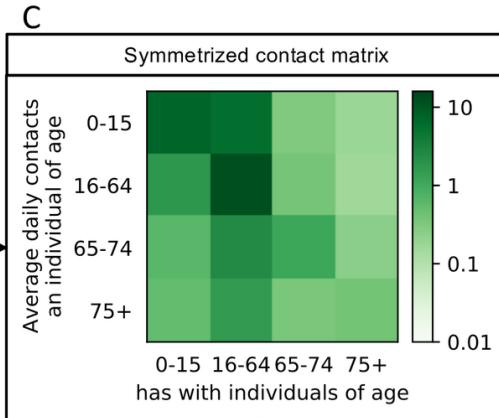
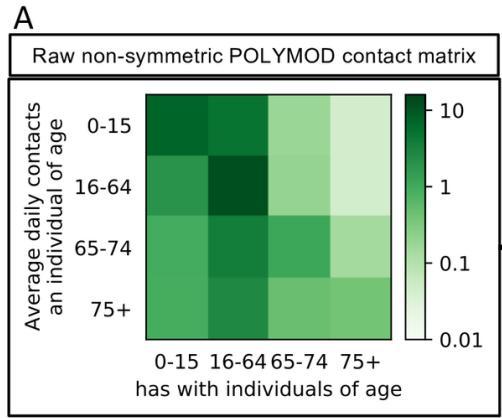
**RA**: Recovered after an asymptomatic infection


**D**: Dead

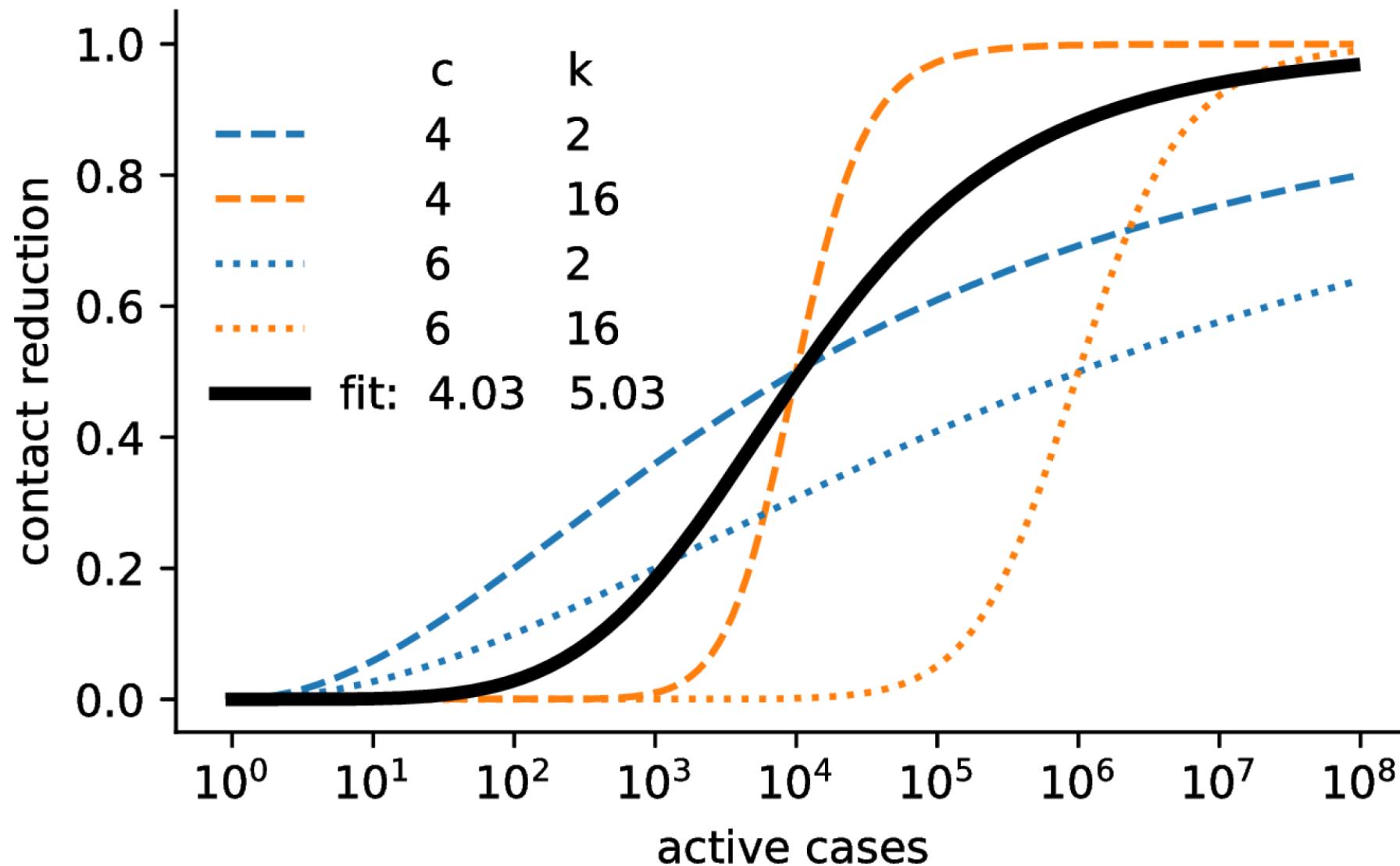
**N**: Not willing to be vaccinated


**W**: Willing to be vaccinated but not yet vaccinated

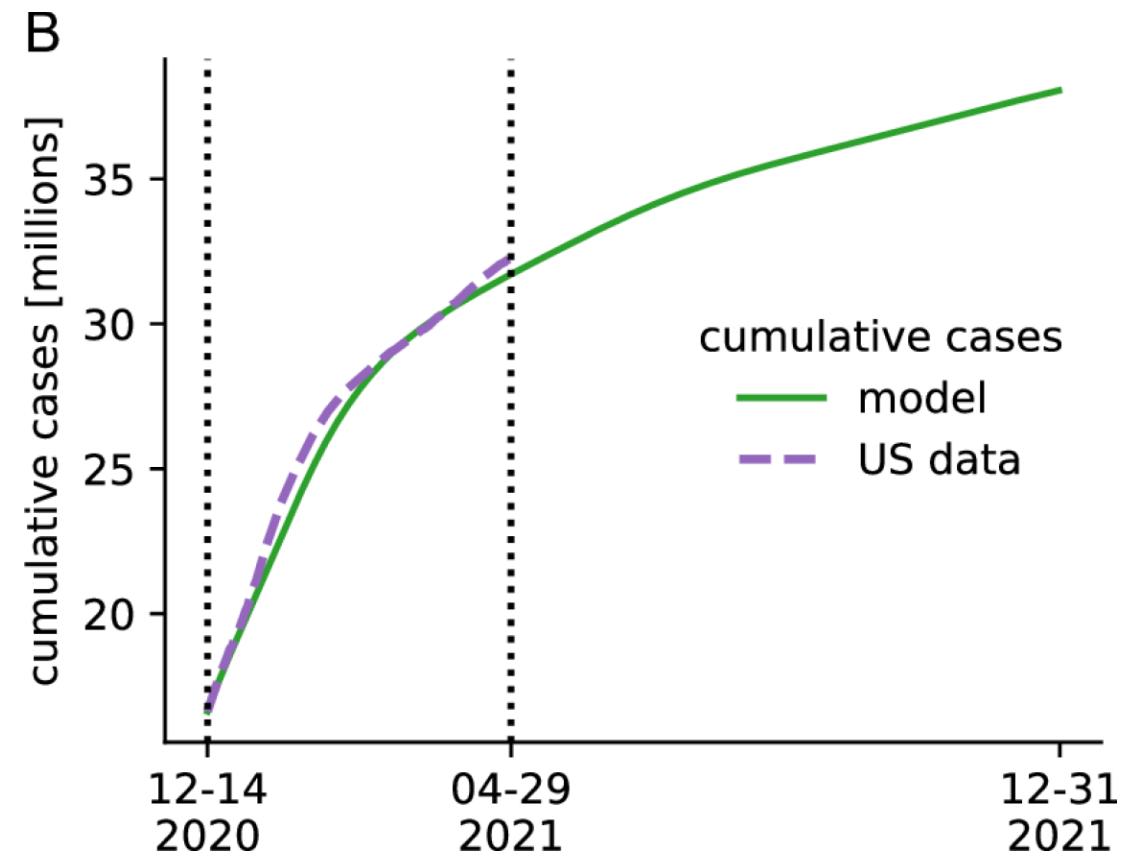
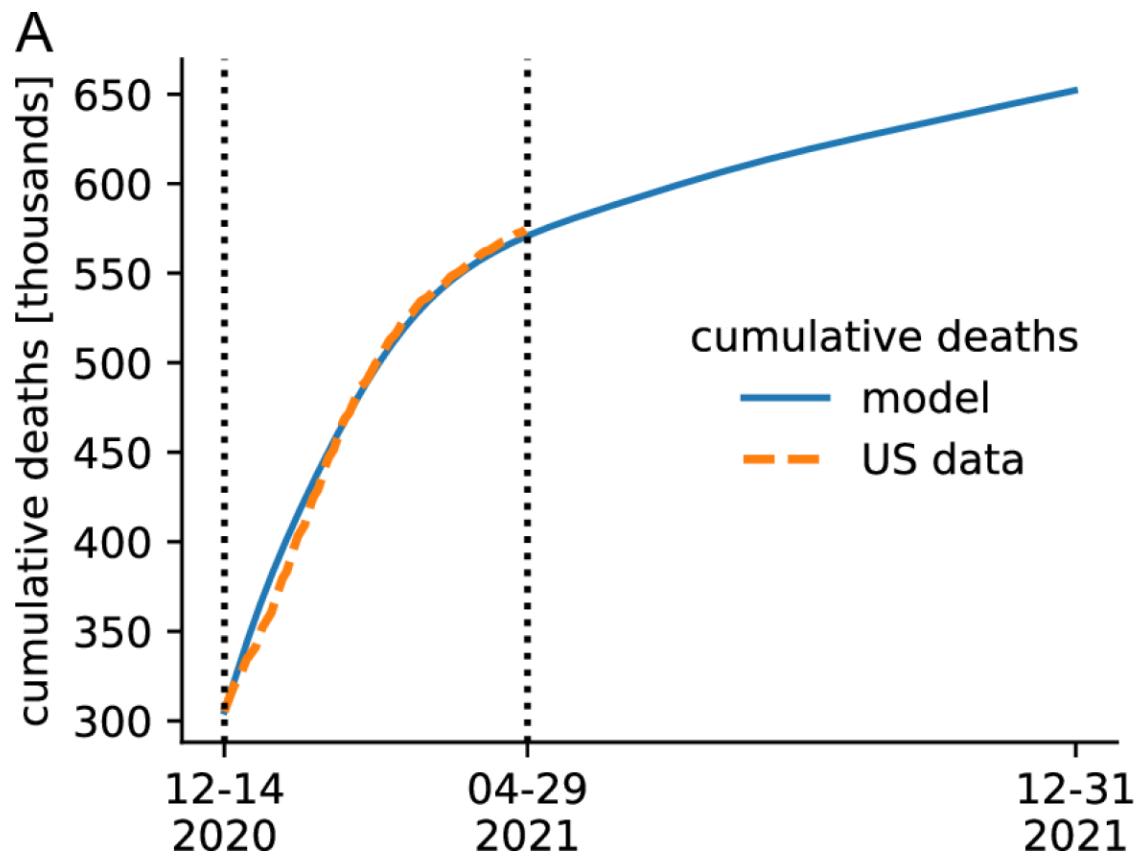
**V**: Vaccinated








