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Abstract—At Sandia National Laboratories, QSCOUT (the
Quantum Scientific Computing Open User Testbed) is an ion-
trap based quantum computer built for the purpose of allowing
users low-level access to quantum hardware. Commands are
executed on the hardware using Jaqal (Just Another Quantum
Assembly Language), a programming language designed in-house
to support the unique capabilities of QSCOUT. In this work,
we describe a batching implementation of our custom software
that speeds the experimental run-time through the reduction of
communication and upload times. Reducing the code upload
time during experimental runs improves system performance
by mitigating the effects of drift. We demonstrate this imple-
mentation through a set of quantum chemistry experiments
using a variational quantum eigensolver (VQE). While developed
specifically for this testbed, this idea finds application across
many similar experimental platforms that seek greater hardware
control or reduced overhead.

Index Terms—quantum computation, ion traps, quantum con-
trol hardware

I. INTRODUCTION

Noisy Intermediate Scale Quantum (NISQ) computers are
currently the dominant type of quantum hardware available
to the scientific community. There are various commercially
available hardware systems [1]-[4] as well as the Depart-
ment of Energy Quantum Testbeds [5], [6] that researchers
can use to help answer questions in quantum computing,
quantum chemistry, and quantum simulation, among others.
An important piece of quantum system performance is the
classical control hardware and software, including the subtle
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interactions between these classical systems. In this work,
we discuss a specific batching modification to our software,
allowing us to upload multiple sets of circuits at once and run
through the sequence of circuits on the hardware rather than
compiling and running a single circuit at a time. This was
necessary for two reasons: 1) spatial drifts called for frequent
recalibration, thus making it unreasonable to execute code with
a longer upload time, and 2) on-chip memory buffers created
limitations for the number of circuits that could be run. We
demonstrate the batching implementation through execution
of variational quantum eigensolver (VQE) simulations to find
the ground state energy of the diatomic molecule HeH*. This
implementation results in an overall improved performance
of our quantum machine by allowing it to run more circuits
before the system requires recalibration.

In general, one of the greatest challenges with NISQ devices
is the impact of uncontrolled noise on qubit operations. This
concern increases with the number of qubits in the system.
Even small platforms can be affected by the negative impacts
of noise and drift, making them good candidates for improving
speed performance while the number of qubits remains lower.

The system used in this study is the Quantum Scientific
Computing Open User Testbed (QSCOUT) [7], which is based
on trapped ions and operated at Sandia National Laboratories.
QSCOUT s specifically designed to provide greater access
to a quantum circuit through parameterized one- and two-
qubit gates as well as lower level pulse control if desired. In
order to offer these capabilities, we developed Just Another
Quantum Assembly Language (Jaqal) [8], [9] for circuit
construction. Jaqal was designed such that users have the
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ability to customize their code based on the native built-in ion-
trap quantum gates as well as have the functionality to specify
those gates in serial or parallel sequences. Current capabilities
on QSCOUT allow for control of up to 5 qubits, with plans
of scaling to 32. Platforms like QSCOUT are the ideal system
for in-depth investigation into the nature of low-level noise
and errors and have been used to determine new directions
to increase performance in the presence of these noise levels
[10], [11].

II. SOFTWARE - JAQAL
A. Jagal

As implemented on QSCOUT, the Jaqal programming lan-
guage provides the following native operations: preparation of
all qubits in the z-basis, parameterized single-qubit rotation
gates about any axis on the equatorial plane of the Bloch
sphere, single-qubit virtual Ry gates, arbitrary-angle Mglmer-
Sgrensen (MS) [12] gates between any two pairs of ions,
and measurement of all qubits in the z-basis. These gates
are not fundamental to the Jaqal language but are defined
in a gate pulse file (GPF) in JaqalPaw [13], the pulse-level
counterpart of Jaqal. These GPFs can be thought to build
a “standard library” for Jagal quantum operations. Beyond
these native gates, users have the ability to customize their
code by defining macros, which creates new composite gates
from a specified sequence of native gates. This allows for
gates not directly implementable in ion trap hardware such
as a Hadamard, controlled-NOT, or “ZZ” MS gate. Each gate
is executed as a pulse sequence defined in a GPF. The gate
definitions are sometimes updated to improve gate calibration
and performance or to accommodate new types of native gates.

In addition to macros, Jaqal circuits make use of let state-
ments to define integer or floating point values. Once set, these
let parameters can be used throughout the code as identifiers.
Besides making the source code easier to read, let parameters
can be efficiently changed by the QSCOUT control software
without requiring a full recompilation of the Jaqal source file.

