

Unique Experimental Algorithms for National-Security Applications

Cynthia A. Phillips (Sandia National Laboratories)

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Government Research/Applications

Priorities

- Public Safety
- Regulation compliance
- Situational awareness, information gathering (e.g. military)
- Protection of national assets (infrastructure, cyber)
- Efficient resource allocation
 - Budget constraints
 - Especially when a company (e.g. utility) will implement

Government Research/Applications

- Implementations: It must work
- Variety of platforms
 - High-performance computers to battery-powered systems
- High Confidence
 - Exact solutions
 - Mathematical proofs
 - Experimental evaluation of heuristics
 - Benchmarking
 - Uncertainty quantification
 - Validation

Three Stories

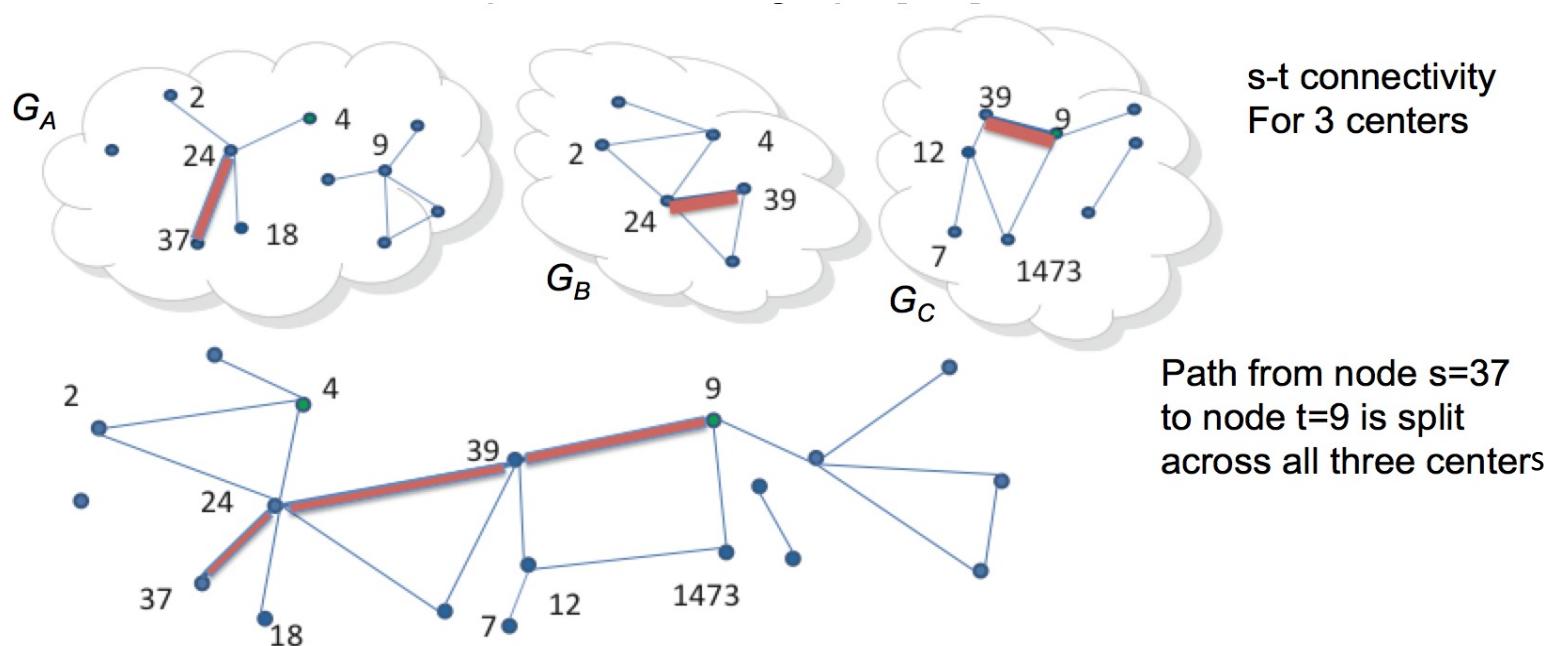
- Making social-network data sets more human
- Correctness of implementation: history-independent data sets
- When beautiful, simple, theoretically good algorithms are hard to implement: a special case of randomized rounding.

Origins: Distributed Graph Analytics

Alice and Bob (or more) independently create social graphs G_A and G_B .

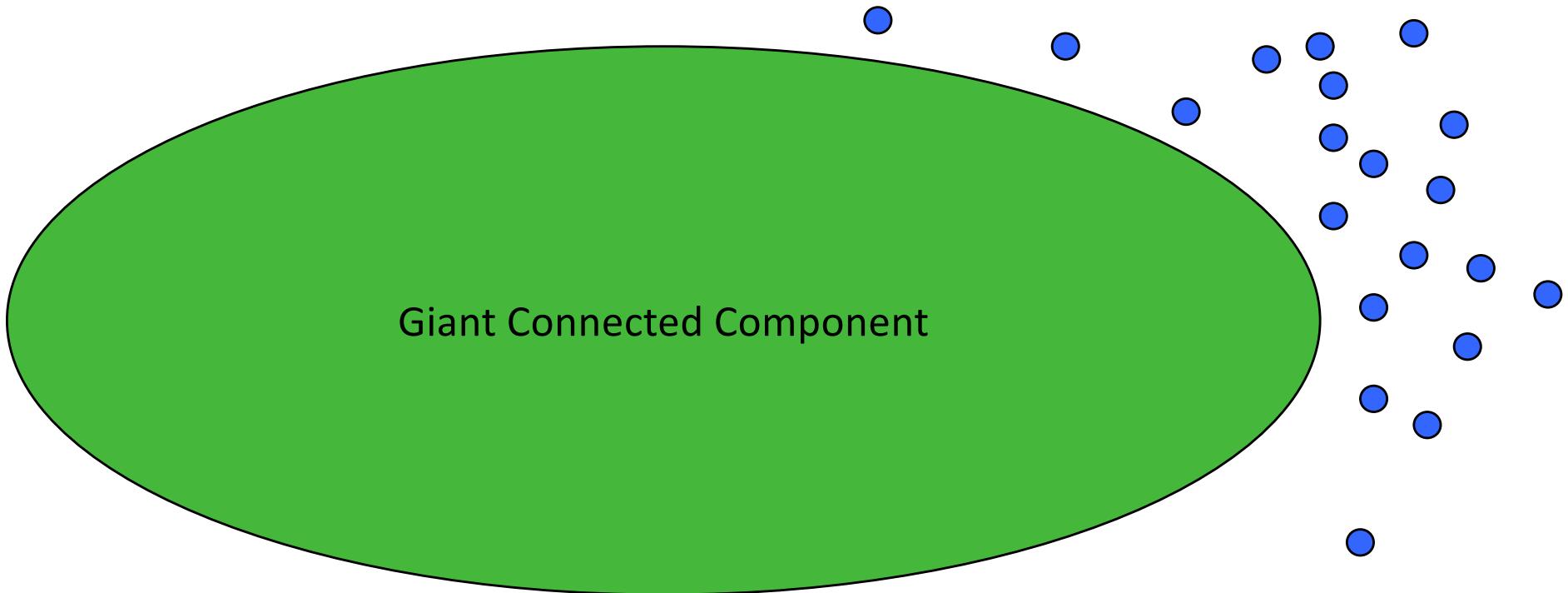
Goal: Cooperate to compute algorithms over G_A union G_B with limited sharing: $O(\log^k n)$ total communication for size n graphs, constant k

Motivation: National security: “connect the dots” for counterterrorism



Exploiting Graph Structure

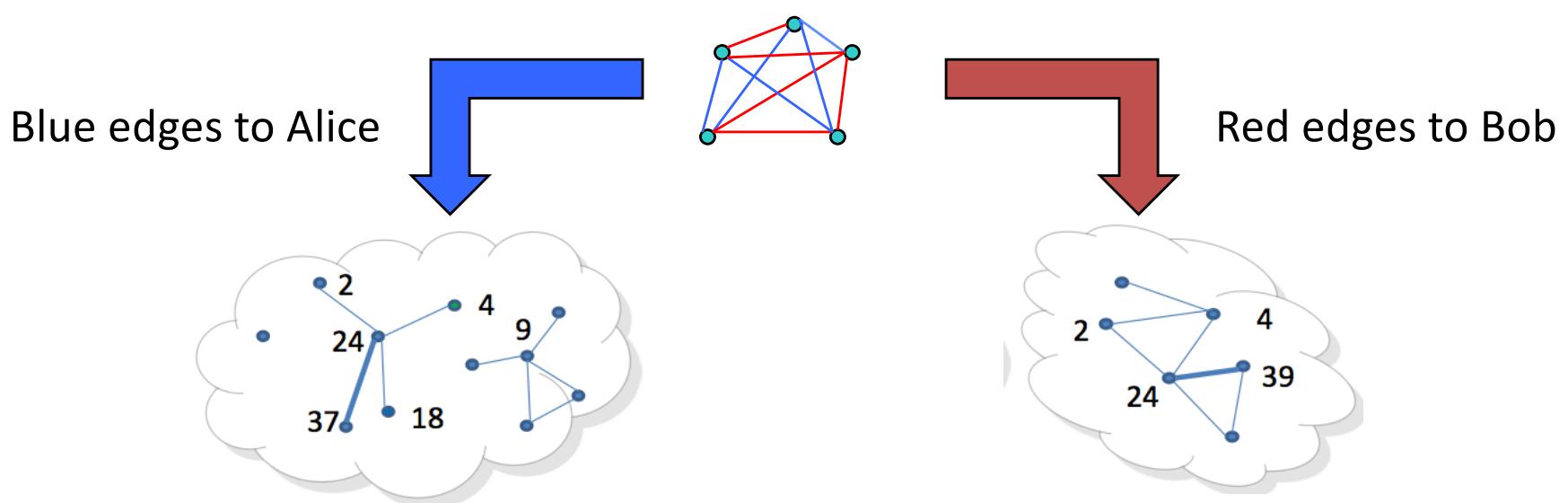
- Nodes are **people**, so **exploit structure** of social networks



- Past success:** $O(\log^2 n)$ -bit communication for s-t connectivity
 - Exploits giant component structure
 - Overcomes polynomial lower bounds for general graphs

Exploiting Social Network Structure

- Next step: planted clique (dense subgraph anomaly detection)
 - Structural conjectures based on evolutionary psychology
 - Provably correct algorithm
- Experimental validation on some real networks **failed!**



Human vs Automated

- Networks like Twitter contain a **vast amount of non-human behavior**
 - You can buy 500 followers for \$5 US
 - Economic incentives to manipulate connections
- For our intended applications, the network owners (law-enforcement agencies) will have human-only networks
 - Networks are not public where entities can sign up
 - No cleaning problem
- We have no real data from law enforcement

Some Test Network Desired Properties

- Nodes are humans
- Edges plausibly represent a social bond
 - Even better if the relationship requires time/effort
- Large size (millions/billions of nodes/edges)
- Network is reasonably complete
 - Not an ego-network

Not too many publicly available social networks have all these.