$S^N, S^W, S^V, E^N, E^W, E^V, A^N, A^W, A^V, RA^N, RA^W, RA^V, P^N, P^W, P^V, C, C^V, Q, RC, D$




## Methods: Age-Dependent Susceptibility



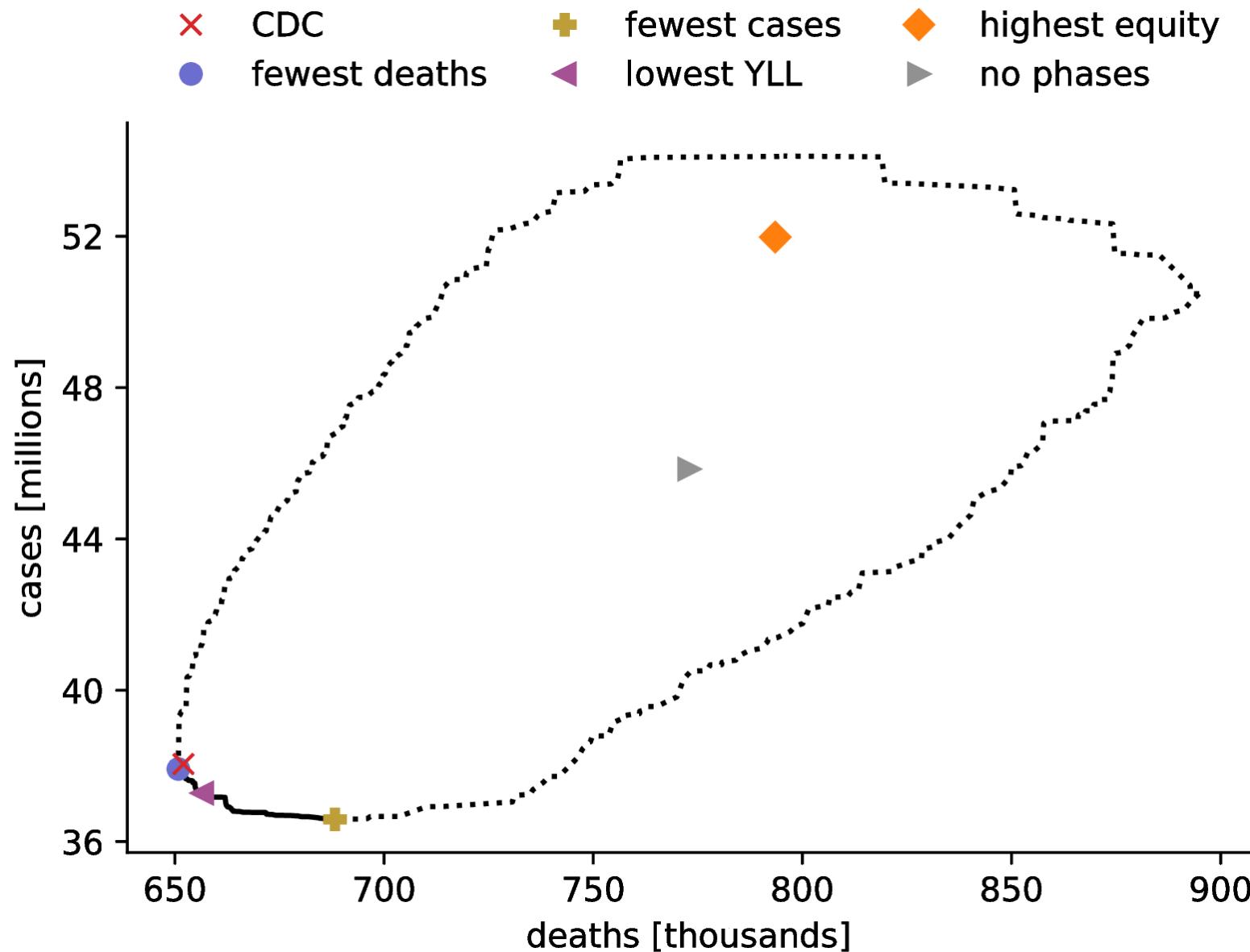


# Methods: Contact Matrix



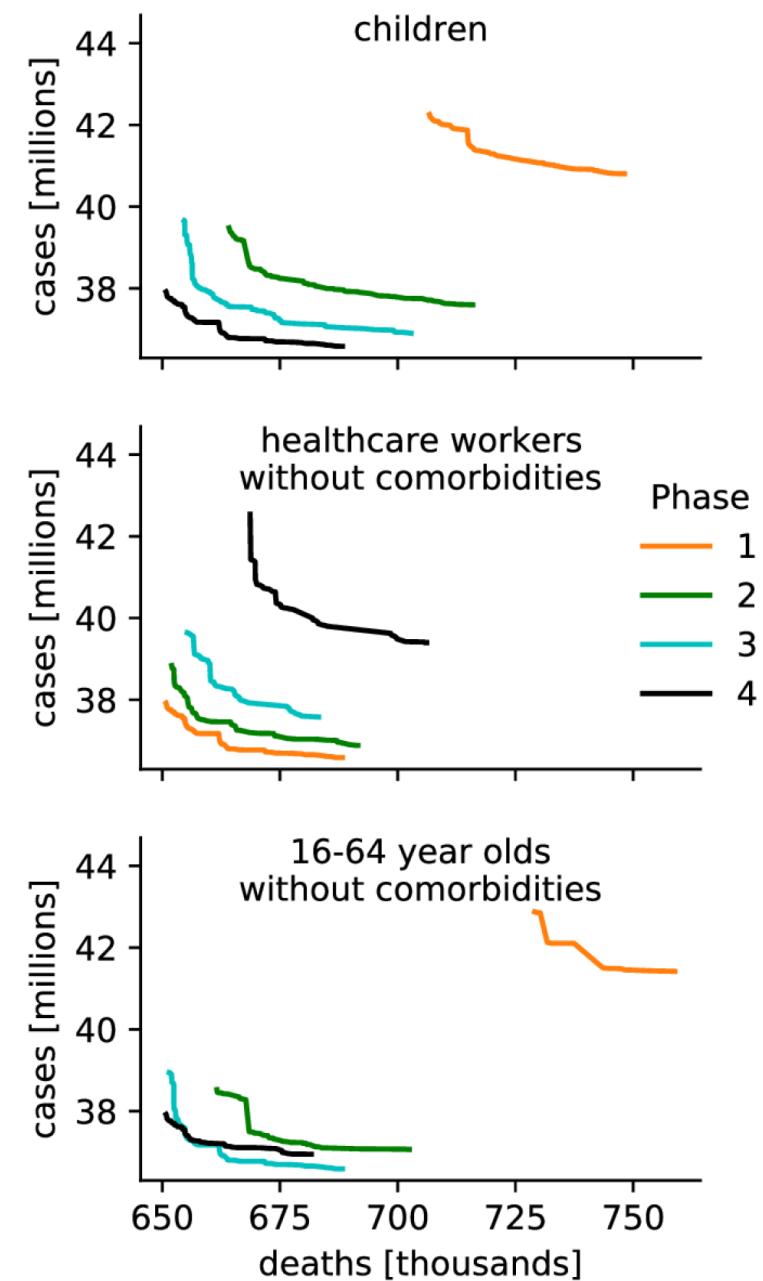
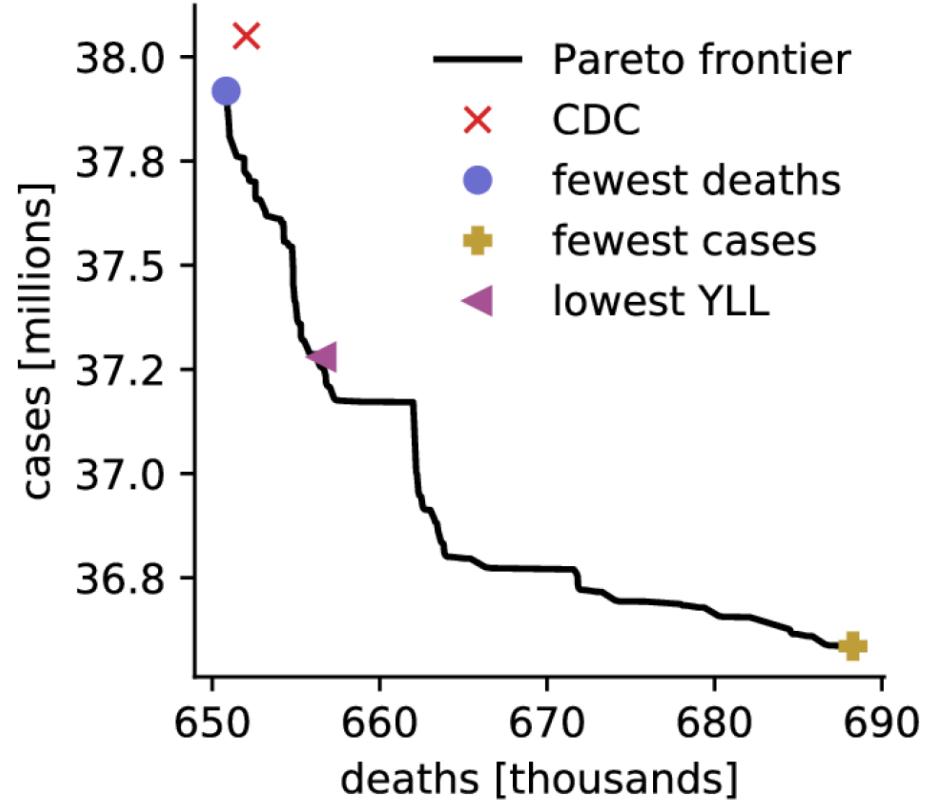
## Methods: Case-Dependent Contact Reduction