B. JagalPaq

While Jaqal files can be written directly by a user, they
do not allow for higher-level classical control or metapro-
gramming. For example, there are no if statements or for
loops native to Jaqal, either for classical variables or the result
of quantum measurements. Jaqal is therefore an intentionally
simple language. To express complex ideas with such a simple
medium we created JaqalPaq [14]. JaqalPaq is a Python
software package containing several sub-packages including a
compiler, code generator, emulator, and programmatic circuit
creation. The latter capability can be used to programmatically
produce a Jaqal file, or many similar Jaqal files, using the full
expressiveness of Python.

C. Jagal Application Framework

The Jaqal Application Framework (JAF) is a software
framework that was created to facilitate executing Jaqal cir-
cuits on the QSCOUT hardware. It comprises a network

service running on a Docker container, an adapter layer in
the hardware’s control software, and a GUI used to select
the application to run. This architecture abstracts the different
components from each other. From a maintenance perspective,
this prevents failures in either JAF or the QSCOUT system
from affecting the other. It also allows new capabilities to be
built into JAF with minimal changes to other systems.

An application in JAF can be either a plain Jaqal text file, a
Python program, or a Jupyter notebook. If the application is a
Python program or Jupyter notebook, it must use JaqalPaq to
programmatically create and request execution of a Jaqal cir-
cuit. JaqalPaq and JAF work together to abstract the execution
back end from the application producing the Jaqal circuit. This
means that an application will work with either the JagalPaq
emulator or the QSCOUT hardware without modification.
Additionally, the QSCOUT hardware is generally unaware of
the specific type of application being run; it is given a Jaqal
circuit with some metadata to run and returns the averaged
result of each measurement call.

When running a circuit, JAF returns result by subcircuit.
A subcircuit is defined as zero or more gates bounded by
a preparation and measurement call, prepare_all gate and
measure_all gate, respectively. A circuit consists of one or
more subcircuits. These subcircuits are either implicit, denoted
by the presence of the prepare_all and measure_all gates, or
explicit with the subcircuit Jaqal keyword.

D. Batching in Jaqal

In initial implementations, in any routine requiring multiple
circuits to be run, JAF would feed each individual circuit to
the experiment and wait for a response before sending the
next. This resulted in a slower execution time due to the
overhead associated with each pulse-level compilation and
multiple network transfers. By default, pulse-level compilation
of Jaqal code fetches the latest experimental calibration data
and regenerates all of the binary data needed for executing
gates on the QSCOUT control hardware. We call the binary
data “bytecode” in analogy with interpreted programming
languages.

When multiple circuits have a large amount of overlap in
gate data and when calibration parameters are not expected to
change (e.g. all circuits utilize the same subset of gates but in
different configurations), significant speedup can be achieved
by compiling some or all of the circuits upfront. This process
is demonstrated in Fig. 1, showing how multiple Jaqal files can
be fed into and run on the software without having to connect
back to the Jaqal notebook each time there is a variation
applied to the circuit. In this first case, the compressed
bytecode representation for all circuits can be identical to,
or perhaps marginally larger than, the bytecode for a single
circuit, depending on the amount of inter-circuit variation in
gate calls. Thus, multiple circuits can be calculated once and
executed by uploading only minimal sets of bytecode. The
subcircuits from the compressed representation are then used
to stream out RF pulses from the control hardware.
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Fig. 1. Batching in JAF allows for multiple Jaqal files to be run on the QSCOUT control hardware without calling back to the Jagal notebook for each
variation in the code. In one configuration, displayed on the left, this was accomplished by batching through indexing, where indices were coupled to parameter
overrides. In this configuration, the Python generator reduces the amount of compilation overhead and allows for more circuits to be run at a time, as opposed
to previous implementations in JAF which fed each set of prepare_all and measure_all circuits individually. The code is written in the Jaqal Notebook and is
run using the run_jagal_batch command. This code is then uploaded to JAF, which communicates with the hardware to perform the measurement. The final
results are sent back to the main notebook to compare to emulated results. A similar batching method, displayed on the right, was accomplished by creating
a let parameter dictionary that could act as a set of overrides for each parameter. As before, the code is written in the Jagal Notebook and is run using the
run_jaqal_batch command, calling the corresponding code with its list of dictionary overrides.

Another use case exists where circuits are identical but need
to be run using different values for calibration parameters or
Jaqal let parameters. Here, we employed a different approach
in order to reduce the effective overhead of compilation. The
Jaqal code is passed once per batch, and the let parameters are
passed in a separate dictionary to specify their override values.
The dictionary keys correspond to the parameter names, and
the values are either: 1) scalar, in which case the override
is applied for every run in the batch, or 2) an array, which
defines multiple override values to be applied sequentially
on consecutive runs. When multiple parameters are specified
using arrays, their values are tied together so that each array
is iterated over with a common index, and thus their lengths
must match.

