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Why study electrolytes in 
mesoporous silica?

v

Trends in frequency shifts are in good agreement with 
experimental spectra for water confined in silica 
nanopores.
IR spectra show only modest differences between 
confined and bulk electrolyte solutions in amorphous 
silica slit pores.
Confinement effects are suppressed as the 
concentration increases.
The larger the halide, the more blue-shifted the IR 
spectrum.
OH reorientational dynamics are significantly slowed 
by confinement even at the lowest concentrations.
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Mesoporous silica - synthetic analogs to look 
at confinement effects in real rocks and 
minerals.
Electrolyte is confined on nano-scale, 
strongly modifies the structural and 
dynamical properties. Our understanding
of these confinement effects is significantly 
incomplete.

Chen et al.,Chem. Commun., 42, 5343-5345 (2005)

Advantage of using 
vibrational spectroscopy
An excellent probe of the local structure 
and dynamics.

Why simulations of spectra?
Challenging to interpret spectra 
Experimental spectra can not do a site-
by site interpretation.
Surface-sensitive spectroscopies can not 
be applied to porous materials.

We use classical MD to simulate the 
spectra.

Electrolytes confined in amorphous silica Conclusion
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The weaker H-bonding of water molecules with 
the silica surface leads to smaller transition 
dipole moments hence the interfacial OH 
groups are suppressed in the IR spectrum.
Slowdown factors are most prominent in neat 
water and decrease with salt concentration and 
pore width.

Senanayake et al., J. Chem. Phys. 157, 034702 (2022);

Jung-Cheatham model – ion 
interactionsAmorphous silica slab models 

hydroxyl density  (2OH/nm2)

Dr. Pubudu Wimalasiri

Gulmen-Thompson force field – Silanol and Geminal interactions
SPC/E model - water interactions

P. N. Wimalasiri, N. P. Nguyen, H. S. Senanayake, B. B. Laird, and W. H. 
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Jung-Cheatham model – ion interactions
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Piskulich et al., J. Phys. Chem. A 123 (33), 7185-7194 (2019)
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Effect of concentration Effect of halide Effect of pore width
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Calculating spectra

Skinner et al., J. Chem. Phys. 120, 8107 (2004)

IR lineshape

Dipole-dipole 
response function

Transition 
frequency

Transition 
dipole vector

Depolarized Raman lineshape

Vibrational 
lifetime 

(Expt. 700 fs)

Polarizability 
response 
function

Transition 
polarizability

Temperature derivative

Fluctuation in the 
total energy

Predicting the spectrum at different temperatures

Effective internal 
energy

Reorientation dynamics

Second Legendre 
polynomial

Unit vector along 
the OH

Spectral diffusion

Normalized frequency–
frequency time
correlation function (FFCF)

Reorientational time
correlation function

Laage et al., J. Phys. Chem. B 112, 14230–14242 (2008).

Piskulich et al., J. Chem. Phys. 154, 064501 (2021)

Senanayake et al., J. Chem. Phys. 154, 104503 (2021)
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Can be directly measured using time-resolved pump–probe IR 
anisotropy

Can be measured from two-dimensional IR (2D-IR) photon echo 
measurements

- The ratio of the confined to bulk timescales

Vibrational frequency 
distribution

SAND2022-10441CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.