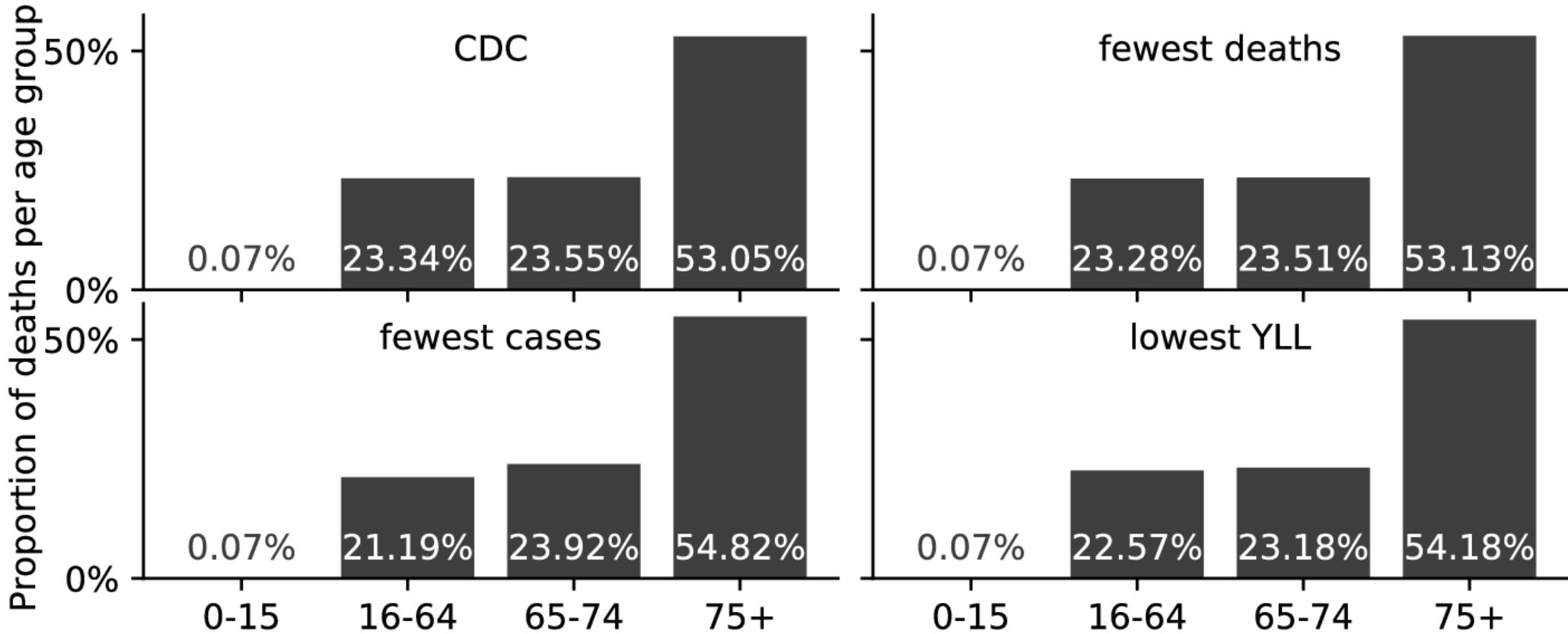
# Methods: Model Fit




# Results: Comparison of CDC and Optimal Strategies


| Age                                                                        | Job / living situation                    | Comorbidity | Number of people [millions] | Sub-population ID in model | CDC allocation | fewest deaths [thousands] | lowest YLL [millions] | fewest cases [millions] | fewest infections [millions] |
|----------------------------------------------------------------------------|-------------------------------------------|-------------|-----------------------------|----------------------------|----------------|---------------------------|-----------------------|-------------------------|------------------------------|
| 0-15                                                                       | NA                                        | NA          | 64.71                       | 1                          | 4              | 4                         | 4                     | 4                       | 4                            |
| 16-64                                                                      | healthcare workers                        | no          | 13.29                       | 2                          | 1              | 1                         | 1                     | 1                       | 1                            |
|                                                                            |                                           | yes         | 7.71                        | 3                          | 1              | 1                         | 1                     | 1                       | 1                            |
|                                                                            | frontline essential workers               | no          | 18.98                       | 4                          | 2              | 2                         | 2                     | 2                       | 2                            |
|                                                                            |                                           | yes         | 11.02                       | 5                          | 2              | 2                         | 2                     | 2                       | 2                            |
|                                                                            | other essential workers                   | no          | 12.66                       | 6                          | 3              | 3                         | 3                     | 2                       | 2                            |
|                                                                            |                                           | yes         | 7.34                        | 7                          | 3              | 3                         | 2                     | 2                       | 2                            |
|                                                                            | remaining people                          | no          | 87.61                       | 8                          | 4              | 4                         | 4                     | 3                       | 3                            |
|                                                                            |                                           | yes         | 50.85                       | 9                          | 3              | 3                         | 3                     | 3                       | 3                            |
|                                                                            | congested living                          | no          | 0.28                        | 10                         | 1              | 2                         | 3                     | 3                       | 3                            |
|                                                                            |                                           | yes         | 0.76                        | 11                         | 1              | 1                         | 2                     | 3                       | 3                            |
|                                                                            | remaining people                          | no          | 8.20                        | 12                         | 3              | 3                         | 4                     | 4                       | 4                            |
|                                                                            |                                           | yes         | 22.34                       | 13                         | 3              | 3                         | 3                     | 4                       | 4                            |
| 75+                                                                        | congested living                          | no          | 0.39                        | 14                         | 1              | 3                         | 3                     | 3                       | 4                            |
|                                                                            |                                           | yes         | 1.57                        | 15                         | 1              | 1                         | 2                     | 3                       | 4                            |
|                                                                            | remaining people                          | no          | 4.07                        | 16                         | 2              | 3                         | 4                     | 4                       | 4                            |
|                                                                            |                                           | yes         | 16.47                       | 17                         | 2              | 2                         | 3                     | 4                       | 4                            |
|                                                                            | Respective outcome of specific allocation |             |                             |                            | CDC            | 652                       | 11.6                  | 38.1                    | 56.4                         |
|                                                                            |                                           |             |                             | fewest deaths              |                | 651                       | 11.6                  | 37.9                    | 56.2                         |
|                                                                            |                                           |             |                             | lowest YLL                 |                | 657                       | 11.5                  | 37.3                    | 55.3                         |
|                                                                            |                                           |             |                             | fewest cases               |                | 688                       | 11.8                  | 36.6                    | 54.2                         |
|                                                                            |                                           |             |                             | fewest infections          |                | 695                       | 11.9                  | 36.6                    | 54.2                         |
| % difference in outcome between specific and respective optimal allocation |                                           |             |                             | CDC                        |                | 0.19                      | 0.97                  | 4                       | 4.07                         |
|                                                                            |                                           |             |                             | fewest deaths              |                | 0                         | 0.67                  | 3.64                    | 3.74                         |
|                                                                            |                                           |             |                             | lowest YLL                 |                | 0.88                      | 0                     | 1.9                     | 2.08                         |
|                                                                            |                                           |             |                             | fewest cases               |                | 5.75                      | 2.44                  | 0                       | 0.01                         |
|                                                                            |                                           |             |                             | fewest infections          |                | 6.73                      | 2.84                  | 0.03                    | 0                            |


# Results: All Strategies



# Results: Pareto Frontier



# Results: Equity



# Limitations



1. All sub-populations exhibit the same level of vaccine hesitancy
2. Vaccine hesitance does not change over time
3. Uncertainty in key model parameters:
  1. Contact matrix
  2. Contagiousness of asymptomatic individuals and vaccinated individuals
4. No reinfections
5. Vaccine is fully effective immediately after 1 dose

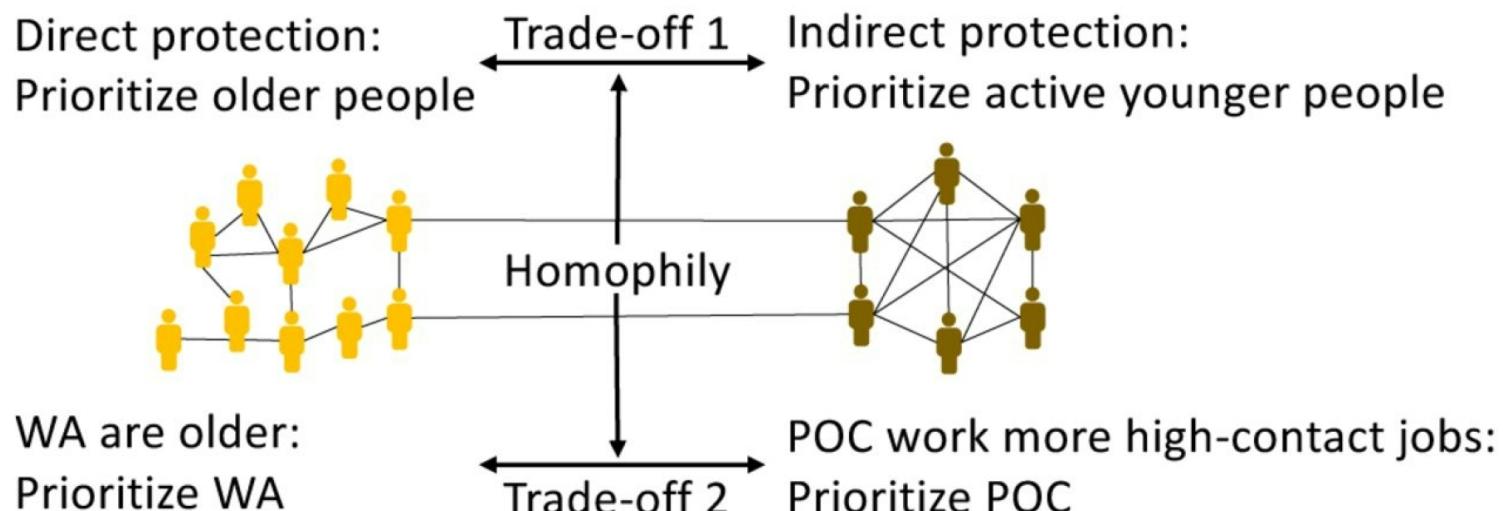
Sensitivity analysis

# Extensions: Homophily & Contact Matrices



In the US, People of Color (POC) have been disproportionately affected by COVID-19

- As of 2022, POC comprise 34.1% of the US population, but suffered 42.2% of cases
- Studies from 2020:
  - Infection rate in predominately Black counties was 3x that of predominately white counties
  - Navajo Nation had more cases per capita than any US state
  - Black pop in Chicago is 30% but suffered over 50% of deaths
  - NYC 2x as many deaths per capita in Black and Latino pops than white pops
  - Across the US, the 20% of disproportionately Black counties account for 52% of cases and 58% of deaths

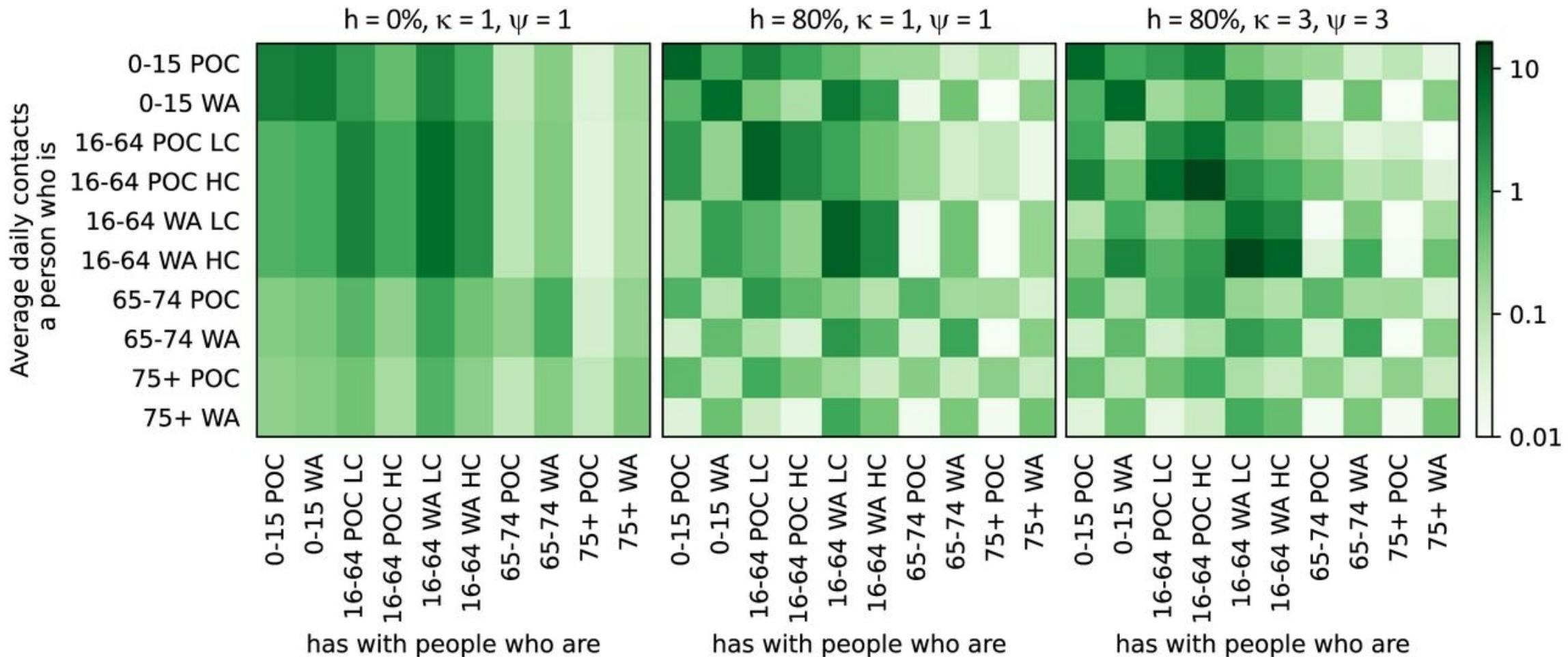

Why?