Human vs Automated

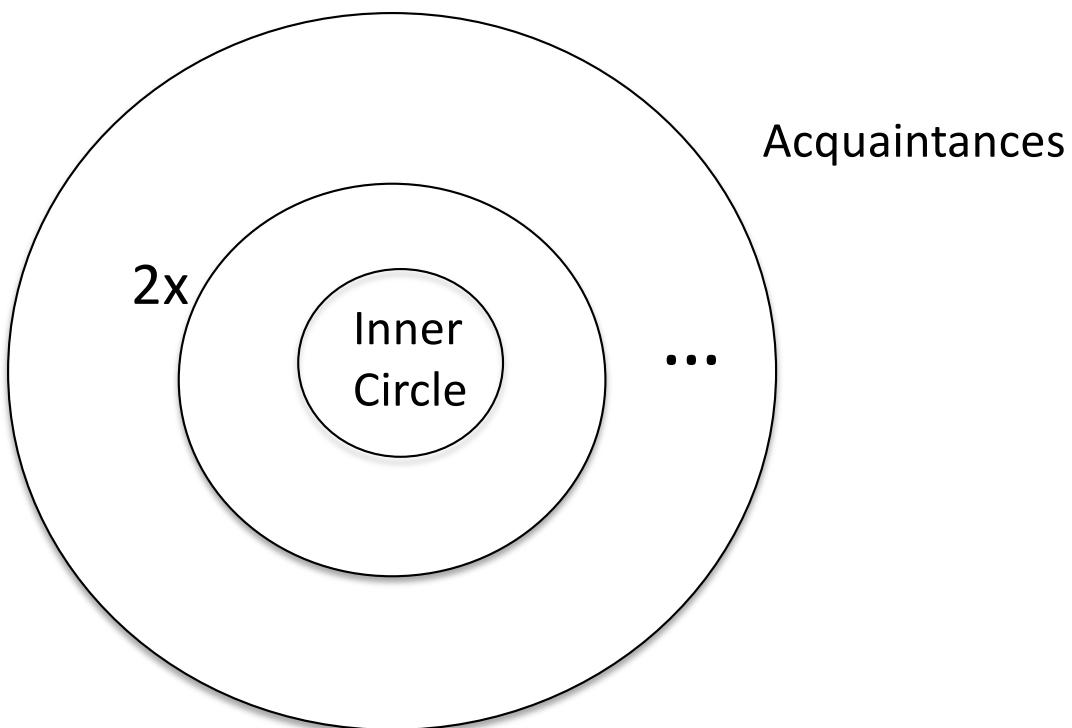
Goal: Clean (enough) non-human behavior to test our algorithms

- Limitation: we have only topology
- An idea: Real human relationships require attention
 - Attention can be divided
 - Total attention, time of day, etc, is limited
- Nodes that show too many “strong” connections may not be human.
 - This includes humans, such as celebrities, who have a group of others manage their social media accounts.
- We'll give a method, then consider
 - Is it (plausibly) correct?
 - Should we care?

Varying Strength of Ties

- People “know” about 1500 others by face/name
- Hierarchy of strength

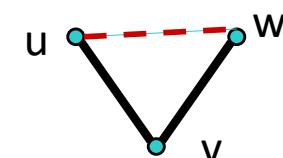
R. Dunbar, Social cognition on the internet: testing constraints on social network Size, Philosophical Transactions of the Royal Society B, Biological Sciences, 367(1599):2192-2201, 2012



Bounded number of strong human interactions even with social media (Dunbar 2012)

Triangle Significance

- Strong triadic closure (Easley, Kleinberg): two strong edges in a wedge implies (at least weak) closure.
 - Reasons: opportunity, trust, social stress
 - **Converse of strong triadic closure:** not (both edges strong) implies coincidental closures
 - experimental evidence: Kossinets, Watts 2006

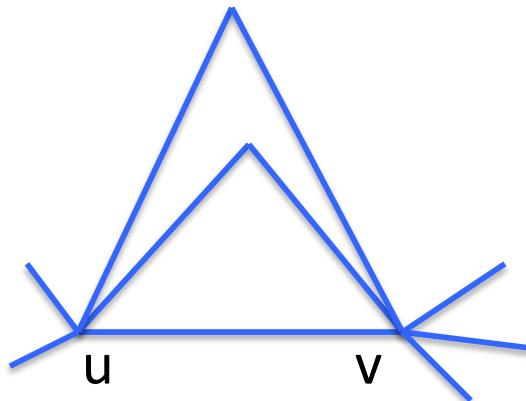


“Communities have triangles”

Edge strength

- A notion somewhat like Easley and Kleinberg 2010, and Berry et al., 2011

$$s(u, v) = \frac{2 * \# \text{ triangles on}(u, v)}{d_u + d_v - 2}$$

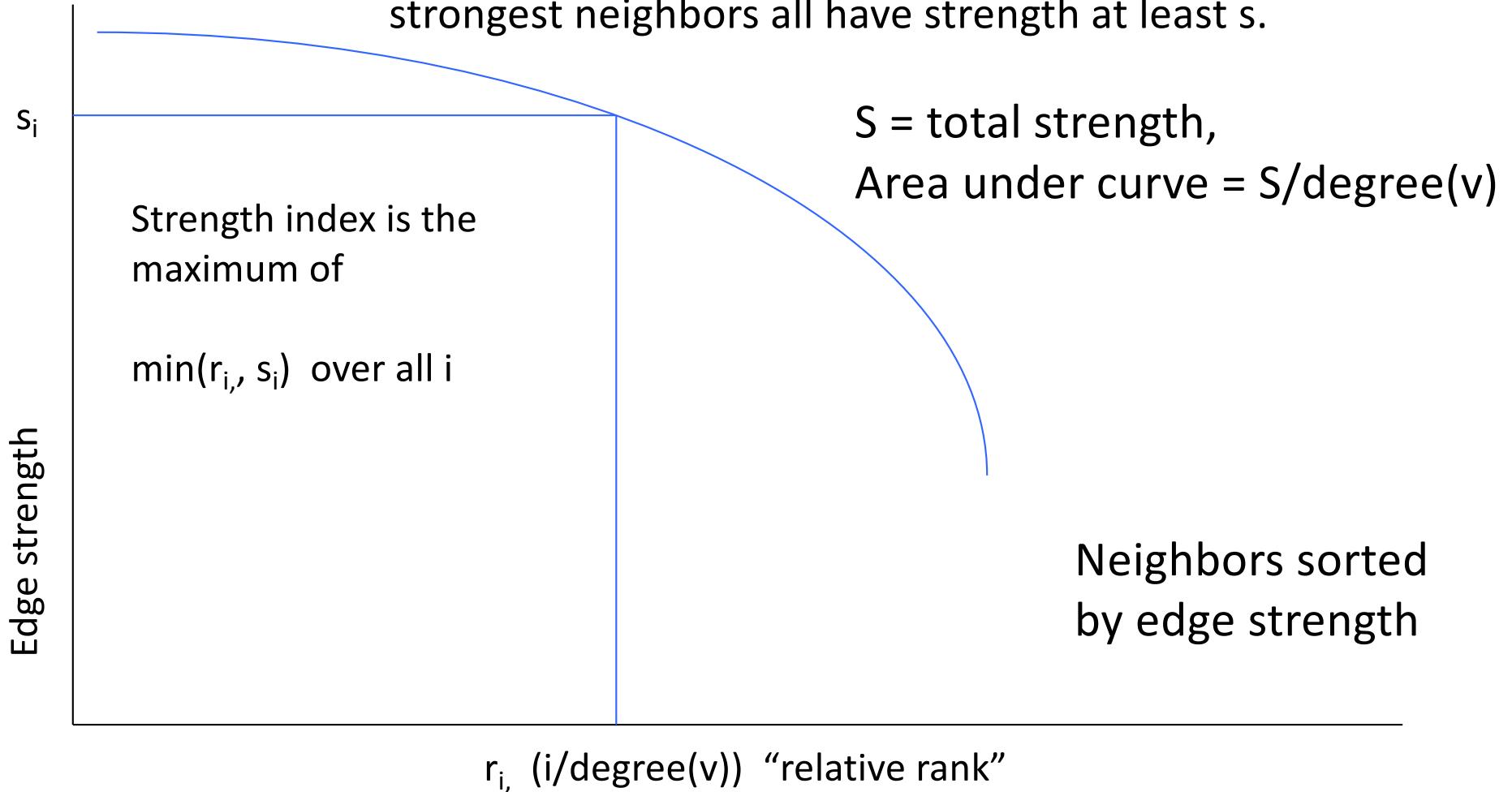


$$s(u, v) = \frac{2 * 2}{5 + 6 - 2} = \frac{4}{9}$$

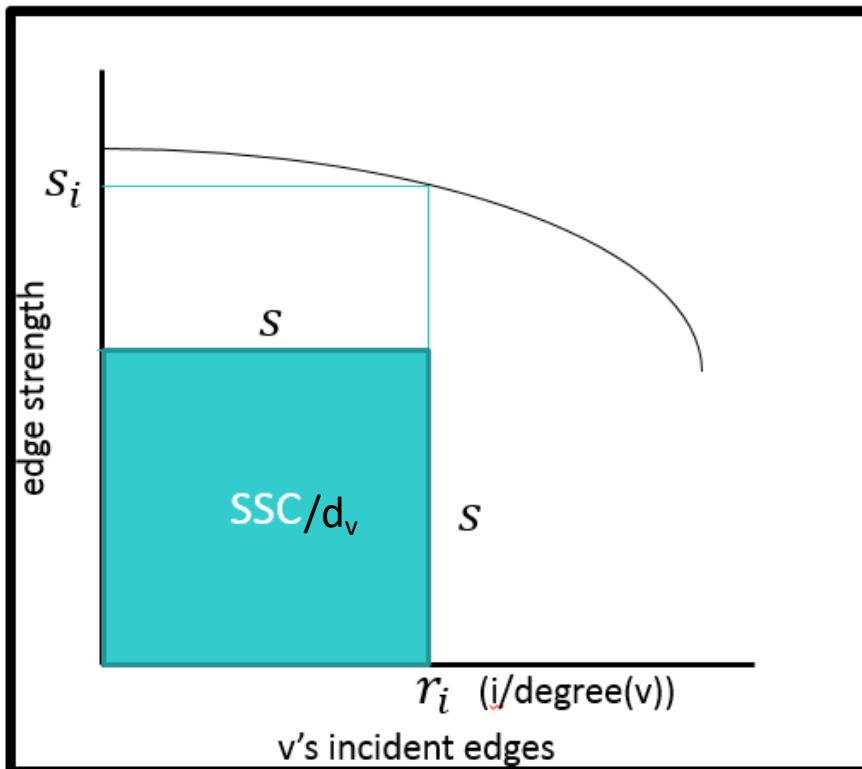
- **Assumption:** Total strength of edges on a vertex has a constant bound D_G (network-dependent)
 - Edge strength a continuum, not just strong/weak

Strength-index for a vertex

A strength index of s means that an s -fraction of the strongest neighbors all have strength at least s .



Strength-Index Property



SSC = “Symmetric strength component”

Dunbar-like constant = D ,
 S = Sum of strengths $\leq s$

Then: $D \geq S \geq s^2 * \text{degree}$

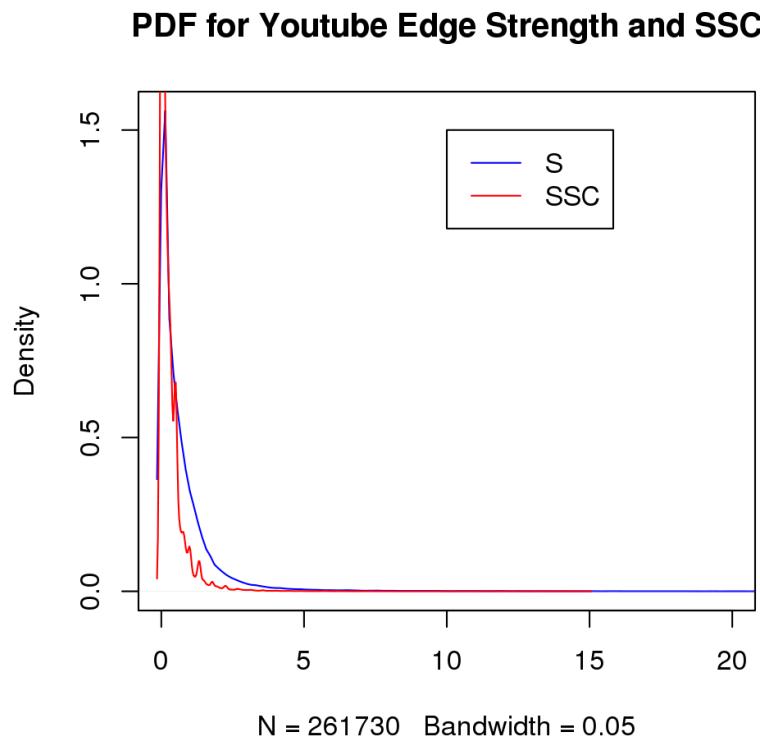
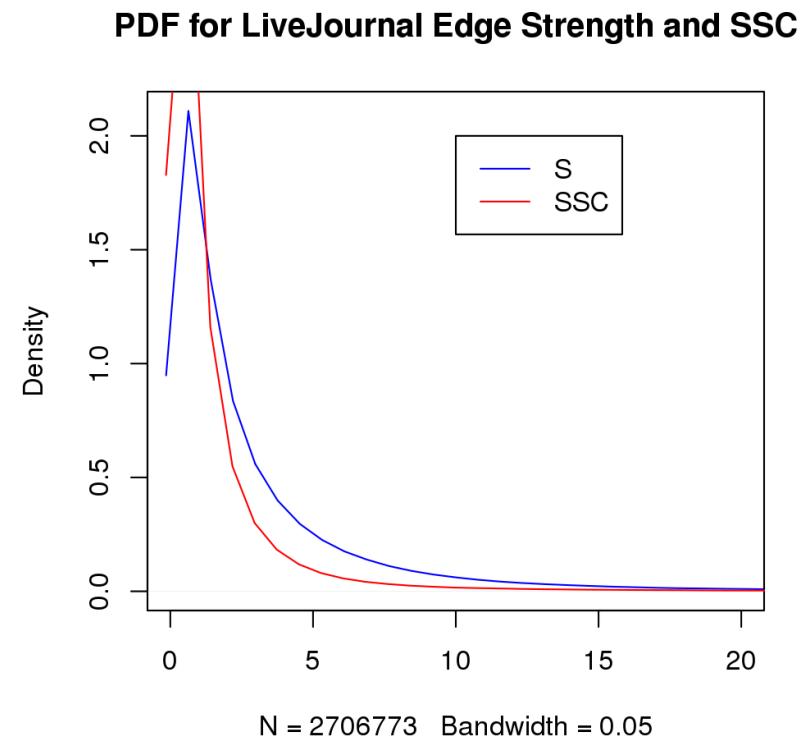
$$s \leq \sqrt{\frac{D}{d}}$$

