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1D Inviscid Burge

Introduction

Partial differential equations (PDEs) are often used to model physical
processes. High fidelity solutions provide accuracy at a large
computation cost. Low fidelity solutions have lower computational
burden but can misrepresent key features.

r's Equation:
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Methodology

High fidelity solution
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By treating high and low fidelity solutions as functionals we can apply
functional regression to predict high fidelity solutions from low fidelity
inputs at reduced computational burden.

Error function
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Regression coefficient

 Burger’s equation was solved for 1000 initial pressure profiles
U,(x) in both high and low fidelity training and test data

 The high fidelity solutions had 2x the spatial grid points as the
low fidelity solutions

 Daubechies wavelets were used as the basis in the functional
representation due to their ability to capture shock features
better than traditional splines

 Bootstrap intervals were used to provide uncertainty estimates

Data split into
testing and
training sets.
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Results

Bootstrap mean and 0.025/0.975 quantiles along with true high fidelity solution and low fidelity

test input are plotted below for one initial condition.
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Mean squared error (MSE) was used to compare model prediction in the test data to true value and

is plotted below at each time point. Model error peaks at t=0.60 where the shock front is the

steepest and boundary effects the strongest, then tapers off.
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Conclusion

Function-on-function linear regression

Taking PDE Solutions from Low-Fidelity to High-Fidelity Using Function-on-Function Regression

provides a method to recover high

fidelity PDE solutions from low fidelity

solutions with uncertainty

qguantification. This method reduces the

computational burden

produce high fidelity PDE solutions and

IS generalizable to any

required to

1D PDE.

For PDEs modeling shocks, such as

Burger’s equation, the wavelet basis
functions can be used to capture nearly
discontinuous features. Bootstrapping

can be used to provide

qguantification. This allows for better risk

uncertainty

informed decision making and

interpretability.

Future work includes e

higher spatial dimensions and modeling

time dependence.
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