- Complex social and economic reasons, but:
  - POC tend to live in more crowded conditions
  - POC tend to work in more high-contact (high-risk) jobs

# Extensions: Trade-offs in Vaccination Priorities



| age                      | WA   | POC  | average daily contacts | CFR   |
|--------------------------|------|------|------------------------|-------|
| 0-15                     | 55%  | 45%  | 14.0                   | 0.01% |
| 16-64                    | 65%  | 35%  | 14.4                   | 0.5%  |
| ... in high-contact jobs | ≥38% | ≤62% | 14.4-28.7              | 0.5%  |
| 65-74                    | 80%  | 20%  | 4.6                    | 5.0%  |
| 75+                      | 82%  | 18%  | 2.8                    | 16.7% |




## Homophily:

The tendency of people from a particular demographic group to interact more frequently with people from the same group.

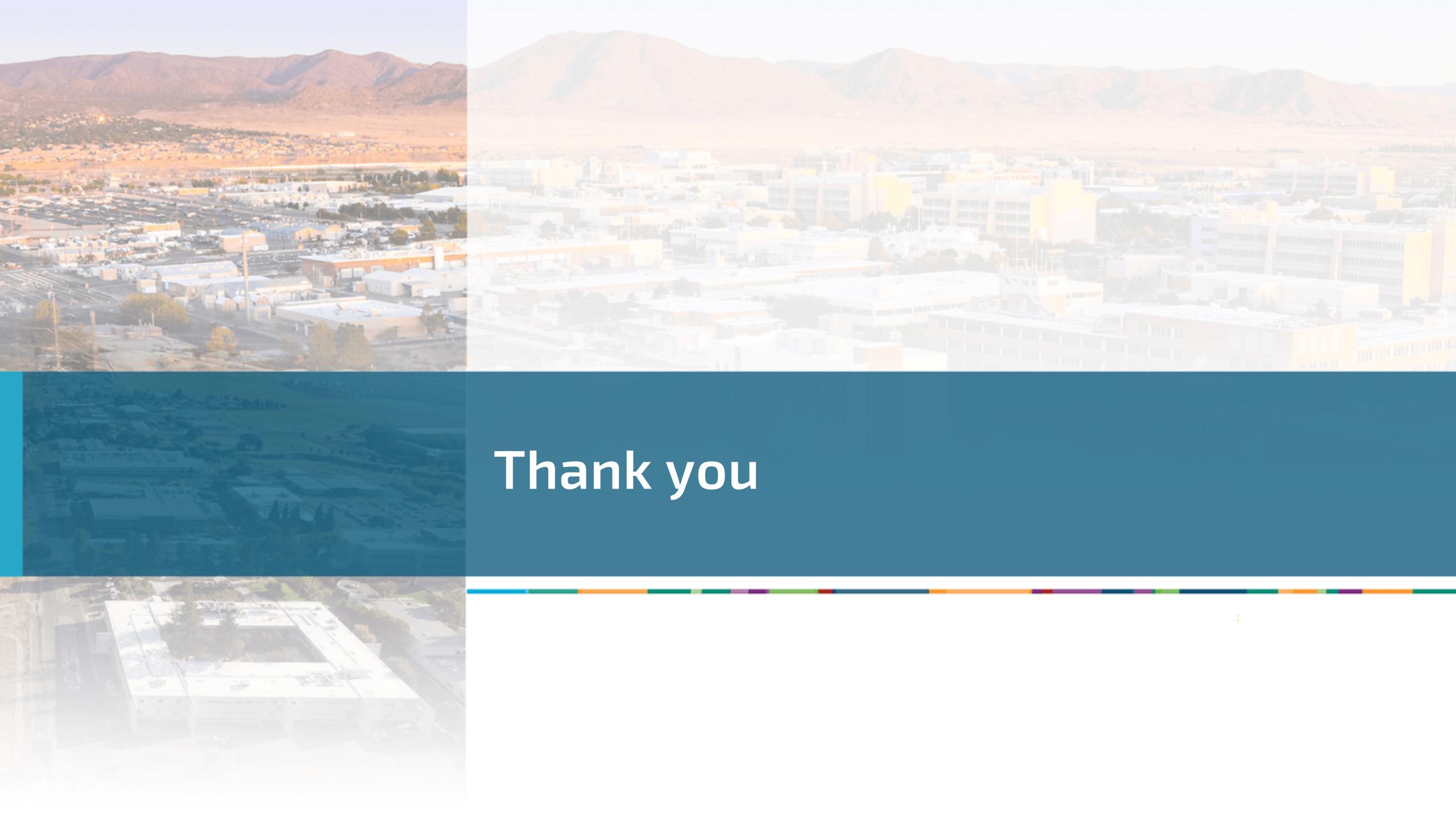
- Age
- Ethnicity
- Location
- Religion
- Political party
- Vaccination status
- Etc.

# Extensions: Contact Matrix and Parameters



# Extension: Results

## Excess predicted deaths:


Predicted deaths from best strategy compared to those under the best strategy that assigns WA and POC to the same allocation phase.

|     | Scenario |   | Exact number of phases in vaccine allocation |      |       |       |
|-----|----------|---|----------------------------------------------|------|-------|-------|
|     |          |   | 2                                            | 3    | 4     | 5     |
| 80% | 3        | 3 | 825                                          | 8774 | 11610 | 11226 |
|     | 3        | 1 | 0                                            | 312  | 0     | 0     |
|     | 1        | 1 | 0                                            | 0    | 0     | 570   |
| 0%  | 3        | 3 | 0                                            | 0    | 0     | 0     |
|     | 3        | 1 | 0                                            | 0    | 0     | 0     |
|     | 1        | 1 | 0                                            | 0    | 0     | 0     |

# Conclusions



1. Optimal strategy depends on the goal of the vaccination campaign
2. The CDC allocation strategy was close to optimal
3. Allocation could be improved by prioritizing people with comorbidities in older populations
4. Accounting for ethnic homophily:
  1. Changes which strategy is optimal
  2. Better matches actual case counts and mortality
5. Essential model features:
  1. Levels of demographic homophily
  2. Case-dependent social distancing levels
  3. Age-dependent susceptibility
  4. Age-dependent clinical fraction
  5. Time-dependent transmission rate