s = s-index
 D = Dunbar-like constant
 d = degree
 $SSC = s^2 d_v$

Most important edges
Free from tail effects

SSC and total strength distributions

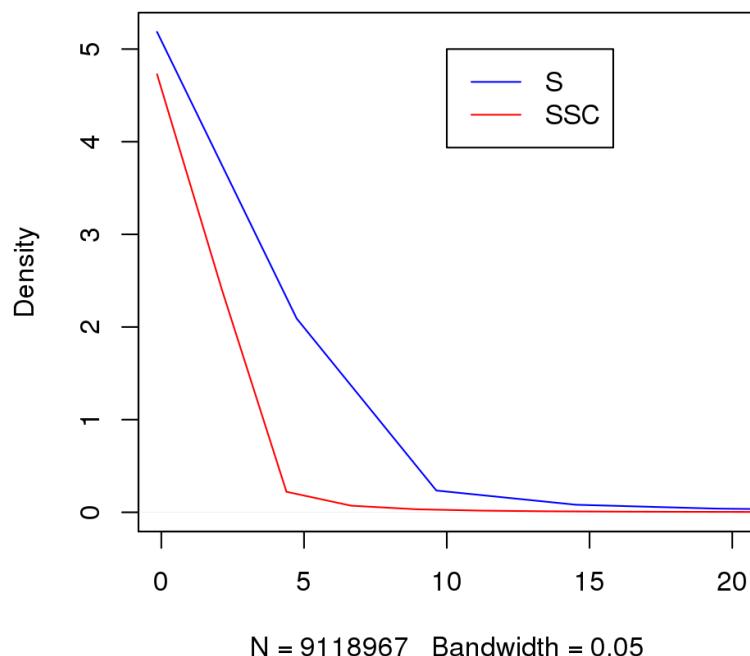
- SSC and total strength S seem to be (mostly) bounded by constant
- SSC seems to (mostly) be a good approximation to S



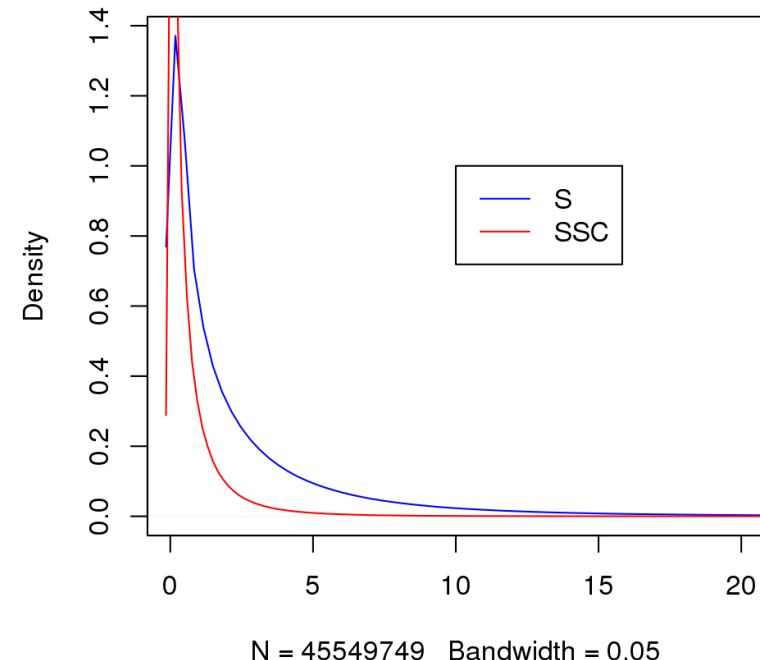
More Distributions

- Larger social networks

PDF for Twitter Edge Strength and SSC



PDF for Friendster Edge Strength and SSC



Cleaning Non-Human Nodes

- We assume $s \leq \sqrt{\frac{D}{d}}$ for all/most vertices
- Constant D will depend on the network
- Remove edges between nodes with s above this curve
- Selecting D
 - Compute average SSC average μ and standard deviation σ
 - $D = \mu + k\sigma$ for user-defined parameter k
- We use $k=3$
- We use only reciprocated edges

Why not remove whole vertex?

- Sometimes small number of vertices have a large fraction of edges
- Conservative

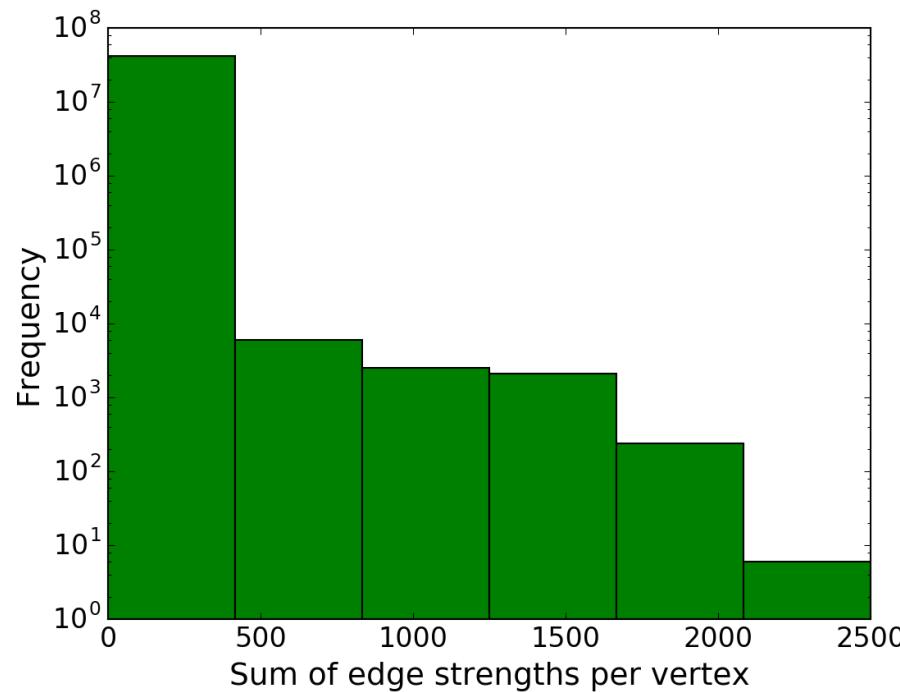
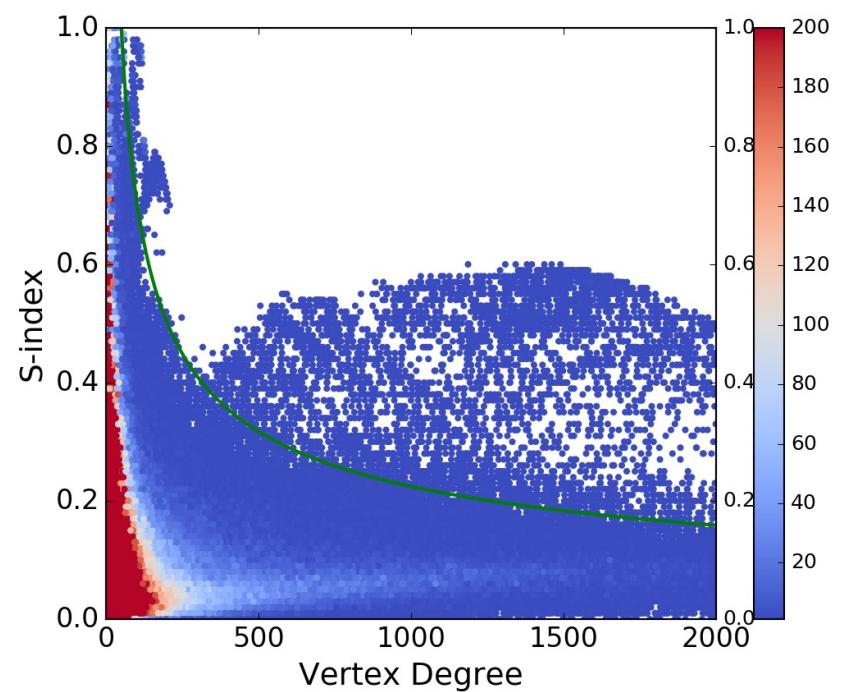
Network	percentage of vertices removed	percentage of edges removed
com-youtube($12\bar{\sigma}$)	0.01%	2.5%
com-youtube($6\bar{\sigma}$)	0.11%	10.76%
com-youtube($3\bar{\sigma}$)	1.18%	32%
ljournal-2008($12\bar{\sigma}$)	0.05%	1.57%
ljournal-2008($6\bar{\sigma}$)	0.14%	3.13%
ljournal-2008($3\bar{\sigma}$)	0.36%	5.38%
twitter-2010($12\bar{\sigma}$)	0.02%	26.4%
twitter-2010($6\bar{\sigma}$)	0.046%	34.3%
twitter-2010($3\bar{\sigma}$)	0.048%	34.7%

Why not remove whole vertex?