The low-level bytecode is subject to potentially large
changes, depending on the parameters being updated. When
these parameters are known in advance, we can achieve similar
speedup by wrapping the entire compilation step into a Python
generator that iteratively queues up multiple output products.
This offsets initial compilation wait time at the beginning of
code execution with experimental run time. Using a generator
also allows for arbitrarily large numbers of circuits to be run

because blocking conditions during upload caused by maximal
filling of on-chip buffers can throttle compilation. Rather than
doing a compilation every time a new set of code is passed
in, all of the compilation now happens upfront.

Because of the differences in how batching is executed for
multiple circuits through indexing and batching execution of
parameter overrides are treated, we can also get compilation
performance gains when combining the two. However, this
multiplicative gain only applies if multiple subcircuits all use
the same parameter overrides. In that case, they are executed
once. If subcircuit indices are instead coupled with unique
parameter overrides, or the overrides are iterated over one
subcircuit index at a time, then the performance gain is
comparable to a single circuit with override batching.

III. HARDWARE - QSCOUT

The QSCOUT system is a room-temperature trapped-
ion quantum computer that exploits the hyperfine states
of Ytterbium (*"'Yb') ions. The ions are arranged in a
one-dimensional linear chain, and they are fully connected
through their vibrational modes. They are trapped in a
Sandia-fabricated High Optical Access (HOA2.1) [15] surface-
electrode trap, using a radio-frequency (RF) trapping pseu-




dopotential. We image each individual ion into a single core
from a multicore fiber array, with each core then coupled
to individual PMTs for distinguishable detection of the qubit
state.

Using a pulsed 355 nm laser, we excite Raman transitions
to perform single- and two-qubit gates between any pair of
the ions. The 355 nm light is split into two beams and
applied to the ions in a counterpropagating configuration.
One of the beams is the global beam, which encompasses
all ions, while the other becomes a series of tightly focused
individually-addressing beams. Frequency tones are applied
to various sets of beams in order to generate the appropriate
Raman transitions for single- and two-qubit gates. The single-
channel acousto-optic modulator (AOM) used to generate the
global beam and the multi-channel AOM used to generate
the individually addressing beams are both controlled by the
experiment hardware, generating up to two RF tones on each
channel within the AOMs.

For a single-qubit gate about an equatorial axis, we apply
two tones to a single individual addressing beam, with the
duration of the pulse determining the overall angle traversed.
Likewise, a phase, or Rz gate is applied virtually, existing as
a phase shift on all subsequent waveforms for that particular
qubit. The native two-qubit gate within the trapped-ion system
is the MS gate, an entangling gate which couples the ions
via their vibrational modes, forming an e i5ox®0x , or “XX,”
interaction. This gate is generated via Raman transitions which
are symmetrically detuned from both a red and blue motional
sideband, driven by tones on the individual beams addressing
the ions of interest and a third shared tone on the global beam.
The maximally entangled state occurs at § = £7/2, and these
are the gates present in the circuit used for this demonstration.
To physically generate the negative angle, § = —7 /2, we shift
the interaction from “XX” to “X,-X” by shifting the phase of
the waveforms addressing one of the two ions by 7 radians.

IV. EXPERIMENTAL RESULTS

One example algorithm that takes advantage of these
speedups due to batching is a variational quantum eigensolver
(VQE) algorithm. VQE is used to model the behavior of
energetic characteristics of molecules and is used in quantum
chemistry problems for extracting the upper bound ground
state energy of a Hamiltonian [16]. One of the unique features
of VQE is that it is a quantum and classical hybrid, utilizing
a quantum processor with a classical optimizer.

In this experiment, to demonstrate the experiment speed-
up due to the reduction in compilation, we performed VQE
using the constrained optimization by linear approximation
(COBYLA), a classical numerical optimization method that
is used to find the minimum of the Hamiltonian. The circuits
for these experiments all contain the following configuration:
[XX(5)Rz(0)XX(—7F)], two MS gates separated by a vir-
tual Z gate, where 6 is tuned in the quantum circuit to construct
the ansatz. For each evaluation of the ground state energy
of HeH™, we make estimations of nine different Pauli terms
(which we refer to here as projections) that comprise the

Hamiltonian through averaging the results of the experimental
outcomes. The optimizer takes this calculated energy and
vector of parameters and gives an updated parameter for the
next iteration by making and updating a linear approximation
of the objective function through repeated evaluations. The
algorithm then again refines its search at higher resolutions.
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Fig. 2. Results of the VQE algorithm using the COBYLA optimizer, depicting
results prior to batching as well as using the new batching framework in JAF.
With no batching, 17 iterations equated to a total of 162 steps (9 projections
with 18 iterations each), while the new regime with batching allows all 9
projections to be stored in the let parameter override dictionary resulting in
a total of 18 steps, where each batch is an optimizer step.