Thank you



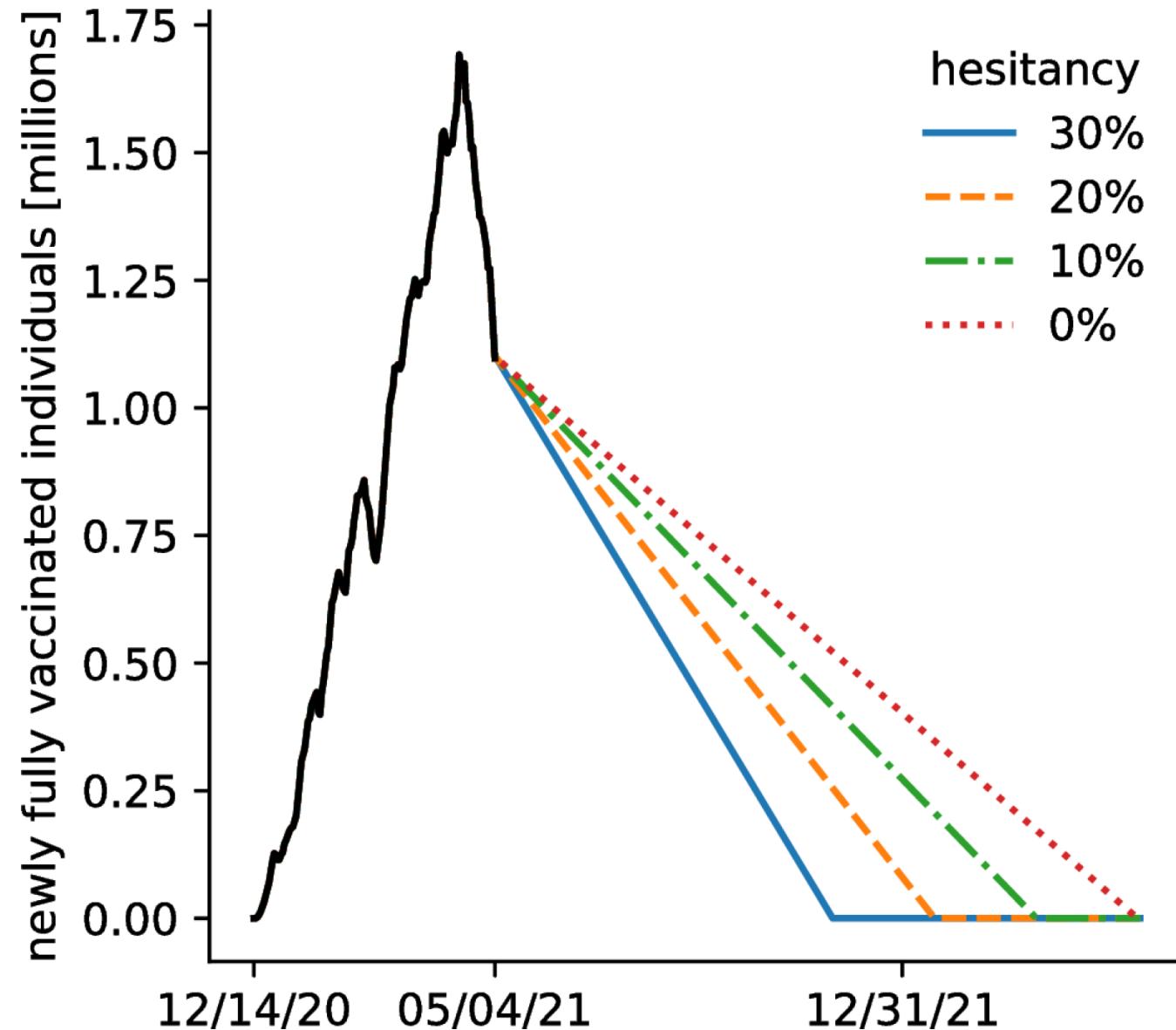


# Backup Slides

---

# Backup Slide: Strategies that Outperform CDC




|                       | deaths<br>[thousands] | cases<br>[millions] | YLL<br>[millions] | Phase assignment of sub-population |   |   |   |   |   |    |    |    |    |    |    |    |    |
|-----------------------|-----------------------|---------------------|-------------------|------------------------------------|---|---|---|---|---|----|----|----|----|----|----|----|----|
|                       | 1                     | 2                   | 3                 | 4                                  | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
| <b>CDC allocation</b> | 652.04                | 38.050              | 11.643            | 4                                  | 1 | 1 | 2 | 2 | 3 | 3  | 4  | 3  | 1  | 1  | 3  | 3  | 1  |
|                       | 650.83                | 37.918              | 11.608            | 4                                  | 1 | 1 | 2 | 2 | 3 | 3  | 4  | 3  | 2  | 1  | 3  | 3  | 1  |
|                       | 650.85                | 37.914              | 11.607            | 4                                  | 1 | 1 | 2 | 2 | 3 | 3  | 4  | 3  | 3  | 1  | 3  | 3  | 1  |
|                       | 650.90                | 37.881              | 11.606            | 4                                  | 1 | 1 | 2 | 2 | 3 | 3  | 4  | 3  | 2  | 2  | 3  | 3  | 2  |
|                       | 650.90                | 37.874              | 11.605            | 4                                  | 1 | 1 | 2 | 2 | 3 | 3  | 4  | 3  | 2  | 2  | 3  | 3  | 1  |
|                       | 650.94                | 37.870              | 11.604            | 4                                  | 1 | 1 | 2 | 2 | 3 | 3  | 4  | 3  | 3  | 2  | 3  | 3  | 1  |
|                       | 650.96                | 37.852              | 11.601            | 4                                  | 1 | 1 | 2 | 2 | 3 | 3  | 4  | 3  | 2  | 1  | 4  | 3  | 1  |
|                       | 650.98                | 37.848              | 11.600            | 4                                  | 1 | 1 | 2 | 2 | 3 | 3  | 4  | 3  | 3  | 1  | 4  | 3  | 1  |
|                       | 651.03                | 37.808              | 11.598            | 4                                  | 1 | 1 | 2 | 2 | 3 | 3  | 4  | 3  | 2  | 2  | 4  | 3  | 1  |
|                       | 651.07                | 37.805              | 11.597            | 4                                  | 1 | 1 | 2 | 2 | 3 | 3  | 4  | 3  | 3  | 2  | 4  | 3  | 1  |
|                       | 651.21                | 37.869              | 11.596            | 4                                  | 1 | 1 | 2 | 2 | 3 | 2  | 4  | 3  | 2  | 1  | 3  | 3  | 1  |
|                       | 651.24                | 37.865              | 11.596            | 4                                  | 1 | 1 | 2 | 2 | 3 | 2  | 4  | 3  | 3  | 1  | 3  | 3  | 1  |
|                       | 651.31                | 37.831              | 11.595            | 4                                  | 1 | 1 | 2 | 2 | 3 | 2  | 4  | 3  | 2  | 2  | 3  | 3  | 1  |
|                       | 651.31                | 37.824              | 11.593            | 4                                  | 1 | 1 | 2 | 2 | 3 | 2  | 4  | 3  | 2  | 2  | 3  | 3  | 1  |
|                       | 651.36                | 37.820              | 11.593            | 4                                  | 1 | 1 | 2 | 2 | 3 | 2  | 4  | 3  | 3  | 2  | 3  | 3  | 1  |
|                       | 651.40                | 37.811              | 11.591            | 4                                  | 1 | 1 | 2 | 2 | 3 | 2  | 4  | 3  | 2  | 1  | 4  | 3  | 1  |
|                       | 651.42                | 37.807              | 11.591            | 4                                  | 1 | 1 | 2 | 2 | 3 | 2  | 4  | 3  | 3  | 1  | 4  | 3  | 1  |
|                       | 651.43                | 37.765              | 11.592            | 4                                  | 1 | 1 | 2 | 2 | 3 | 3  | 4  | 3  | 2  | 2  | 4  | 3  | 1  |
|                       | 651.46                | 37.761              | 11.592            | 4                                  | 1 | 1 | 2 | 2 | 3 | 3  | 4  | 3  | 3  | 2  | 4  | 3  | 1  |
|                       | 651.50                | 37.773              | 11.590            | 4                                  | 1 | 1 | 2 | 2 | 3 | 2  | 4  | 3  | 2  | 2  | 4  | 3  | 1  |
|                       | 651.50                | 37.766              | 11.588            | 4                                  | 1 | 1 | 2 | 2 | 3 | 2  | 4  | 3  | 2  | 2  | 4  | 3  | 1  |
|                       | 651.54                | 37.763              | 11.588            | 4                                  | 1 | 1 | 2 | 2 | 3 | 2  | 4  | 3  | 3  | 2  | 4  | 3  | 1  |
|                       | 651.70                | 37.759              | 11.593            | 4                                  | 1 | 1 | 2 | 2 | 3 | 3  | 4  | 3  | 3  | 2  | 4  | 3  | 1  |
|                       | 651.81                | 37.772              | 11.587            | 4                                  | 1 | 1 | 2 | 2 | 3 | 2  | 4  | 3  | 2  | 1  | 4  | 3  | 1  |
|                       | 651.82                | 37.768              | 11.586            | 4                                  | 1 | 1 | 2 | 2 | 3 | 2  | 4  | 3  | 3  | 1  | 4  | 3  | 1  |
|                       | 651.90                | 37.757              | 11.590            | 4                                  | 1 | 1 | 2 | 2 | 3 | 3  | 4  | 3  | 2  | 1  | 4  | 3  | 2  |
|                       | 651.90                | 37.750              | 11.589            | 4                                  | 1 | 1 | 2 | 2 | 3 | 3  | 4  | 3  | 2  | 1  | 4  | 3  | 2  |
|                       | 651.91                | 37.734              | 11.585            | 4                                  | 1 | 1 | 2 | 2 | 3 | 2  | 4  | 3  | 2  | 2  | 4  | 3  | 1  |
|                       | 651.91                | 37.727              | 11.584            | 4                                  | 1 | 1 | 2 | 2 | 3 | 2  | 4  | 3  | 2  | 2  | 4  | 3  | 1  |
|                       | 651.95                | 37.723              | 11.584            | 4                                  | 1 | 1 | 2 | 2 | 3 | 2  | 4  | 3  | 3  | 2  | 4  | 3  | 1  |

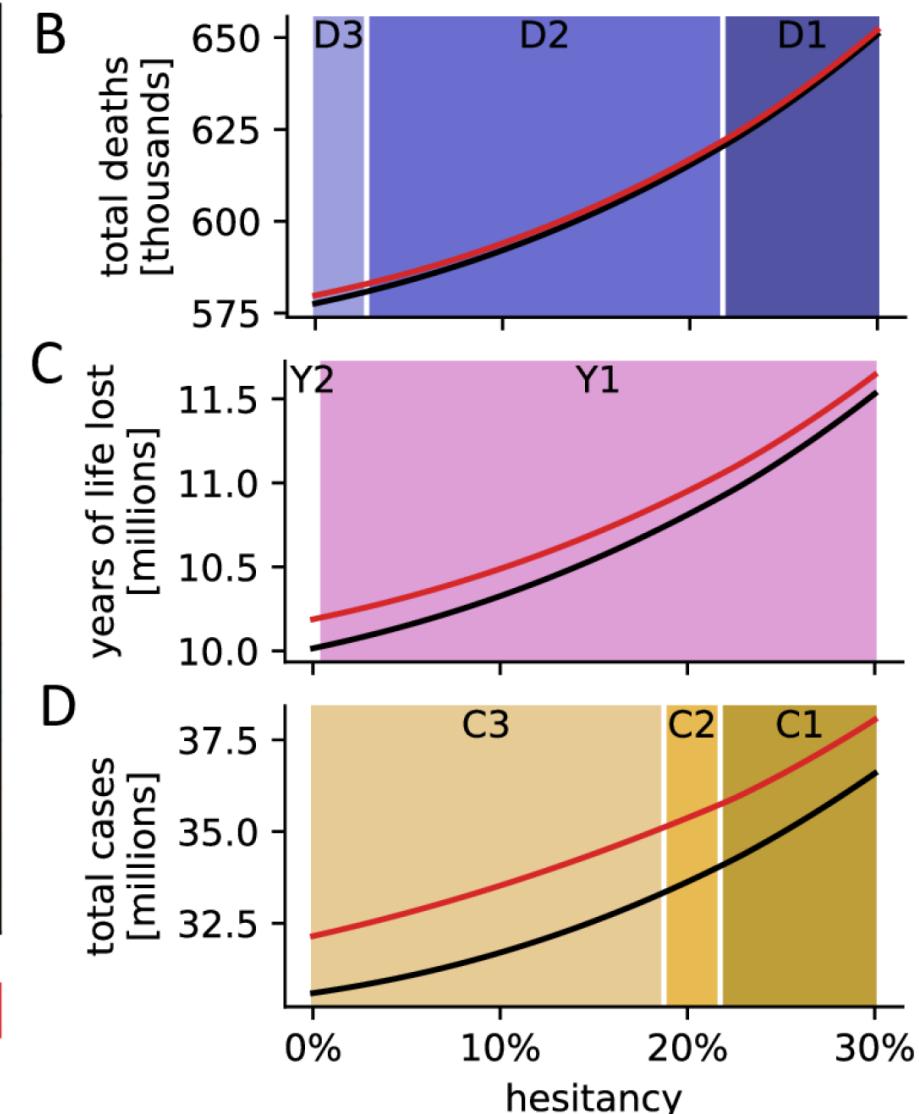
# Backup Slide: Age- and Comorbidity-Dependent CFR