- Twitter is one social network where we can look up accounts
- Initial validation:
 - Strange connectivity:
 - A musician from a late-night show
 - A frisbee golf company (in New Jersey?)
 - Filmchair
 - Another unrelated Canadian company
 - Etc
- Conjecture: They paid a company to manage their Twitter accounts and the company connected them all

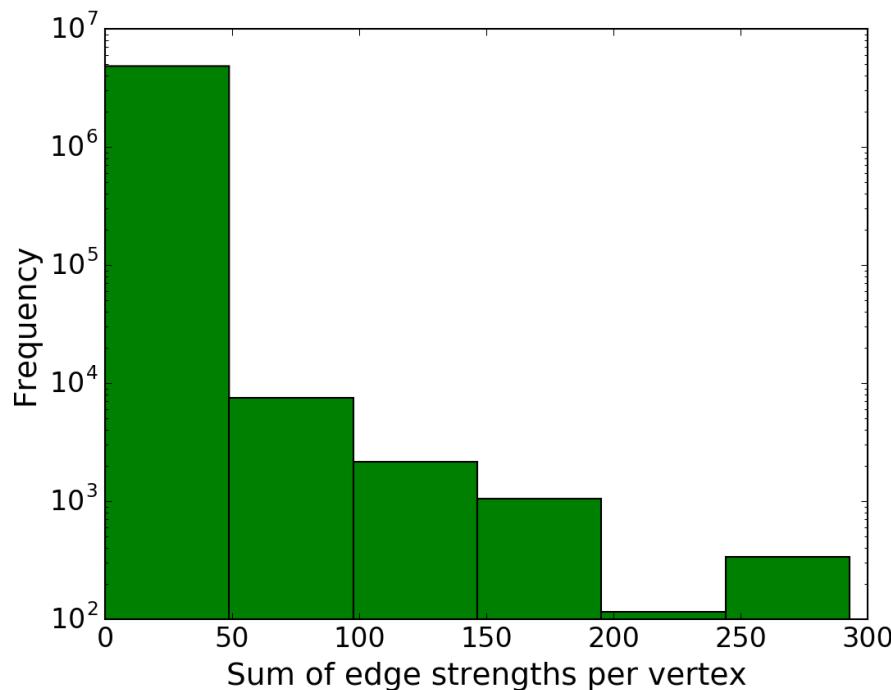
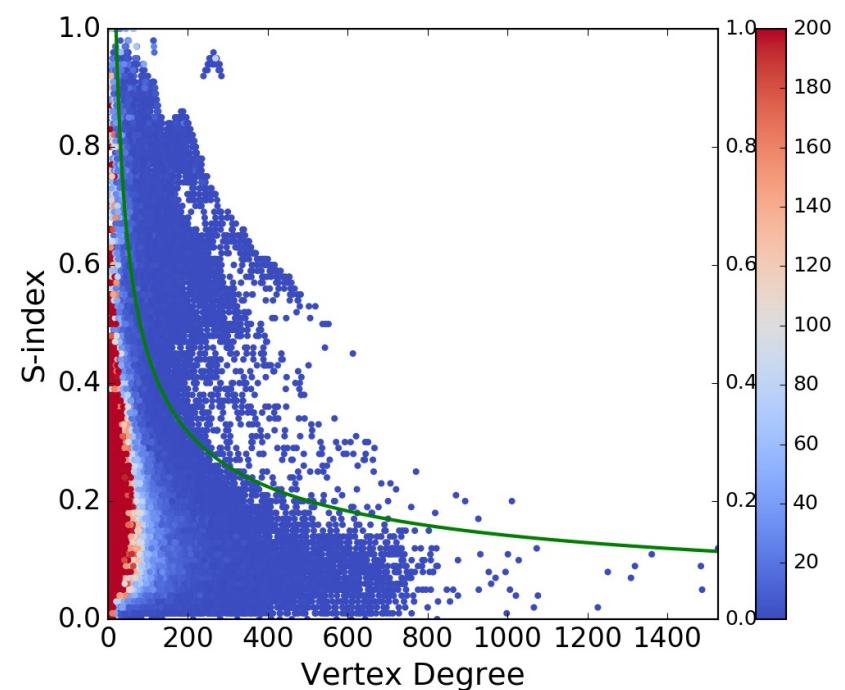
Twitter

- 41.5M nodes, 266M reciprocated edges, $D_G = 50$



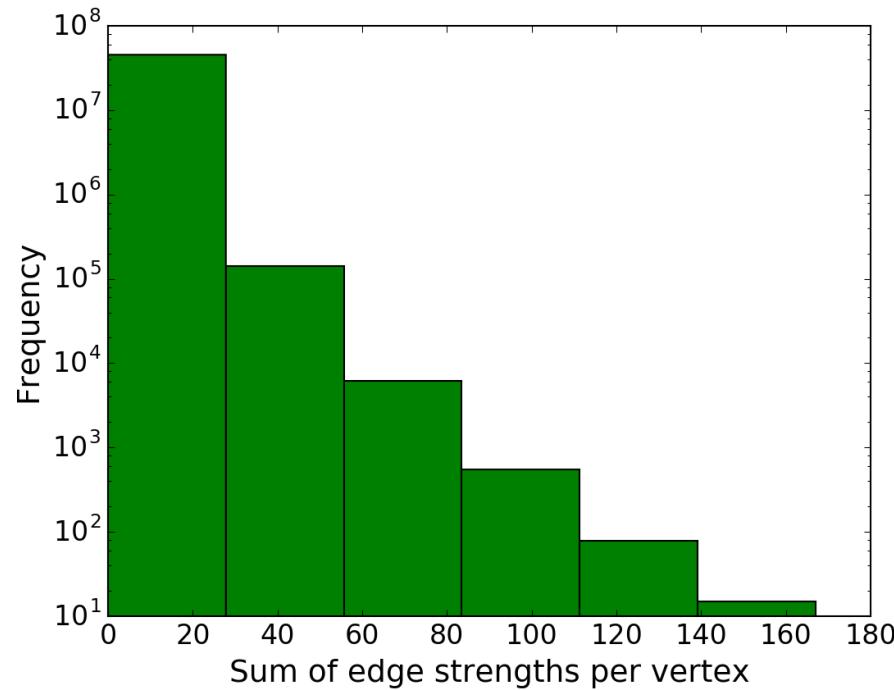
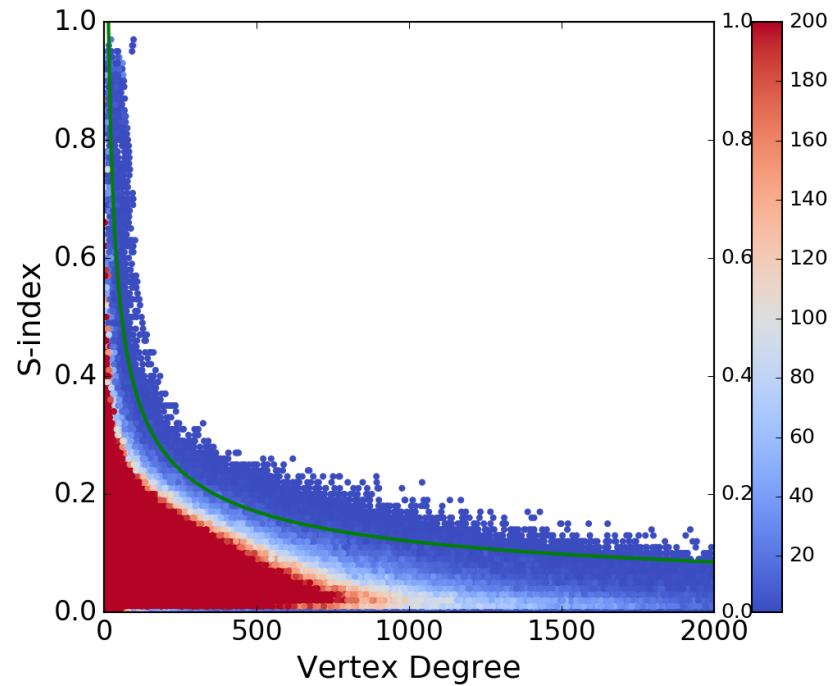
LiveJournal

- 4.8M nodes, 25.6M reciprocated edges, $D_G=20$



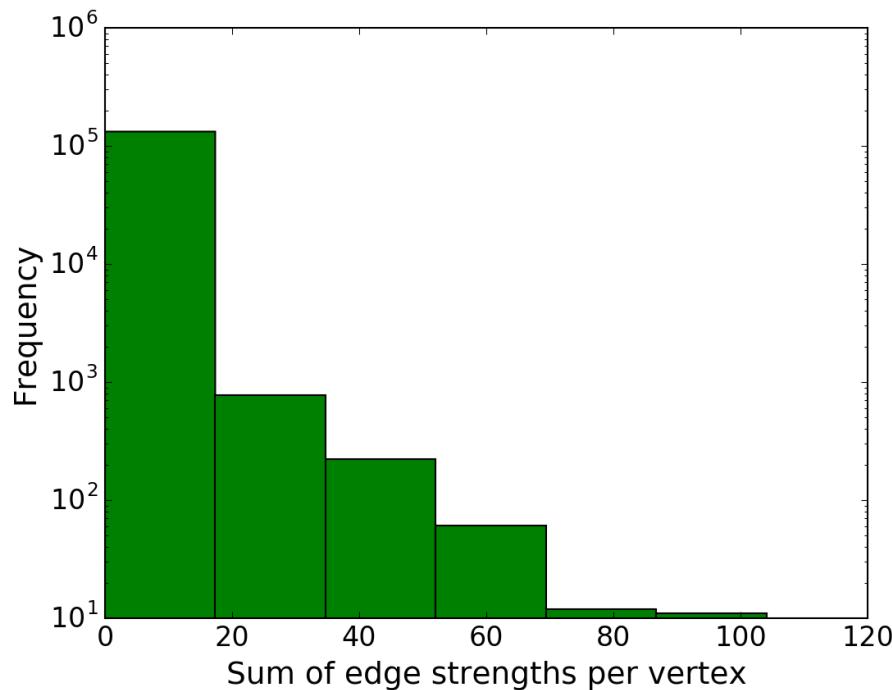
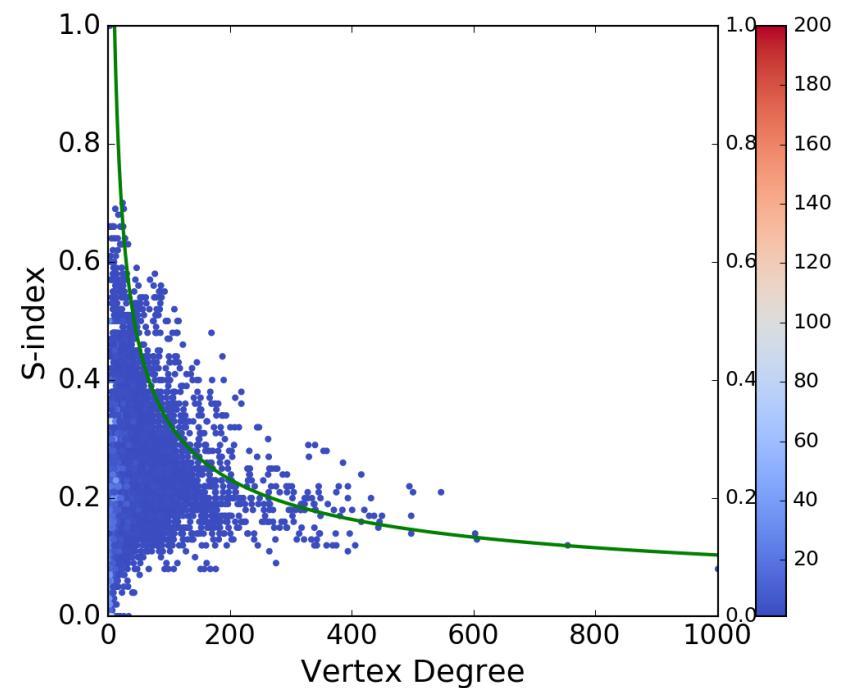
Friendster

