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Talk outline

* What is magnetic reconnection?

* What is radiatively cooled magnetic reconnection?
* How do we study it in the laboratory?

* Results from simulations for experimental design

* Results from the first MARZ shot on Z

* Qutlook for future MARZ shots
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Plasmoids Lead to Fast Reconnection and Anomalous Heating

Current | || Multiple O Strongly
sheet (| | current< () sheared
B B 1 sheets flows
O
/ ]\\ [\ Overview of recent theory:
v Loureiro, N. F., & Uzdensky, D.
A.(2015).

PPCF, 58, 014021
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Reconnection in Extreme Astrophysical Environments
Arist’s impression of a black hole M87 (EHT) Crab Pulsar (Hubble/Chandra)

See: Uzdenksy in “Magnetic reconnection: Concepts and applications” arXiv:1510.05397 (2016)
1. Coolingis a significant loss mechanism (.01 K T4):
* Modifies partition of magnetic energy between electrons, ions, kinetic
« Leads to cooling instabilities, radiative collapse

2. Radiation: key (only?) observational signature in remote environments:
*  Where and when are X-rays produced - localized bursts?

« How does this couple to the reconnection process? (Localized cooling)
jdhare@mit.edu, ZFSW 2022 8



Radiative Cooling Instabilities in Reconnection
Layer
compresses
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* Layer ohmically heated

« Radiation/compression
loop: runaway process
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Studying Radiatively Cooled Reconnection in the Lab

* Experiments require:

« High n, for high P44

» Plenty of B?/2p, to dissipate High-energy-density experiments:
« Sufficient tgyipe to see dynamics Lasers and pulsed-power

« Cooling from Brems + Lines

« Cooling rate material dependent
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Pulsed-power-driven Magnetic Reconnection
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Magnetic Reconnection from Double Exploding Wire Arrays
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Hare et al PRL 2016, PoP 2017, 2018
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Exploding wire arrays in parallel:
« Sustained flows (Tgyipe ~ 10 T4)

* Quasi-2D geometry
 Collisional (§ > A7)

* Inflows: pep ~ P ~ Pin

* No guide field

MAGPIE: 1.4 MA, 250 ns rise time
Z Machine: 20 MA, 300 ns rise time

n«I? Pgq xn? «I*

Z’s unique capability: strongly
radiatively cooled reconnection
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GORGON MHD simulations

GORGON (J. Chittenden, Imperial) : 3D Eulerian resistive MHD code
with radiation loss and separate ion and electron energy equations

Xyl2: Rp =20 mm, D =30 mm, d, =75 um, Ny, =150, Iy =20 MA, M;zq = 13020

Wires:

150 Al wires

* 75 um diameter
Arrays:

« 40 mm diameter

« 20 mm gap

1019

1013

n; [cm~—3]

101]"

1015

—60 -40 -20 0 20 40 60
X [mm]

* 2D sims: 50 um resolution, 180x90 mm. 16 hrs, 256 cores

. . 1/2 - .
* Recombinationloss: Prgq = MyqqCrne T, /2(7220,EZ1)T,), with Mygq ~ 3
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Plasmoids and Collapse

250 ns 280 ns 400 ns * Flows collide at mid-plane
* Inflow density rises with current
* Radiative cooling rises with density

* Thermal pressure removed:
layer collapses
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Plasmoids and Collapse

250 ns 280 ns 400 ns Lundquist number:
LV,
§=—4
Ho™]

Reconnection rate ~ 1/v/§

Lundquist number variation with radiative cooling
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Pressure balance in the layer

Pre-collapse: flux pile-up decelerates flow
At layer, Pg = Py,

a) Pressure balance at 250 ns

Ma=1 Ben=1

Pressure [Pa]
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Pressure balance in the layer

Pre-collapse: flux pile-up decelerates flow Post-collapse: fast reconnection removes
At layer, Pg = Py, flux pile-up

a) Pressure balance at 250 ns b) Pressure balance at 400 ns

Ma=1 Ben=1

101[} 3

Pressure [Pa]

= Pth =neTe + NiTi = Pyip = pV2Z/2
= Pg =BJ/2uq = Pot

| | | | | | |
-4 -3 =2 =1 0 1 2 3 4 -4 -3 =2 -1 0 1 2 3 4
X [mm]
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Plasmoids in the Reconnection Layer
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Plasmoids:

e Carry a lot of current
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Note: Exaggerated aspect ratio  4harc@mit.edu, zrsw 2022
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Plasmoids in the Reconnection Layer