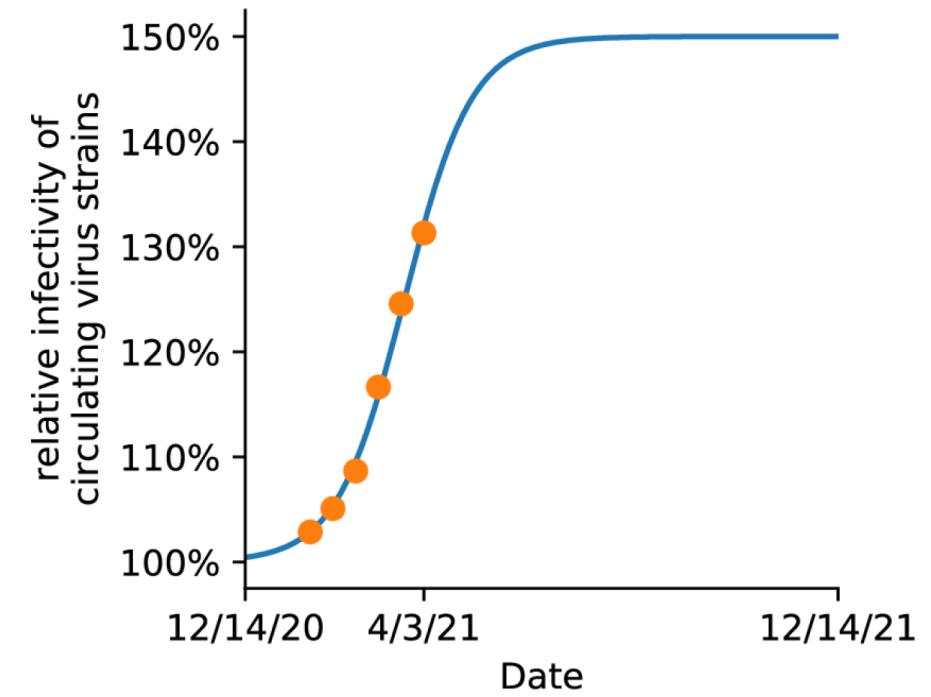
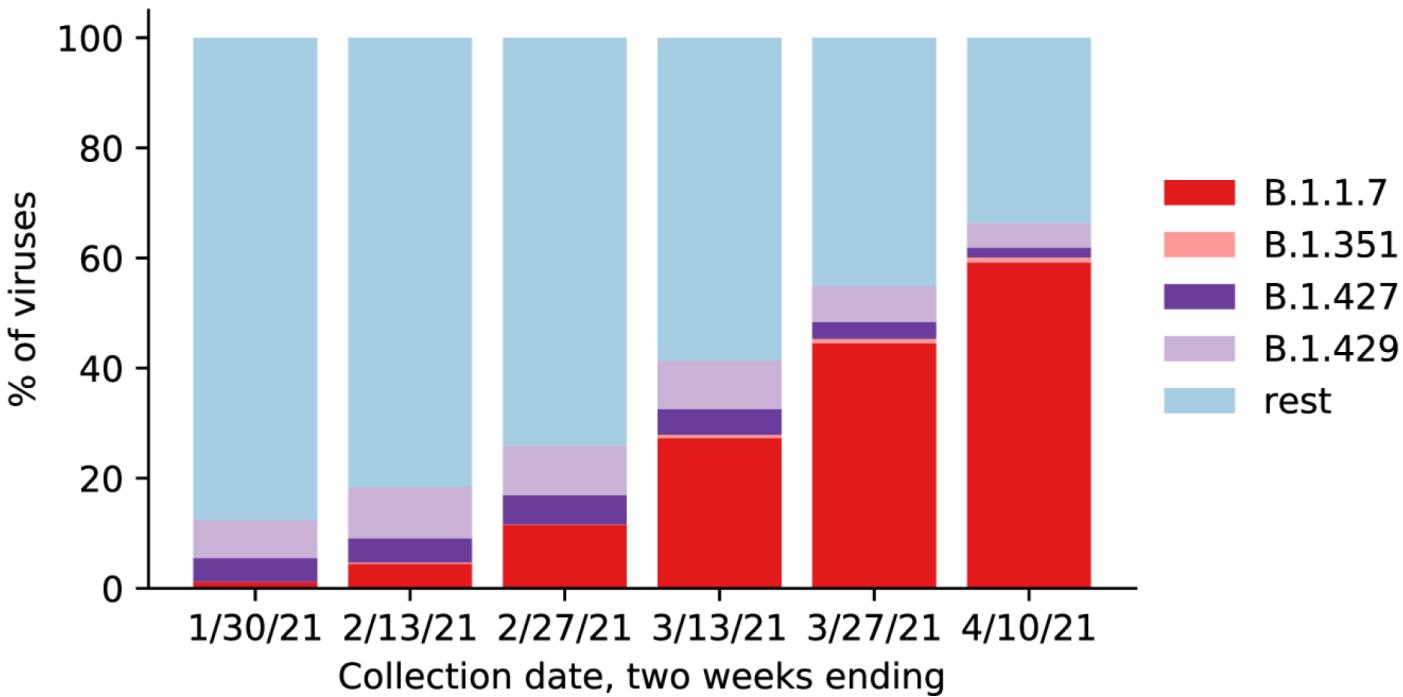
- CDC age-structured (death count / case count)
  - 0.0129%, 0.4533%, 4.9781%, 16.7279%
- US population-level estimates of comorbidity prevalence
  - 18.60%, 36.72%, 73.15%, 80.18%
- 51.71% cases with comorbidities (health insurance claims)
- 83.29% deaths with comorbidities (health insurance claims)
- Persons with comorbidities have 4.65x higher CFR
- **CFR without comorbidities:**
  - 0.0129%, 0.1935%, 1.1355%, 4.2560%
- **CFR with comorbidities:**
  - 0.0129%, 0.8997%, 6.3012%, 19.7907%

# Backup Slide: Speed of Vaccine Roll-Out




# Backup Slide: Vaccine Hesitancy





**A**

| objective | minimize deaths |     |     |   | minimize YLL |     |     |   | minimize cases |     |     |   | CDC |
|-----------|-----------------|-----|-----|---|--------------|-----|-----|---|----------------|-----|-----|---|-----|
| hesitancy | 0.3             | 0.2 | 0.1 | 0 | 0.3          | 0.2 | 0.1 | 0 | 0.3            | 0.2 | 0.1 | 0 |     |
| <b>1</b>  | 4               | 4   | 4   | 4 | 4            | 4   | 4   | 4 | 4              | 4   | 4   | 4 | 4   |
| <b>2</b>  | 1               | 1   | 1   | 1 | 1            | 1   | 1   | 1 | 1              | 1   | 1   | 1 | 1   |
| <b>3</b>  | 1               | 1   | 1   | 1 | 1            | 1   | 1   | 1 | 1              | 1   | 1   | 1 | 1   |
| <b>4</b>  | 2               | 2   | 2   | 2 | 2            | 2   | 2   | 2 | 2              | 2   | 2   | 2 | 2   |
| <b>5</b>  | 2               | 2   | 2   | 2 | 2            | 2   | 2   | 2 | 2              | 2   | 2   | 2 | 2   |
| <b>6</b>  | 3               | 3   | 3   | 3 | 3            | 3   | 3   | 3 | 2              | 2   | 2   | 2 | 3   |
| <b>7</b>  | 3               | 3   | 3   | 3 | 2            | 2   | 2   | 3 | 2              | 2   | 2   | 2 | 3   |
| <b>8</b>  | 4               | 4   | 4   | 4 | 4            | 4   | 4   | 4 | 3              | 3   | 3   | 3 | 4   |
| <b>9</b>  | 3               | 3   | 3   | 3 | 3            | 3   | 3   | 3 | 3              | 3   | 3   | 3 | 3   |
| <b>10</b> | 2               | 2   | 2   | 3 | 3            | 3   | 3   | 3 | 3              | 3   | 3   | 3 | 1   |
| <b>11</b> | 1               | 2   | 2   | 2 | 2            | 2   | 2   | 2 | 3              | 2   | 2   | 2 | 1   |
| <b>12</b> | 3               | 3   | 3   | 4 | 4            | 4   | 4   | 4 | 4              | 4   | 4   | 4 | 3   |
| <b>13</b> | 3               | 3   | 3   | 3 | 3            | 3   | 3   | 3 | 4              | 4   | 4   | 4 | 3   |
| <b>14</b> | 3               | 3   | 3   | 3 | 3            | 3   | 3   | 3 | 3              | 4   | 3   | 3 | 1   |
| <b>15</b> | 1               | 1   | 1   | 1 | 2            | 2   | 2   | 2 | 3              | 3   | 3   | 3 | 1   |
| <b>16</b> | 3               | 3   | 3   | 3 | 4            | 4   | 4   | 4 | 4              | 4   | 4   | 4 | 2   |
| <b>17</b> | 2               | 2   | 2   | 2 | 3            | 3   | 3   | 3 | 4              | 4   | 4   | 4 | 2   |

↑ D1    ↑ D2    ↑ D3    ↑ Y1    ↑ Y2    ↑ C1    ↑ C2    ↑ C3    CDC



# Backup Slide: Emergence of Variants



# Backup Slide: Model Parameters

| Parameter             | Description                                                                                                                  | Value                                                                                          | Source                                          |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------|
| $N_i$                 | number of people in sub-population $i$                                                                                       | see <a href="#">Table 2</a>                                                                    | [25]                                            |
| $X_{ij}$              | average daily number of contacts a person in sub-population $i$ has with sub-population $j$                                  | see <a href="#">S2G Fig</a>                                                                    | [21, 22]                                        |
| $c$                   | log10 value of active cases at which overall contacts are reduced by 50%                                                     | $c = 4.0346$ (see <a href="#">S1 Table</a> for fitted values used in the sensitivity analysis) | fitted (see Model calibration)                  |
| $k$                   | sensitivity of contact reduction to changes in active cases (shape of the Hill function)                                     | $k = 5.0266$ (see <a href="#">S1 Table</a> for fitted values used in the sensitivity analysis) | fitted (see Model calibration)                  |
| $\beta_i$             | age-dependent susceptibility to infection                                                                                    | see <a href="#">S1 Table</a>                                                                   | fitted (see Model calibration)                  |
| $1/\mu_E$             | incubation period                                                                                                            | 3.7 days                                                                                       | [26]                                            |
| $q_i$                 | age-dependent clinical fraction                                                                                              | varied, see <a href="#">S1 Fig</a>                                                             | [27]                                            |
| $1/\mu_A$             | average time of virus spread by truly asymptomatic individuals                                                               | 5 days                                                                                         | [17]                                            |
| $1/\mu_P$             | average time of virus spread before symptom onset                                                                            | 2.1 days                                                                                       | [17]                                            |
| $1/\mu_C$             | average time of virus spread after symptom onset                                                                             | 2.723 days                                                                                     | estimated from CDC raw data                     |
| $1/\mu_Q + 1/\mu_C$   | average time between symptom onset and possible death                                                                        | 22 days                                                                                        | estimated from U.S. deaths and case counts [28] |
| $CFR_i$               | sub-population-dependent case fatality ratio                                                                                 | see Case fatality rates                                                                        | calculated from [29, 30]                        |
| $f_A$                 | relative contagiousness of truly asymptomatic individuals                                                                    | 75% (25% and 100% in sensitivity analysis)                                                     | [27]                                            |
| $f_V$                 | relative contagiousness of vaccinated individuals                                                                            | 50% (0% and 100% in sensitivity analysis)                                                      | no data                                         |
| none                  | vaccine hesitancy                                                                                                            | 30%                                                                                            | [31, 32]                                        |
| $\xi(t)$              | daily number of available vaccines                                                                                           | see <a href="#">S4 Fig</a>                                                                     | [33]                                            |
| none                  | vaccine effectiveness: reduction of symptomatic infections among vaccinated (compared to non-vaccinated)                     | 90%                                                                                            | [34]                                            |
| $\sigma$ and $\delta$ | reduction in infections and symptomatic infections (when infected) among vaccinated (compared to non-vaccinated) individuals | 70% and 66.7% (varied such that $1 - (1 - \sigma)(1 - \delta) = 90\%$ in sensitivity analysis) | [35]                                            |

# Backup Slide: Genetic Algorithm



Minimize fitness function:

- 50 iterations of 1000 parameter sets
- 300 parents, 700 children
- 50% crossover probability
- 10% random mutation probability
- 1% elite ratio (top 10 par sets)
- 100 separate runs
- Weighting ensures good fit at end

$$f(\text{deaths, cases}) = w\text{SSE}(\text{deaths}) + w\text{SSE}(\text{cases})$$

where

$$w\text{SSE}(\text{deaths}) = \sum_{d=\text{December 14, 2020}}^{\text{April 29, 2021}} w_d \cdot (\text{observed minus predicted deaths up to day } d)^2$$