- 65.6M nodes, 1.8B reciprocated edges, $D_G=14$



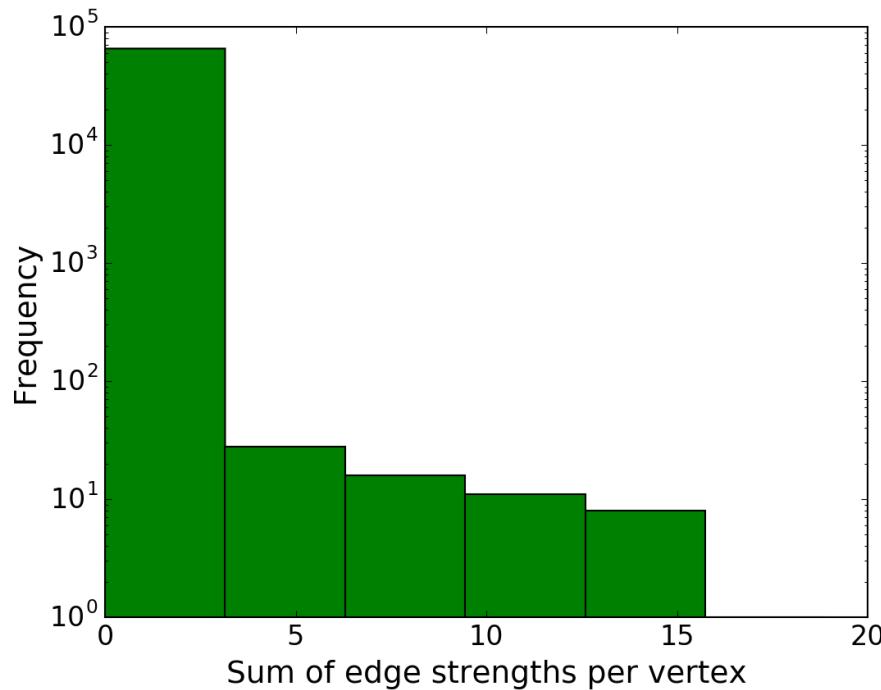
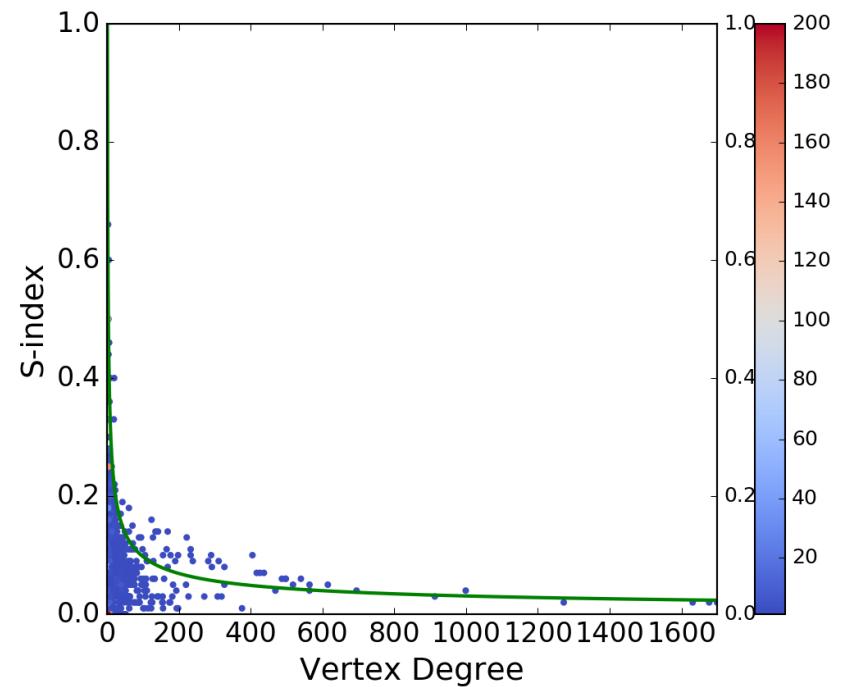
Ca-AstroPh (citation)

- 133K nodes, 198 reciprocated edges, $D_G=11$



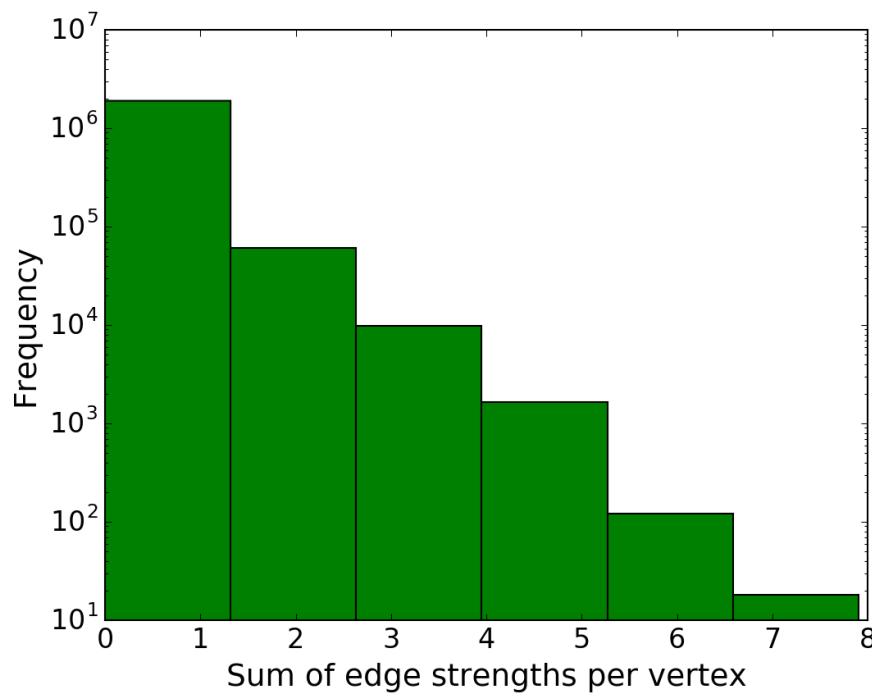
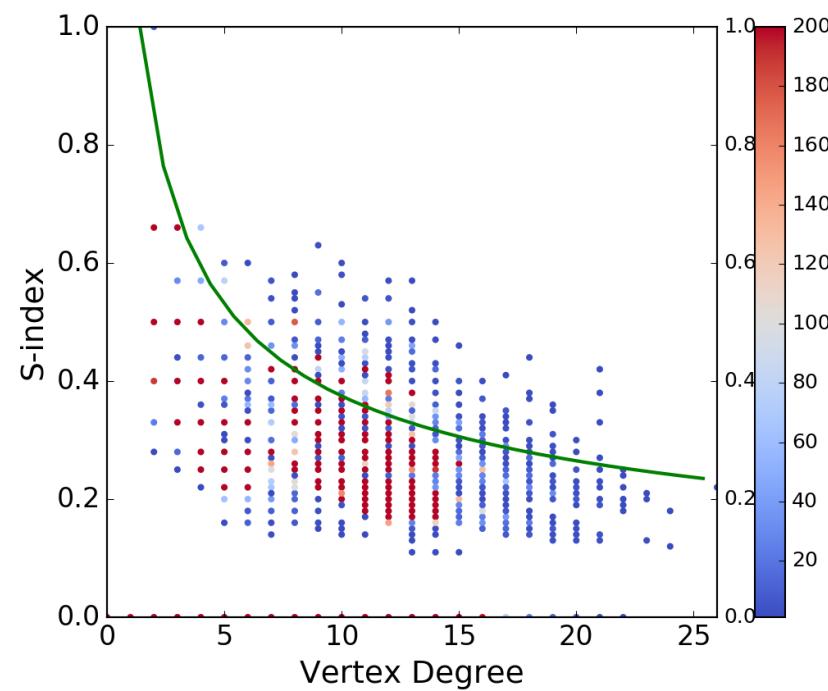
Caida (web)

- 26K nodes, 53K reciprocated edges, $DG=0.9$



CA-RoadNet

- 2M nodes, 5.5M reciprocated edges, $D_G=1.3$

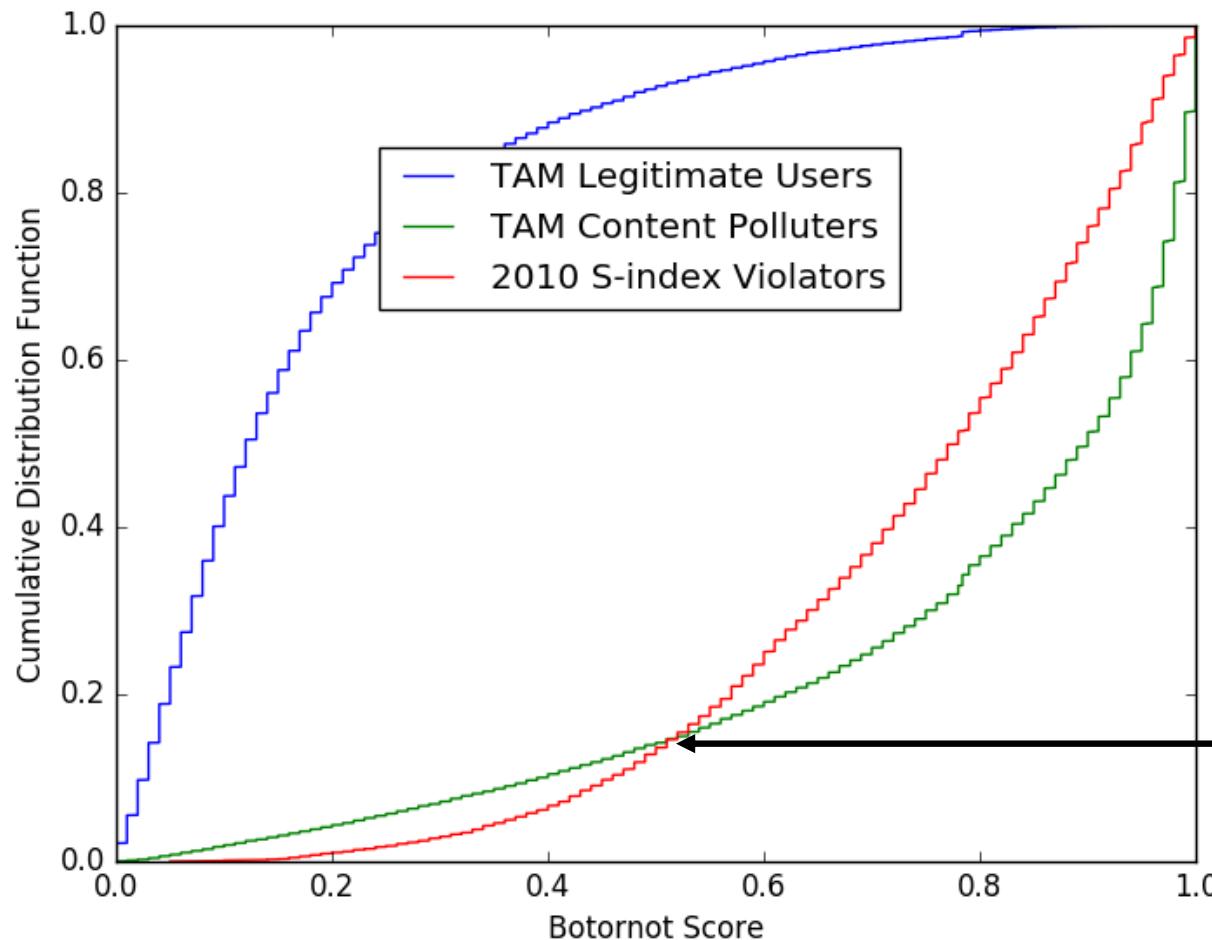


Validation 1

- Twitter has an API to look up users
 - $O(10)$ account look ups/min
 - $O(1)$ follower list look up/min
- First test “Bot-ness”
- Compare to
 - Texas A&M hand-labeled set of Twitter nodes (30K)
 - Human inspection
 - BotOrNot Scores (<https://truthty.indiana.edu/botornot/>)
 - BotOrNot uses account features
 - Our s-index violators came only from topology

Question: do our strength-index violators and the Texas A&M (TAM) Ground truth nodes have similar Botornot score distributions?