100

jz [GNmE]

Plasmoids:

« Carry a lot of current

* Are hot, with lown
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Note: Exaggerated aspect ratio  4harc@mit.edu, zrsw 2022
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Plasmoids in the Reconnection Layer

Plasmoids:

* Carry a lot of current

* Are hot, with low n

y [mm]

« Are dense

-1 0 1

=1 0 1 -1 0 1
* [mm]

X [mm]

X [mm]

x [mm]
Note: Exaggerated aspect ratio jdhare@mit.edu, ZFSW 2022 22



Plasmoids in the Reconnection Layer

0 5 10 0 10 2

ne [x101% cm—3] Prag [X 1018 W/m?3]

0

Plasmoids:

« Carry a lot of current

Are hot, with low n

 Are dense

y [mm]

» Radiate strongly

0 0 -1 0 1 -1 0
X [mm] x [mm] x [mm] x [mm] X [mm]

[

Note: Exaggerated aspect ratio jdhare@mit.edu, ZFSW 2022 23
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Based on linear AXUV Si diode array for MAGPIE by Jack Halliday
On Z, UPAC (Q. Looker): self-contained, 32-pixel linear diode array

with 0.25 mm resolution.

Inflow resolved

—
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Outflow resolved
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Diagnostics for First MARZ Shot

X-Ray Imaging

2 x UXI-Icarus Pinhole
XIDAR-UPAC (diode-array)

Filtered X-Ray
diodes y FOA Pinhole Camera

Fedteitar | Diodes 1ADPoles Mikisdi Top-down

Silicon Multi-diode
head Side / Along rec. layer

Side/ Along rec. layer

XRS3 time-integrated (Al K-shell)

X-Ray
SpeCtrum \
PDV & VISAR | TREX time-gated spectrometer
(broadband)

soljsoubelq uoiPauu0d9y

Current & (Velocimetry)
Diagnostics Magnetic Load Current |

on MARZ Field IDTLs / Dual-polarity
inductive probes

Advected
Magnetic Field [ B-dot probe array ERY¥S

Front and behind shock

: & Cated Self-Emission (8 frame) Bow Shock
Optical <

Diagnostics

mm Streaked Visible Spectroscopy (SVS) o7

Radiation




Load Hardware for first MARZ shot

Thank you to Carlos Aragon, Roger Harmon, Josh Gonzalez, and Leo Molina!
jdhare@mit.edu, ZFSW 2022 28



Load Hardware for first MARZ shot

Thank you to Kraig Leonard, Tommy Mulville, Chris De La O, and many more!
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Load Hardware for first MARZ shot

Thank you to Kraig Leonard, Tommy Mulville, Chris De La O, and many more!
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Load Hardware installation , &

SO0 1y
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|
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Weeks to build, a microsecond to destroy!
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Load Hardware Post Shot G

Minimal debris, good for future diagnostics!
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MARZ1 delivered 10 MA to each wire array

3697 -- PDV D2
T ETH :

Velocity [km/s]
Velocity [km/s]
Relative power (dB)
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PDV: Return on 14/16 channels.

VISAR: Return on 13/24 channels.
500 m/s velocities are consistent with pre-shot modeling for 10 MA.
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MARZ1 delivered 10 MA to each wire array
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Magnetic Probe Measurements: Plasma Flow
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separation)
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Magnetic Probe Measurements: Plasma Flow

Voltage (V)

Thank you to Gabe Shipley and Derek Lamppa! 0
jdhare@mit.edu, ZFSW 2022

Inductlve Voltage

-200F
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Bow shock around B-dot probe: Plasma Flow

T-probe
(14 mm

\ @\\\\\\\\\\\t\\%ll\m\ N

)
. (™ L
o
A
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Bow shock around B-dot probe: Plasma Flow , &

23697 SEGOI Shot - Frame 4 GOI1

1 12 13 14 15 16 17 18 19
Distance from wires (mm)
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Streaked Visible Spectroscopy
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Thank you to Sonal Patel and Dan Scoglietti!
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Probe -17 Radius = 11.3mm |

Probe -02 Radius=151mm |
Spot OD =6.6 mm |

EVE1

Probe -20 Radius=80mm |

SVE 5 SpotOD =63 mm

* Four fibers: 6 mm spot size at inductive
probe radial locations
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— | | | =
{ | |
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Streaked Visible Spectroscopy

* Long time record, spatially
localized, broadband
spectroscopy

« Alll & Al lll lines to measure n,
and T,

Pre-shot SEGOI
image of SVS 2

Thank you to Sonal Patel and Dan Scoglietti!