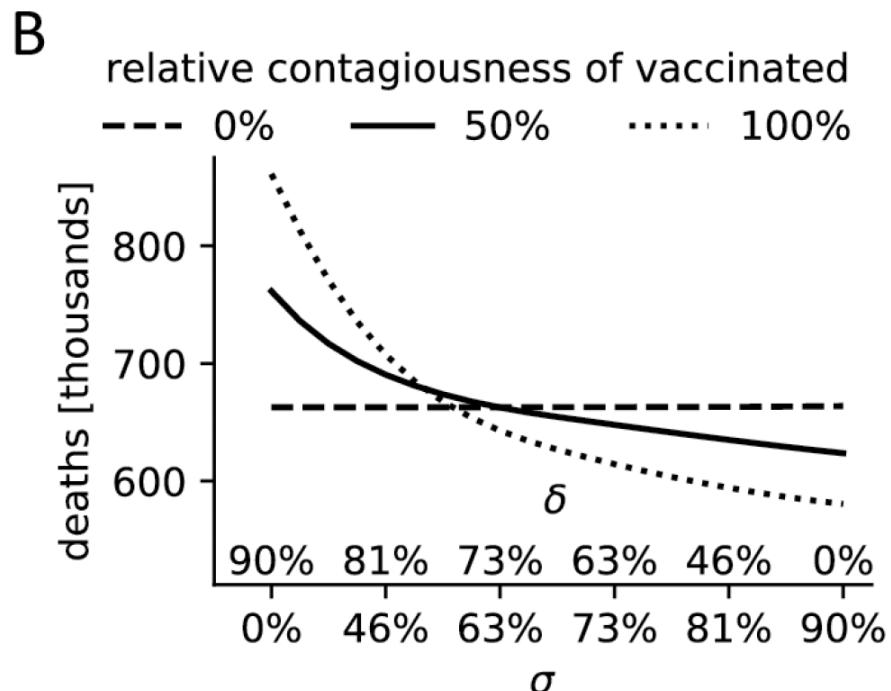
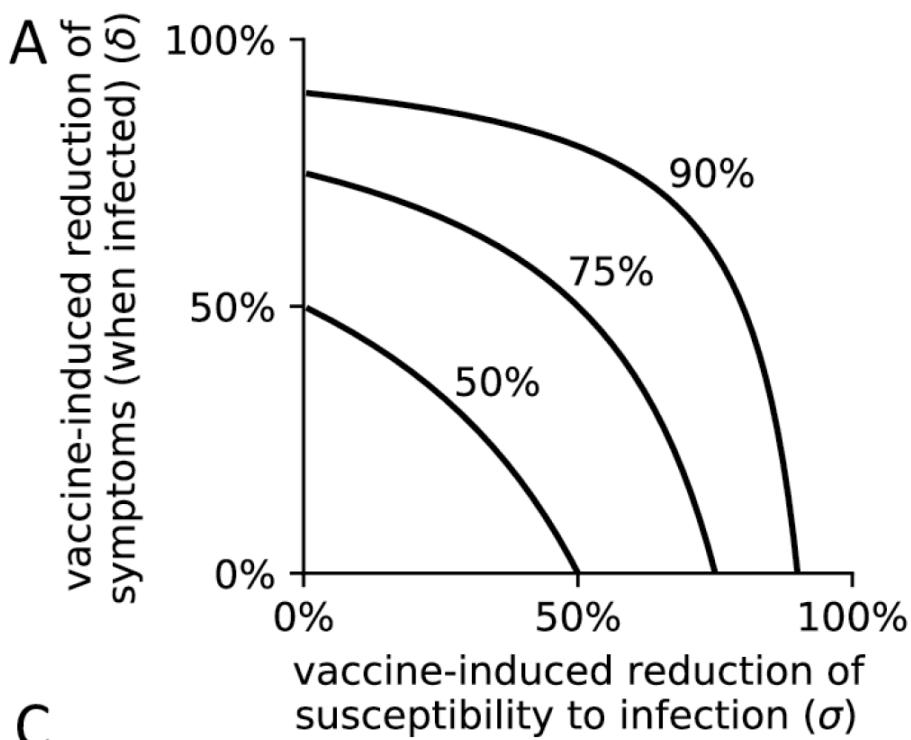
$$w\text{SSE}(\text{cases}) = \sum_{d=\text{December 14, 2020}}^{\text{April 29, 2021}} w_d \cdot (\text{observed minus predicted cases up to day } d)^2$$

Quadratically-increasing weights:

$$w_{\text{December 14 2020}} = 1, w_{\text{December 15 2020}} = 4, w_{\text{December 16 2020}} = 9, \dots$$

# Backup Slide: Model Parameters





| Varied parameters |       |           | Fitted parameters |        |        |        | wSSE     |
|-------------------|-------|-----------|-------------------|--------|--------|--------|----------|
| $f_A$             | $f_V$ | $q_{75+}$ | $b_0$             | $b_1$  | $c$    | $k$    |          |
| 0.75              | 0.5   | 0.85      | 0.0397            | 0.0044 | 4.0346 | 5.0266 | 4.66E+13 |
| 0.75              | 0.5   | 0.7       | 0.0001            | 0.0045 | 4.2812 | 5.2282 | 5.56E+13 |
| 0.75              | 0.5   | 1         | 0.0810            | 0.0031 | 4.0382 | 4.9903 | 4.54E+13 |
| 0.25              | 0.5   | 0.85      | 0.0727            | 0.0072 | 4.1001 | 5.9356 | 4.33E+13 |
| 1                 | 0.5   | 0.85      | 0.0249            | 0.0030 | 4.2441 | 4.8065 | 4.80E+13 |
| 0.75              | 0     | 0.85      | 0.0764            | 0.0081 | 4.3286 | 7.3542 | 3.58E+13 |
| 0.75              | 1     | 0.85      | 0.0157            | 0.0017 | 4.0277 | 2.8875 | 5.83E+13 |

# Backup Slide: Sensitivity Analysis



| Age                          | Job or living situation     | Comorbidity | Number of people [millions] | Group ID in model | CDC allocation | deaths [thousands] |       |       |       |       |       | YLL [millions] |       |       |       |       |       | cases [millions] |       |       |       |       |       | $q_{75+}$ |       |           |
|------------------------------|-----------------------------|-------------|-----------------------------|-------------------|----------------|--------------------|-------|-------|-------|-------|-------|----------------|-------|-------|-------|-------|-------|------------------|-------|-------|-------|-------|-------|-----------|-------|-----------|
|                              |                             |             |                             |                   |                | 0.85               | 0.7   | 1     | 0.85  | 0.85  | 0.85  | 0.85           | 0.85  | 0.7   | 1     | 0.85  | 0.85  | 0.85             | 0.85  | 0.85  | 0.7   | 1     | 0.85  | 0.85      | 0.85  |           |
|                              |                             |             |                             |                   |                | 0.75               | 0.75  | 0.75  | 0.25  | 1     | 0.75  | 0.75           | 0.75  | 0.25  | 1     | 0.75  | 0.75  | 0.75             | 0.25  | 1     | 0.75  | 0.75  | 0.75  | 0.25      | 1     |           |
|                              |                             |             |                             |                   |                | 0.5                | 0.5   | 0.5   | 0.5   | 0.5   | 0     | 1              | 0.5   | 0.5   | 0.5   | 0.5   | 0.5   | 0                | 1     | 0.5   | 0.5   | 0.5   | 0.5   | 0.5       | 0     | 1         |
| 0-15                         | NA                          | NA          | 64.71                       | 1                 | 4              | 4                  | 4     | 4     | 4     | 4     | 4     | 4              | 4     | 4     | 4     | 4     | 4     | 4                | 4     | 4     | 4     | 4     | 4     | 4         | 4     | $q_{75+}$ |
| 16-64                        | healthcare workers          | no          | 13.29                       | 2                 | 1              | 1                  | 1     | 1     | 1     | 1     | 1     | 1              | 1     | 1     | 1     | 1     | 1     | 1                | 1     | 1     | 1     | 1     | 1     | 1         | 1     | $f_A$     |
|                              | healthcare workers          | yes         | 7.71                        | 3                 | 1              | 1                  | 1     | 1     | 1     | 1     | 1     | 1              | 1     | 1     | 1     | 1     | 1     | 1                | 1     | 1     | 1     | 1     | 1     | 1         | 1     | $f_V$     |
|                              | frontline essential workers | no          | 18.98                       | 4                 | 2              | 2                  | 2     | 2     | 2     | 2     | 2     | 2              | 2     | 2     | 2     | 2     | 2     | 2                | 2     | 2     | 2     | 2     | 2     | 2         | 2     | $f_V$     |
|                              | frontline essential workers | yes         | 11.02                       | 5                 | 2              | 2                  | 2     | 2     | 2     | 2     | 2     | 2              | 2     | 2     | 2     | 2     | 2     | 2                | 2     | 2     | 2     | 2     | 2     | 2         | 2     | $f_V$     |
|                              | other essential workers     | no          | 12.66                       | 6                 | 3              | 3                  | 3     | 3     | 3     | 3     | 3     | 3              | 3     | 3     | 3     | 3     | 3     | 3                | 3     | 3     | 3     | 3     | 3     | 3         | 3     | $f_V$     |
|                              | other essential workers     | yes         | 7.34                        | 7                 | 3              | 3                  | 3     | 2     | 2     | 3     | 3     | 3              | 3     | 3     | 2     | 2     | 2     | 2                | 2     | 2     | 2     | 2     | 2     | 2         | 2     | $f_V$     |
| 65-74                        | remaining people            | no          | 87.61                       | 8                 | 4              | 4                  | 4     | 4     | 4     | 4     | 4     | 4              | 4     | 4     | 4     | 4     | 4     | 4                | 4     | 3     | 3     | 3     | 3     | 3         | 3     | $f_V$     |
|                              | remaining people            | yes         | 50.85                       | 9                 | 3              | 3                  | 3     | 3     | 3     | 3     | 3     | 3              | 3     | 3     | 3     | 3     | 3     | 3                | 3     | 3     | 3     | 3     | 3     | 3         | 3     | $f_V$     |
|                              | congested living            | no          | 0.28                        | 10                | 1              | 2                  | 2     | 2     | 2     | 2     | 2     | 2              | 3     | 3     | 3     | 3     | 3     | 3                | 3     | 3     | 3     | 3     | 3     | 3         | 3     | $f_V$     |
|                              | congested living            | yes         | 0.76                        | 11                | 1              | 1                  | 1     | 1     | 1     | 1     | 1     | 1              | 1     | 2     | 2     | 2     | 2     | 2                | 2     | 3     | 2     | 3     | 2     | 3         | 2     | $f_V$     |
|                              | remaining people            | no          | 8.20                        | 12                | 3              | 3                  | 3     | 3     | 3     | 3     | 3     | 3              | 4     | 4     | 4     | 4     | 4     | 4                | 4     | 4     | 4     | 4     | 4     | 4         | 4     | $f_V$     |
|                              | remaining people            | yes         | 22.34                       | 13                | 3              | 3                  | 3     | 2     | 2     | 3     | 3     | 3              | 3     | 3     | 3     | 3     | 3     | 3                | 3     | 4     | 4     | 4     | 4     | 4         | 4     | $f_V$     |
| 75+                          | congested living            | no          | 0.39                        | 14                | 1              | 3                  | 3     | 2     | 2     | 3     | 2     | 3              | 3     | 3     | 3     | 3     | 3     | 3                | 3     | 3     | 3     | 4     | 3     | 3         | 3     | $f_V$     |
|                              | congested living            | yes         | 1.57                        | 15                | 1              | 1                  | 1     | 1     | 1     | 1     | 1     | 1              | 1     | 2     | 2     | 2     | 2     | 2                | 2     | 3     | 3     | 3     | 3     | 3         | 3     | $f_V$     |
|                              | remaining people            | no          | 4.07                        | 16                | 2              | 3                  | 3     | 3     | 3     | 3     | 3     | 3              | 3     | 4     | 4     | 4     | 4     | 4                | 4     | 4     | 4     | 4     | 4     | 4         | 4     | $f_V$     |
|                              | remaining people            | yes         | 16.47                       | 17                | 2              | 2                  | 2     | 1     | 1     | 2     | 2     | 2              | 2     | 3     | 3     | 3     | 3     | 3                | 3     | 4     | 4     | 4     | 4     | 4         | 4     | $f_V$     |
| Value for optimal allocation |                             |             |                             |                   |                | 650.8              | 645.5 | 651.6 | 658.5 | 647.3 | 661.7 | 620.4          | 11.53 | 11.55 | 11.5  | 11.69 | 11.46 | 11.75            | 10.92 | 36.59 | 36.58 | 36.78 | 37.28 | 36.21     | 37.57 | 33.96     |
| Value for CDC allocation     |                             |             |                             |                   |                | 652                | 646.6 | 653.2 | 659.7 | 648.6 | 662.9 | 622            | 11.64 | 11.67 | 11.61 | 11.79 | 11.57 | 11.86            | 11.05 | 38.05 | 38.08 | 38.2  | 38.74 | 37.69     | 39.08 | 35.4      |
| % difference                 |                             |             |                             |                   |                | 0.187              | 0.182 | 0.235 | 0.181 | 0.192 | 0.185 | 0.249          | 0.974 | 1     | 0.984 | 0.892 | 1.012 | 0.971            | 1.167 | 4.003 | 4.104 | 3.869 | 3.909 | 4.066     | 4.029 | 4.244     |