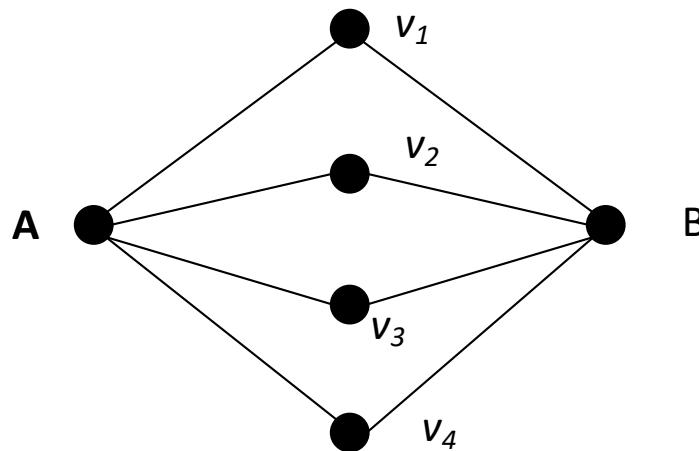
Bot-ness Results



~90% have
BotOrNot
Scores > 0.5

Validation 2: Order of Following

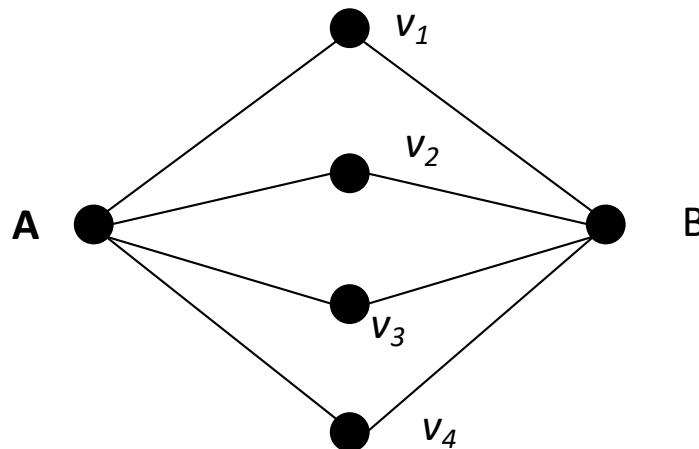
- An automated system might add followers in a given order
 - Adding whole botnet
 - Adding a new paying customer (add them to end of list)
- Consider **order of adding shared neighbors**



A's order v_1, v_2, v_3, v_4
B's order v_2, v_3, v_1, v_4

Validation 2: Order of Following

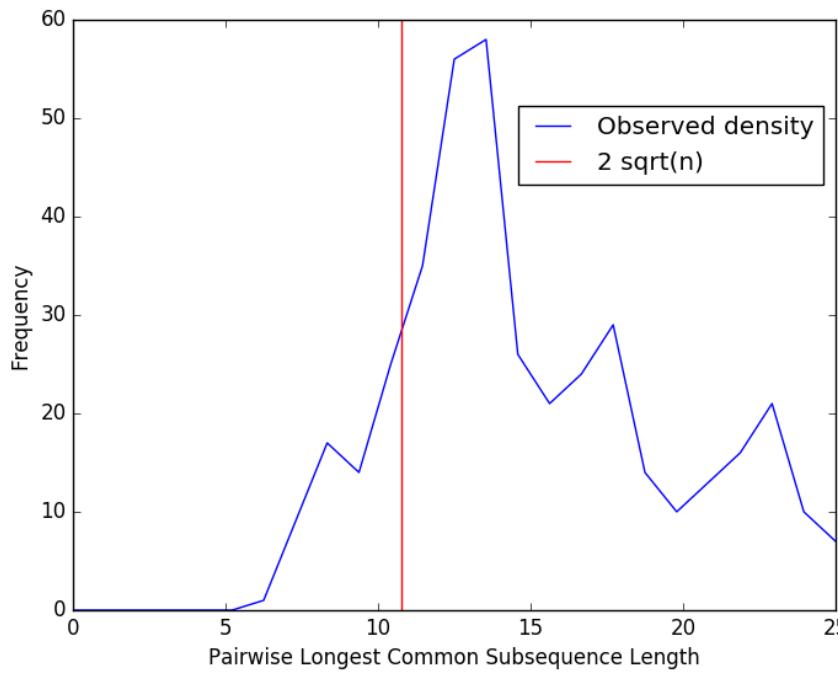
- Consider order of adding shared neighbors
- Longest common subsequence of 2 length- n sequences
 - If added intentionally in order (automated) expect $\Theta(n)$
 - Random is $2\sqrt{n}$
 - Expect human to be more random



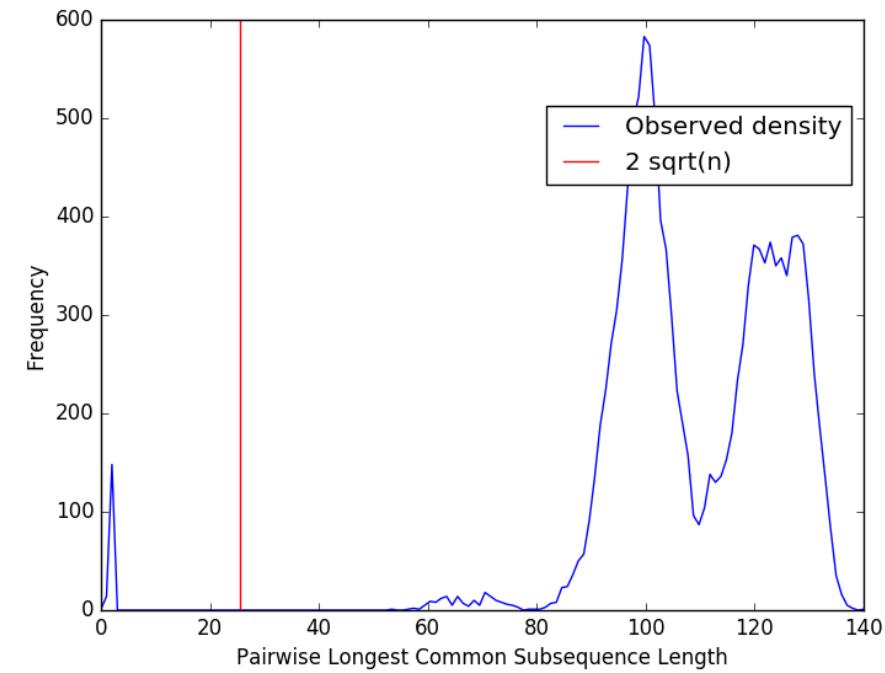
A's order v_1, v_2, v_3, v_4
B's order v_2, v_3, v_1, v_4
LCS is v_2, v_3, v_4

Order-of-Following Results

- Violators: largest clique 318 (in 2010), now 164
- Largest clique in non-violators was a small weather bot network
- Second-largest clique in non-violators 53 (in 2010), now 29



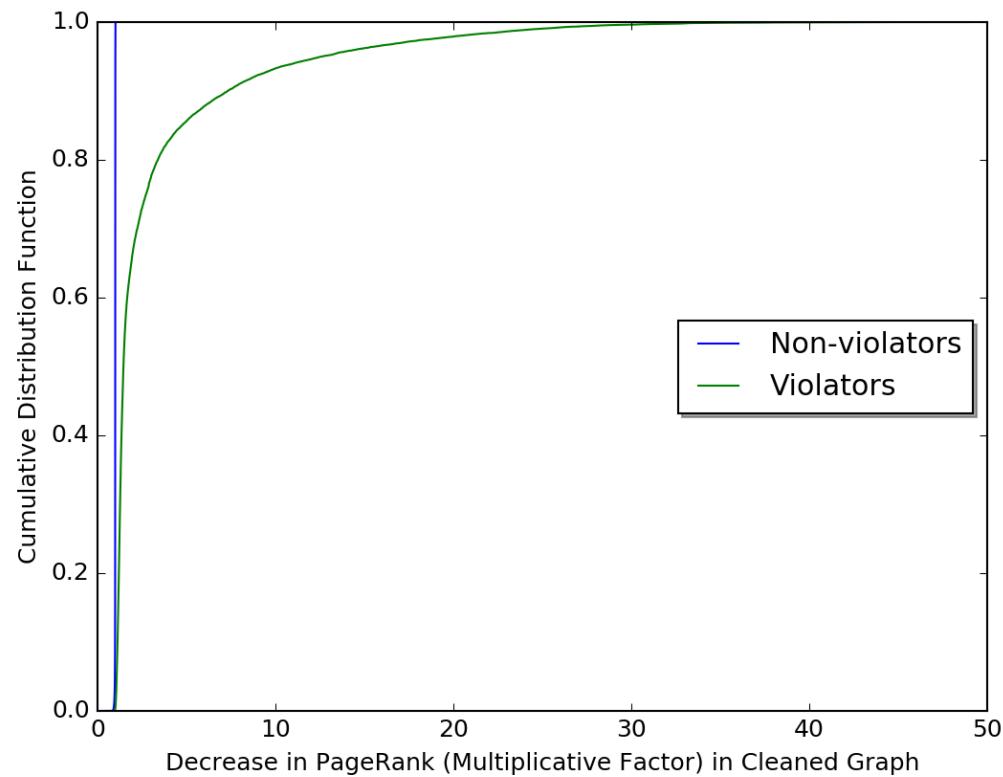
Non-violators



Violators

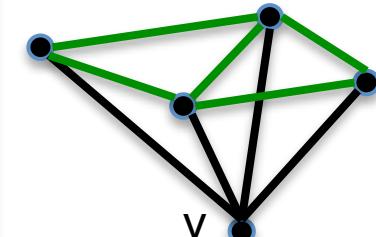
Consequences: PageRank

- People with access to real content on more social networks will need to further validate
- Does the cleaning matter?
- Yes for an algorithm like PageRank
 - 45% of violators have 2x decrease in cleaned graph
 - 16% decrease 5x



Clustering Coefficients

Fraction of wedges that close to a triangle



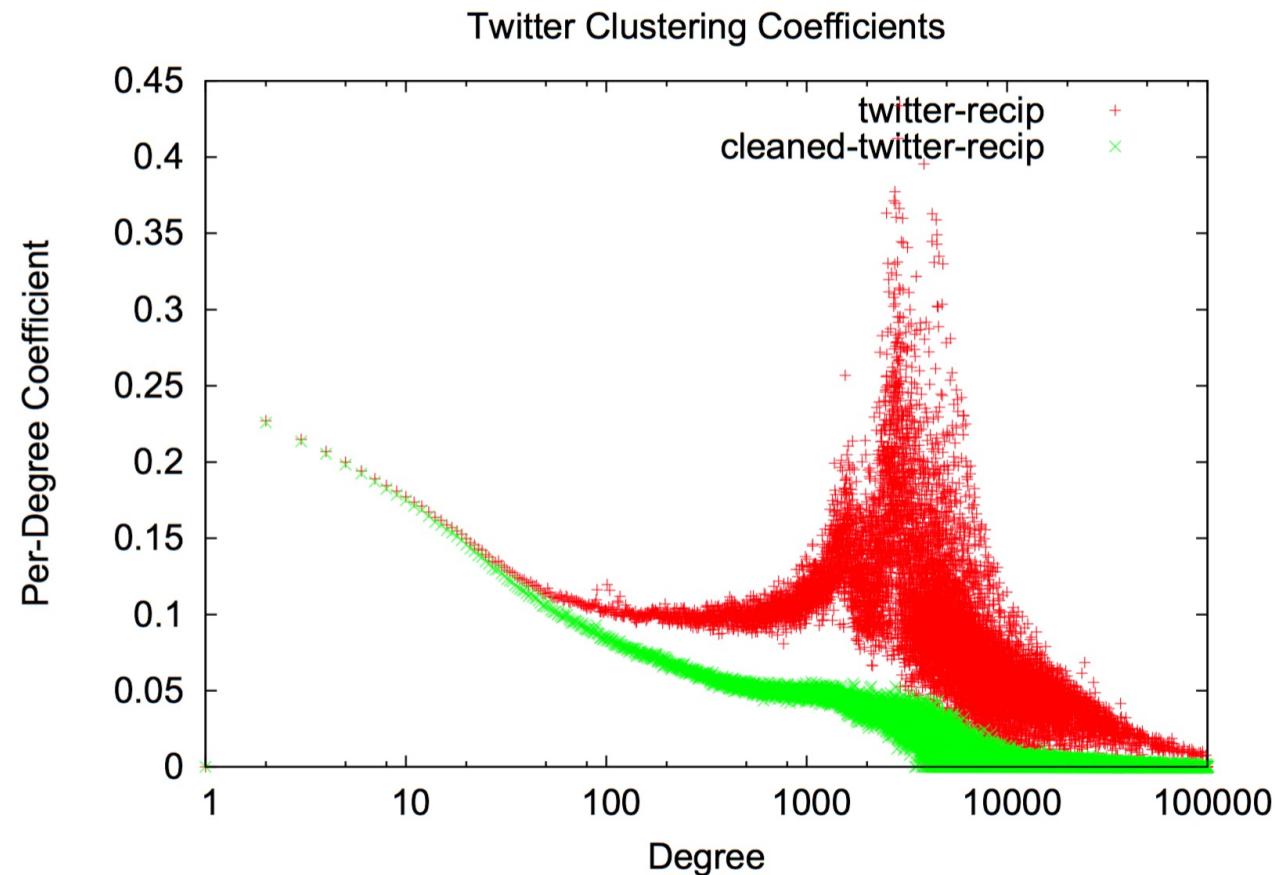
Clustering coefficient (CC) of v =
Fraction of related neighbors.

$$\frac{\# \text{ triangles on } v}{\# \text{ wedges on } v} = \frac{5}{6}$$

$c_{\text{avg}}(d)$ = Average CC over nodes of degree d .
Global CC = average over all nodes v

Consequences: Clustering Coefficients

- Clustering coefficients are a structural property
- The graph generator BTER uses only degree distribution and per-degree clustering coefficients



CHANTS Website

- CHANTS = Cleaner Human-Amplified Network Test Set
- **Code** to running cleaning on your own social network data set
- **“Cleaned” versions of public data sets:**
 - Twitter 2010
 - YouTube
 - LiveJournal
 - Pokec
 - Friendster
 - Orkut

<https://www.cs.unm.edu/~socnet/CHANTS.html>

Social-Networks Summary

- A possible tool for cleaning **some** non-human behavior from some social networks.
 - conservative
- Social network structure enables more efficient algorithms in theory and practice, but requires human-only networks.
- This seems to be different from bot detection methods
 - Bad edges on non-bot nodes
- We won't be able to validate the other networks
- Theory implications are wide open

J. Berry, C. A. Phillips, and J. Saia, "Making Social Networks More Human: a Topological Approach," Statistical Analysis and Data Mining The ASA Data Science Journal, Vol. 12, No. 6, pp. 449-464, December, 2019.

