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MOTIVATION NEURAL NETWORK (e3nn) RESULTS: LARGE DNA STRUCTURES

Stacked 4-way junction Nucleosome core particle DNA origami structure

Quantum molecular modeling can predict a system’s properties e3nn is a type of graph convolutional neural network that 1260 at?ms, 6280 e)lectrons 9346 ato(ms, 46980)electrons 21658 atoms, 108654 electrons
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from first principles but is limited by computational scaling. is equivariant to translations, rotations, and reflections. =
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Machine learning breaks traditional scaling barriers and opens _ _ 1
up the study of large biological macromolecules like DNA. e
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TRAINING THE MODEL RESULTS: PREDICTION ACCURACY FUTURE APPLICATIONS
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During training, the model learns geometric features such as
bonding interactions about its environment.
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" Hellman-Feynman forces for ab initio molecular dynamics
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