The results from these measurements as well as the emu-
lated values are plotted in Fig. 2. The outcomes were averaged
over 1000 shots. We used 18 iterations to calculate the energy,
although this value could have been extended even further
for more optimizer calculations. As there are nine different
projections in this algorithm, the experiment would use a
total of 162 steps, 9 steps per optimizer iteration, each time
communicating with the Jaqal Notebook to create a new Jaqal
file to be run on the hardware. The average run time for
taking this set of data took 29 minutes. After implementing
the changes to Jaqal using batching, each batch step equated
to one optimizer step as all 9 projections were now accessed
through the let parameter overrides (refer to Fig. 1). This
instead totaled 18 communication steps, 1 for each iteration
of the optimizer. The communication time between each new
Jaqal file and JAF takes about two seconds, and this decrease in
the number of steps decreased the run-time of the experiment,
only taking on average 19.5 minutes in the new configuration.

The noisy emulator is calculated using a simulated error
model for the gates that is meant to mimic errors in experimen-
tal control. These parameters include the power, frequency,
phase, and timing error of the gate laser pulses as measured
by their distances from the ideal gate, as well as the Gaussian
width of each of these errors. We modeled the behavior
of these gates in simulation using process matrices adjusted
according to the respective parameters. This model does not
incorporate the effects due to regular detuning fluctuations or



time-averaged drifts, both of which are problems which occur
in longer experiments. Both sets of results show a good match
with the noisy emulator, showing that our batching technique
produces comparable results in a shorter amount of time.

V. DISCUSSION

In the current version of QSCOUT, a dominant error is drift
due to fluctuations in RF power that create the pseudopotential
and define the secular frequencies. For the experimental results
presented in Fig. 2, there is little variation between the batched
and unbatched VQE data. On the days these measurements
were taken, the initial and final fidelities were comparable
and drift was minimal. However, due to a recent shorting
event on the trap that greatly affected RF stability, QSCOUT
has been exposed to more drift than was reported in [7].
Fig. 3 is an example of calibration data that was recorded
on a day measurements were greatly affected by RF power
fluctuations. Here, we plot the red sideband vertical mode drift
as a function of time. This shows a detuning drift of over
tens of kHz every fifteen minutes. A drift of 3 kHz detuning
on this system equates to a 2 + 1.6% reduction in MS gate
fidelity, so more intermediate recalibrations were necessary
to help mitigate these effects. In longer circuit sets, these
more frequent recalibrations became highly inefficient; the re-
duction in communication time through batching significantly
improved the quality of the results and removed the necessity
for intermediate recalibration.
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Fig. 3. Example of sideband drift seen on a day measurements were greatly
affected by RF power instability, showing detuning drifts of up to 15 kHz in
15 minutes. In such cases, frequent recalibrations were necessary to prevent
this drift from having an effect on algorithm performance.

Spatial drifts of the ions off of the individual addressing
beams on the hour timescale can also be a source of error,
affecting the performance of both single and two qubit gates.
These spatial drifts lead to under- and over-rotations that
also have an effect on gate fidelity. Especially for running
longer circuits, the speed-up of experimental run-time that was
exhibited via batching Jaqal circuits was helpful for the quality
of data that was acquired.

Here, we discussed two key batching techniques: batching
quantum circuits through a dictionary of parameter overrides

and batching the code through indexing. We demonstrated
the first implementation of let parameter overrides while
performing VQE, speeding up the experiment run-time. This
new batching technique has also proved useful in other
experiments where on-chip memory created limits for the
number of circuits to be run, exposing the need to wrap more
compilations through the use of indices. For example, in [11],
we investigated randomized compiling on a VQE algorithm in
the presence of noise. In randomized compiling, we average
unitarily equivalent circuits with randomly selected single-
qubit Pauli twirlings around the two-qubit gates in order to
reduce the impact of noise. Accounting for the number of
equivalent circuits to be averaged per projection, the number of
projections, and other comparative circuits, we could process
90 different circuits in a single batch. In this case, each
batch corresponded to a different tunable phase parameter
within the ansatz. In the pre-batching regime, investigating
41 different phases would have required 3690 communication
steps. With batching implemented, it instead totaled 41 steps.
The communication alone for an algorithm with 3690 calls
would have exceeded two hours, making such an approach
infeasible on the QSCOUT system.

For future runs of QSCOUT, we have plans to implement a
new trap to help reduce the amount of drift so that longer
measurements are more robust. Even so, the speed-up due
to batching emphasizes the importance of careful design of
control software. Having greater control over quantum hard-
ware through software performance is not a challenge unique
to this experiment, and these ideas may find application in
other similar types of platforms. Even for the same circuit
configuration, as demonstrated here, minute details of software
implementation on quantum computers can have a drastic
impact on runtime and execution performance.
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