Story 2: Security Challenge

- **Systems sacrifice security for I/O efficiency**
 - Example: Microsoft Word “fast save” appends edit log
 - Adversaries can recover old versions of documents

- **Hide the history of a data structure on disk**
 - Order of arrival
 - No idea if there has ever been a deletion

History-Independent Data Structures

- An added level of protection for data on disk
- An adversary who acquires the disk and examines memory cannot determine anything more than API would give
- If the adversary can examine the disk cannot determine:
 - Order elements arrived
 - If any data has been deleted
- Order information can reveal sources, policy, etc.
- One potential motivation: drones

From: Wikipedia

History Independence (HI)

- **Strong** history independence gives guarantees if the adversary sees the data representation multiple times
 - Requires a canonical representation
 - Expensive
 - Provably cannot achieve amortized $o(N)$ operation cost whp
- **Weak** history independence protects against a one-time theft
 - Representation is drawn uniformly at random from a given large structured set
 - Can be much more efficient
 - The right model if a disk can only be stolen once

Hint at some details

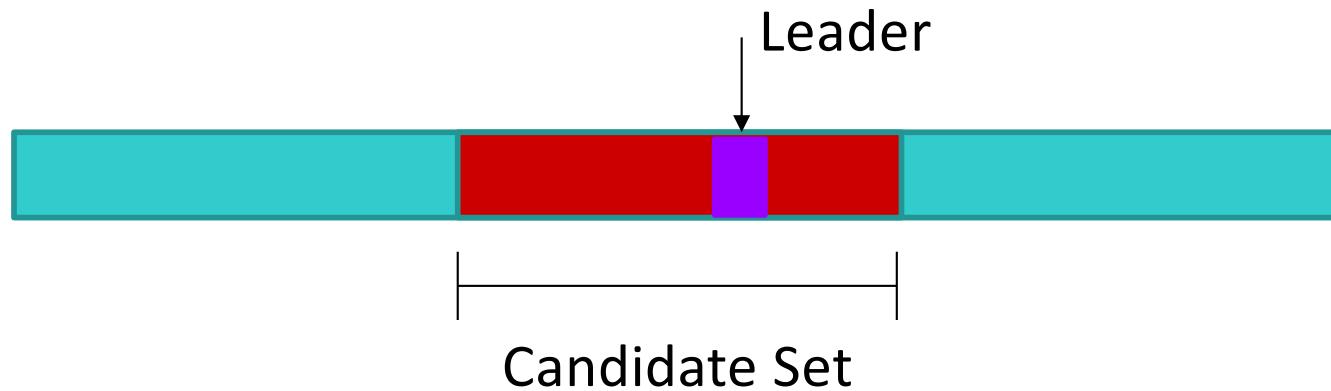
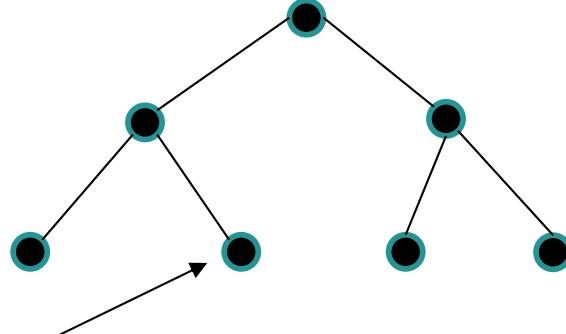
- **Oblivious adversary** for analysis: sets order of operations, but does not know the random tosses of the data structure
- Search tree
- All the elements are in the leaves (many per leaf) on disk
- Randomization involves how many elements in each leaf

To start, size/storage allocation

- For N elements, allocate array size $|A|$ from N to $2N-1$ uniformly
- For any insert/delete reallocate with probability $\Theta\left(\frac{1}{|A|}\right)$

Key ideas

Recursive stick breaking



At any point, if the adversary looks at the disk, the layout distribution corresponds to the distribution from this full rebuild process.

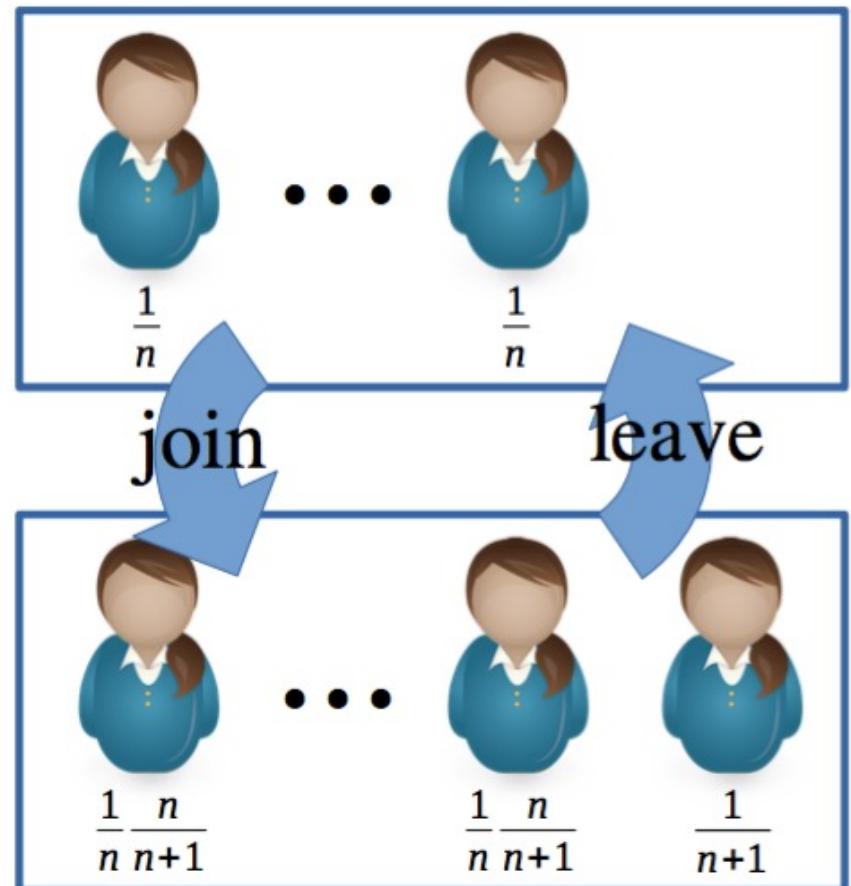
Leaves have $\log N$ elements
Always packed left

Reservoir Sampling with Joins and Leaves [Vitter '85]

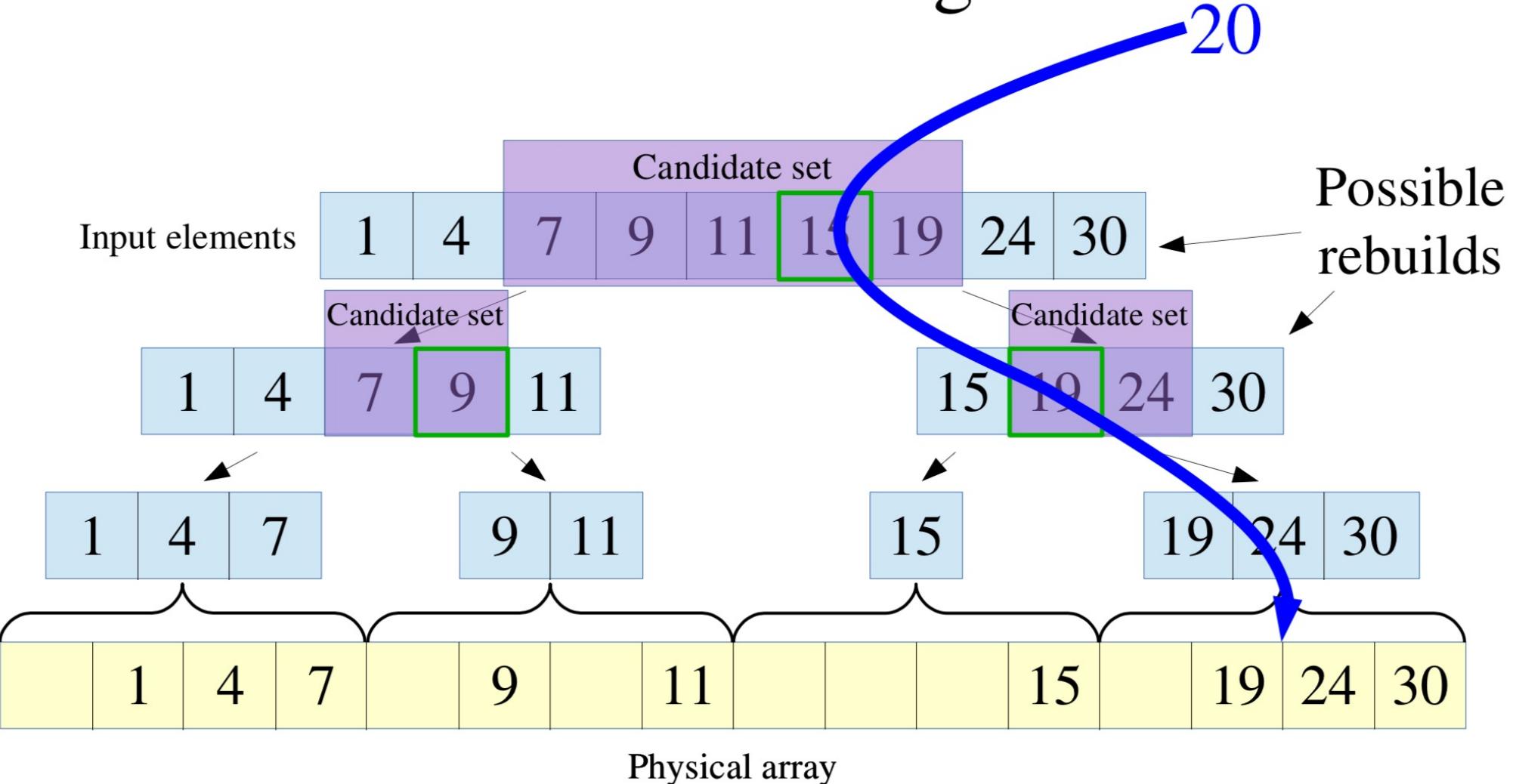
- Two goals:
 - Maintain a club leader uniformly randomly from all current club members
 - Make leader changes rare as members join and leave