# Backup Slide: Vaccine Function



# Backup Slide: Ethnic Homophily Model



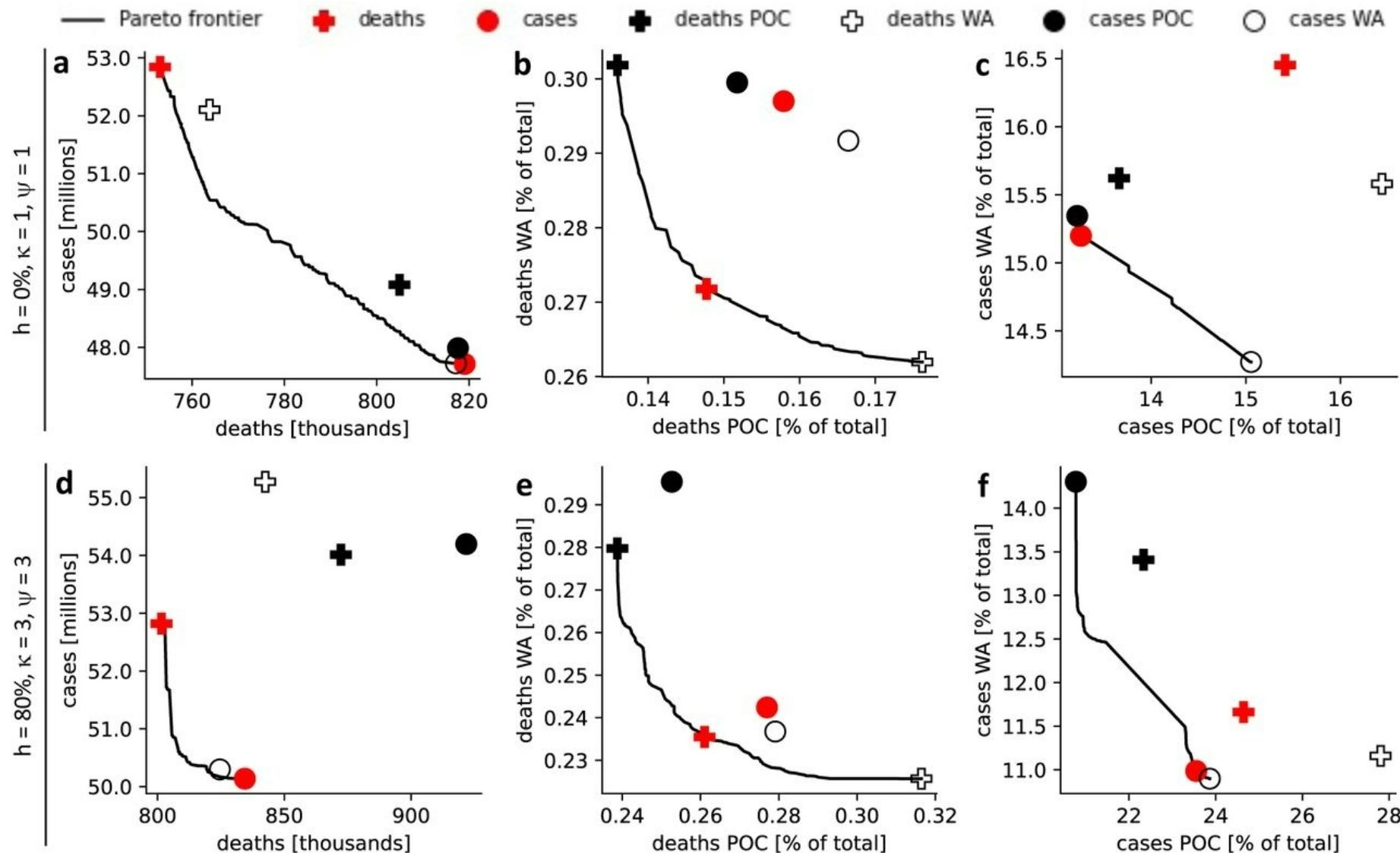
- 10 subpopulations:
  - 4 age groups
  - 2 ethnicity groups (WA and POC)
  - 2 occupation levels for age group 16-64 (HC and LC)
- 3 parameters (built into contact matrix):
  - $h$ : ethnic homophily (0% & 80%)
  - $\psi$ : relative proportion of POC (vs. WA) in high-contact jobs (1 & 3)
  - $\kappa$ : relative contact levels for employees in high-contact jobs vs. low-contact jobs (1 & 3)
- Varying number of allocation phases:
  - 1-5, and 10
- Global optimization approach over 2.9 million possibly optimal strategies

## Backup Slide: Calculating Relative Homophily



$p \in (0, 1)$  Proportion of population in WA group

$\phi \in [0, 1]$  Proportion of all contacts between people of the same ethnicity group


$$\mathbb{E}(\phi) = p^2 + (1 - p)^2$$

$$\text{homophily } h = \begin{cases} \frac{\phi - \mathbb{E}(\phi)}{1 - \mathbb{E}(\phi)} \in [0, 1] & \text{if } \phi \geq \mathbb{E}(\phi), \\ \frac{\phi - \mathbb{E}(\phi)}{\mathbb{E}(\phi)} \in [-1, 0) & \text{if } \phi < \mathbb{E}(\phi). \end{cases}$$

If  $p = \frac{2}{3}$ , then  $E(\phi) = \frac{5}{9}$ .  $\phi = \frac{7}{9}$  therefore corresponds to 50% homophily.

$\phi = 1$  corresponds to 100% homophily: complete segregation of WA and POC.  
 $\phi = 0$  corresponds to 100% heterophily, where the contact graph is bipartite.

# Backup slide: Results from Ethnic Homophily Study



|       |              | exact number of phases |          | 4   |   |   |    |   |   | 5   |   |   |    |   |   | 10  |    |    |    |    |    |    |   |
|-------|--------------|------------------------|----------|-----|---|---|----|---|---|-----|---|---|----|---|---|-----|----|----|----|----|----|----|---|
|       |              |                        |          | 80% |   |   | 0% |   |   | 80% |   |   | 0% |   |   | 80% |    |    | 0% |    |    |    |   |
| age   | ethnicity    | occupation             | h        | 3   | 1 | 1 | 3  | 3 | 1 | 1   | 3 | 1 | 1  | 3 | 3 | 1   | 1  | 3  | 1  | 1  | 3  | 3  |   |
|       |              |                        | $\kappa$ | 3   | 1 | 1 | 3  | 3 | 1 | 1   | 3 | 1 | 1  | 3 | 3 | 1   | 1  | 3  | 1  | 1  | 3  | 3  |   |
|       |              |                        |          | 3   | 1 | 1 | 3  | 3 | 1 | 1   | 3 | 1 | 1  | 3 | 3 | 1   | 1  | 3  | 1  | 1  | 3  | 3  |   |
| 0-15  | POC          | n.a.                   |          | 4   | 4 | 4 | 4  | 4 | 4 | 4   | 5 | 5 | 5  | 5 | 5 | 4   | 10 | 10 | 10 | 9  | 9  | 9  |   |
|       | WA           | n.a.                   |          | 4   | 4 | 4 | 4  | 4 | 4 | 4   | 5 | 5 | 5  | 5 | 5 | 5   | 8  | 9  | 9  | 10 | 10 | 10 |   |
| 16-64 | POC          | low-contact            |          | 4   | 4 | 3 | 4  | 4 | 3 | 3   | 5 | 4 | 4  | 4 | 4 | 4   | 3  | 9  | 8  | 8  | 7  | 7  | 6 |
|       | high-contact |                        |          | 2   | 2 | 3 | 2  | 2 | 3 | 3   | 2 | 2 | 4  | 2 | 2 | 3   | 4  | 4  | 6  | 3  | 3  | 5  |   |
|       | WA           | low-contact            |          | 3   | 4 | 3 | 4  | 4 | 3 | 3   | 4 | 4 | 4  | 4 | 4 | 3   | 7  | 7  | 7  | 8  | 8  | 8  |   |
|       | high-contact |                        |          | 1   | 2 | 3 | 2  | 2 | 3 | 3   | 1 | 2 | 3  | 2 | 2 | 3   | 2  | 3  | 5  | 4  | 4  | 7  |   |
| 65-74 | POC          | n.a.                   |          | 3   | 3 | 2 | 3  | 3 | 2 | 2   | 3 | 3 | 2  | 3 | 3 | 2   | 5  | 5  | 4  | 5  | 5  | 3  |   |
|       | WA           | n.a.                   |          | 3   | 3 | 2 | 3  | 3 | 2 | 2   | 3 | 3 | 2  | 3 | 3 | 2   | 6  | 6  | 3  | 6  | 6  | 4  |   |
| 75+   | POC          | n.a.                   |          | 1   | 1 | 1 | 1  | 1 | 1 | 1   | 1 | 1 | 1  | 1 | 1 | 1   | 1  | 2  | 2  | 1  | 1  | 1  |   |
|       | WA           | n.a.                   |          | 2   | 1 | 1 | 1  | 1 | 1 | 1   | 2 | 1 | 1  | 1 | 1 | 1   | 3  | 1  | 1  | 2  | 2  | 2  |   |

# Backup Slide: Citations



- Islam, M.R., Oraby, T., McCombs, A., Chowdhury, M.M., Al-Mamun, M., Tyshenko, M.G. and Kadelka, C., 2021. Evaluation of the United States COVID-19 vaccine allocation strategy. *PLoS one*, 16(11), p.e0259700.
- Kadelka, C., Islam, M.R., McCombs, A., Alston, J. and Morton, N., 2022. Ethnic homophily affects vaccine prioritization strategies. *medRxiv*.
- Kadelka, C., 2022. Projecting social contact matrices to populations stratified by binary attributes with known homophily. *arXiv preprint arXiv:2207.12328*.
- Kadelka, C. and McCombs, A., 2021. Effect of homophily and correlation of beliefs on COVID-19 and general infectious disease outbreaks. *PLoS one*, 16(12), p.e0260973.