1. Elect new member w/ prob $1/(n+1)$
2. Elect new leader when leader leaves

Prob[leader changes] $\approx 1/n$



HI PMA: Handling Inserts

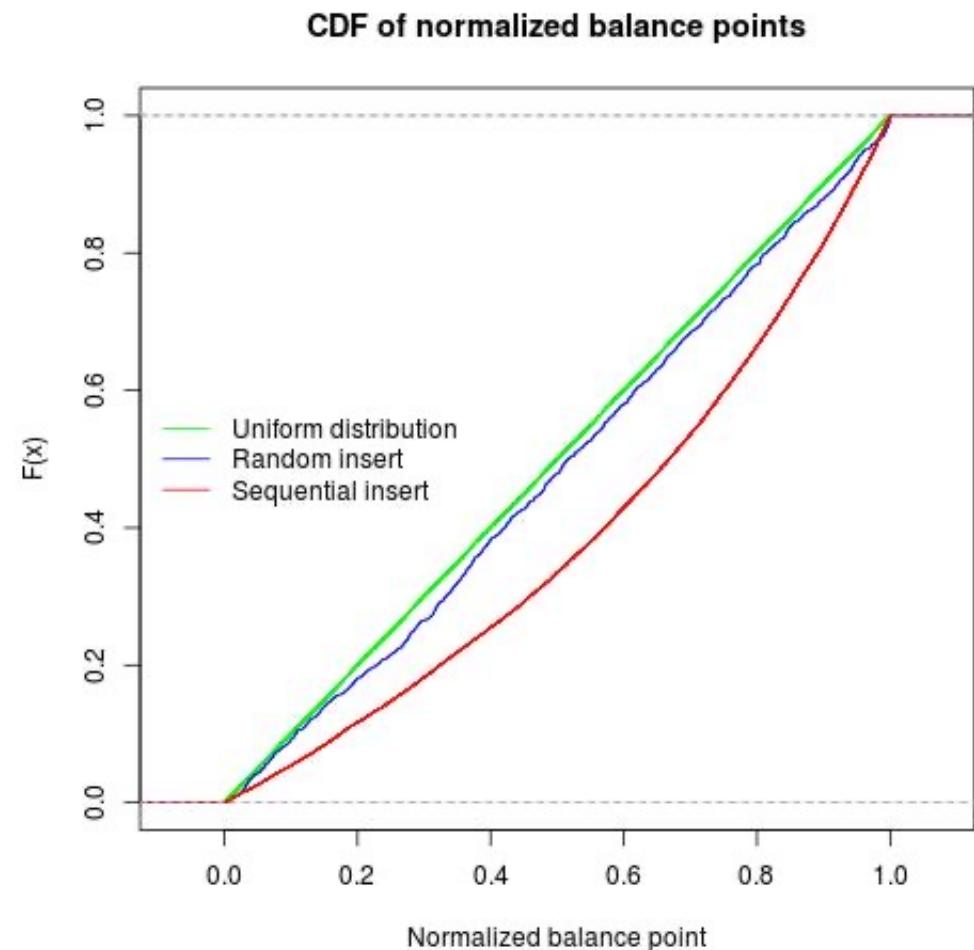


Validation

- HI data structures cost something (but only a constant factor in theory and about 7x on initial experiments)
- If there is any error in the implementation, could lose HI property
 - History independence is delicate
- How to validate an implementation?
- Easy to check the correctness of dictionary aspects
 - Verify set of keys is correct over many insertion/deletion tests
- How to test that the bit representation always drawn from the distribution of representations immediately following a clean rebuild?

First Simple Test

- Balance value at the root
 - Just compare for equal allocation sizes
 - Rank of balance point within candidate set should be uniform
 - Insert keys 1 to 100,000 from empty start (in some order)



The Fix

Fairly small errors
in logic or coding
can destroy the
history
independence of
the implementation
even though
dictionary
performance is
correct.

```
# Old logic:  
Insert(e)  
...  
  If e in Candidate set  
    If (lottery for e)  
      e is new balance element and return  
  
    If current balance knocked out  
      Pick new balance & return.  
  
# New working logic  
Insert(e)  
...  
  If current balance knocked out  
    Pick new balance & return.  
  
  If e in Candidate set  
    If (lottery for e)  
      e is new balance & return
```


More General Validation

PMA Layout distributions from 3 procedures:

X distribution: Build a PMA on set S from scratch.

Y distribution:

- 1) Pick an arbitrary element $y \in S$,
- 2) Build an HIPMA from scratch on $S - \{y\}$,
- 3) Insert y into the PMA.

Z distribution:

- 1) Pick an arbitrary element z not in S
- 2) build an HI PMA from scratch on $S \cup \{z\}$
- 3) delete z from the HI PMA.

If insertion and deletion are implemented correctly, then all three distributions X , Y , and Z should be identical.

More General Validation

X = Build S . Y = insertion to S . Z = deletion to S

If insertion and deletion are implemented correctly, then all three distributions X , Y , and Z should be identical.

Kullback-Leibler Divergence (like testing for a fair die)

$$D_{\text{KL}}(P \parallel Q) = \sum_{x \in \mathcal{X}} P(x) \log\left(\frac{P(x)}{Q(x)}\right)$$

- Smallest size non-trivial data structure
- Trials in parallel
- Can use computed probabilities for X

History-Independence Summary

- Can have weak history independence at no asymptotic cost

Open research questions:

- Are there clever statistically rigorous tests that are tractable?
- Other Applications?

Michael A. Bender, Jonathan W. Berry, Rob Johnson, Thomas M. Kroeger, Samuel McCauley, Cynthia A. Phillips, Bertrand Simon, Shikha Singh, and David Zage. Anti- persistence on persistent storage: History-independent sparse tables and dictionaries. In *Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems*, PODS '16, pages 289–302, New York, NY, USA, 2016. ACM.

Story 3: Constrained Randomized Rounding

- k-of-N selection: Given N variables with $0 \leq x_i \leq 1$ and
$$\sum_i x_i = k$$
- Select k of the x_i such that probability of selecting variable i is reasonably related to x_i .
- Motivation: linear programming relaxation of integer program
- In multiple applications, this selection is main (only) decision
 - Sensor placement (e.g. in water networks)
 - Mobile sink scheduling for wireless networks
 - Enforcing node degree in graph generation

Rounding with One Cardinality Constraint

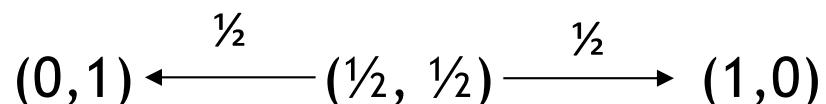
- Doerr (2004), motivated by Srinivasen (2001)
- Finds a randomized rounding y_i such that:

$$\Pr(y_i = 1) = x_i$$

$$\sum_i y_i = k \quad (\text{Respects cardinality constraint})$$

Simple (base) Case

- All $x_i \in \{0, 1/2, 1\}$
- Let X be the set of x_i with value $1/2$.
- $|X|$ is even because $\sum_i x_i = k$ and k is integer.
- Pair elements of X : (x_i, x_j)
- Set $(y_i, y_j) = (1,0)$ or $(0,1)$, each with probability $1/2$.



General Case

- Do base case for lowest-order bit r (most to right of binary point)

$$(x_i - 2^{-r}, x_j + 2^{-r}) \xleftarrow{\frac{1}{2}} (x_i, x_j) \xrightarrow{\frac{1}{2}} (x_i + 2^{-r}, x_j - 2^{-r})$$

- After this operation, rightmost bit in place $r-1$
- Iterate to compute y in $O(Nr)$ time, where N is the number of x_i and r is the initial rightmost bit.
- Numerical issue: In (floating point) practice, $\sum_i x_i \approx k$ not integer.
- Even going to 1000 bits doesn't necessarily fix this (and slow)
- Open: Get this to work in practice. Can we efficiently convert to binary representation?

Thank you to my Collaborators

- Jon Berry (Sandia National Laboratories)
- Michael Bender (Stony Brook University)
- Rob Johnson (VMWare Research)
- Justin Jacobs (Sandia National Laboratories)
- Thomas Kroeger (Sandia National Laboratories)
- Samuel McCauley (Williams College)
- Jared Saia (University of New Mexico)
- Bertrand Simon (Universität Bremen)
- Shikha Singh (William College)
- David Zage (Intel)

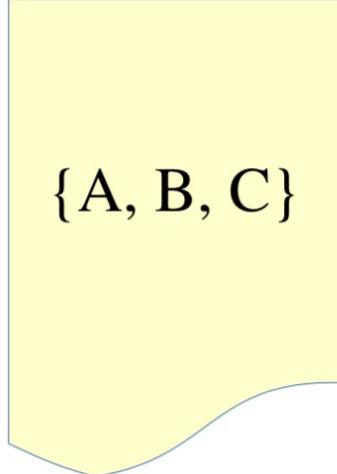
Final Comments

- Not all beautiful, elegant, simple algorithms work well, as is, in practice.
- Find clever examples and methods to test the correctness of an implementation before testing performance (even though you really, really want to test performance because that deadline is looming).
- Try out the CHANTS data set.
- Special properties of national-security applications also lead to interesting theory problems (new structure/constraints, with motivation).

Back up Slides

History-Independent Data Structures [Naor & Teague '01]

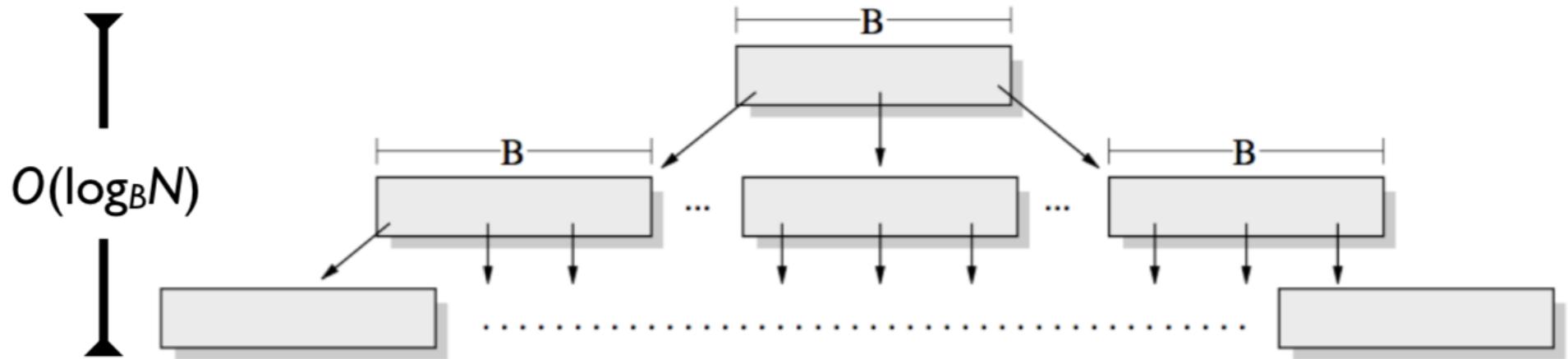
[Blelloch & Golovin '07] [Buchbinder & Petrank '03] [Bajaj, Chakrabati, Sion '15] [Bajaj & Sion '13] [Molnar, Kohno, Sastry, Wagner '06] [Moran, Naor, Segev '07] [Naor, Segev, Wieder '08] [Roche, Aviv, Choi '15] [Tzouramanis '12] [Golovin '08, '09, '10]

- Bit representation reveals no additional info about past states of the data structure
- Example:Observer cannot infer sequence of operations leading to current state
 - 1.Insert A
 - 2.Insert B
 - 3.Insert C
 - 4.Insert D
 - 5.Delete D
 - 1.Insert C
 - 2.Insert B
 - 3.Insert A

History-Independent Dictionaries

- Skip lists. External memory block size B, n items
 - Insert, delete, search: $O(\log_B n)$
 - Range search with k items in range: $O(\log_B n + k/B)$ block
 - Amortized, with high probability: $1 - O\left(\frac{1}{n^c}\right)$
 - Optimal
- Previous work for HI skip lists: insert $\Theta(\log n)$
- Cache-oblivious B-trees
 - Same bounds except inserts are (optimal) $O(\frac{\log^2 n}{B} + \log_B n)$
 - $O(n)$ space
 - Experiments show small slowdown

B-trees



HI PMA: Handling Inserts