Wavelength [nm]
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a) SVS5, r=9mm b) SV54, r = 20 mm
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Time Integrated X-ray Spectrum: Hot Plasma
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- plasma likely > 100 eV < ;
~20E_, | | ' | | | . | ]

1240 1560

Thank you to Eric
Harding, Andy Maurer,
and Stephanie Hansen!

1580 1600
Energy [eV]

jdhare@mit.edu, ZFSW 2022

1620

Counts
15

10

41



X-ray Spectra are a Rich Source of information

Intensity (arb. units)

730 L e e e B L B B B B B B B BB B

. +——+ Lineout of Window of z3697_Final Image — bsub: (17 Spllt ~1 8 eV N

: Lots of information on temperature, _

- density (and velocity?) in spectral lines -
1.5 — —
1.0 — —
0.5 — —
0.0 W[\\ A T T T T T T S S O S S N S R S S ! Mﬂmﬁf
1560 1570 1580 1590 1600 1610

Energy [eV]
jdhare@mit.edu, ZFSW 2022

42



Filtered Diode Sighals: Layer Formation, Collapse

Experiment Simulation
MARZ z3697 Current & Emission GORGON + XP2 Simulated Current & Emission
20k Total current (1.07 * BCAVE) o0k Total current (sin2)
X-ray emission (SiD + 2 yum Mylar) X-ray emission (SiD + 2 ym Mylar)

_ 157 157
< <
=, =,
T Al T Al
o 10 10x (volts) o 10
-} >
) )

5f 5

0 0

2750 2800 2850 2900 2950 3000 3050 3100 3150 3200 2750 2800 2850 2900 2950 3000 3050 3100 3150 3200
Time [ns]

Time [ns]

« Radiated power rises after current start, drops before current peak

« X-ray spectra appears softer than simulated: more shots in later this year

jdhare@mit.edu, ZFSW 2022
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What didn’t work well

* Most X-ray cameras (gated, time integrated) and
diodes (XIDAR, filtered) returned no signal 'FE’DT\tS 4f4channels
1416 channels
* Most diagnostics functioned nominally, so red VISAR 13/24 channels
indicates lack of data N
Inductive probes _
* Conclusion: svs 34 systems
Layer less bright predicted by simulations SEGOI ‘Bow shock observed
LOS 170 diodes ~1/6 diodes
UPAC Sensor Location XRS3 'AlK-shell observed
TADPoles (2x) ]
Faint image? Our only image of FOA diodes ]
the layer FoarHc (Uxi, 20 [
5 coarrc(e)
ALY FOAXIDAR (UPAC)  [iccccmicay
Image Plate analysed by Will Lewis
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Talk outline

* What is magnetic reconnection?

* What is radiatively cooled magnetic reconnection?
* How to we study it in the laboratory?

* Results from simulations for experimental design

* Results from the first MARZ shot on Z

* Outlook for future MARZ shots
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Future work on MARZ

Two more MARZ shots later this year:

1. Improve diagnostics of the reconnection layer

2. Diagnose the outflows from the reconnection —
layer

2 x T-I ar probe “

Form a complete picture for publication

jdhare@mit.edu, ZFSW 2022 46



Future work on MARZ

2.
Form a complete picture for publication

MARZ renewal for CY23-24:
1.

Two more MARZ shots later this year:
1.

Improve diagnostics of the reconnection layer

Diagnose the outflows from the reconnection ===

layer

New load designs to boost density, magnetic

field

Change wire material to alter cooling rate

Investigate effect of pulse rise-time

Rad. | [GWisr]
(8] ~

jdhare@mit.edu, ZFSW 2022

marz_dual_ex_75_Al_2D-5

' x T-bar probe “

D

. T

2umMylar  —— l0umBe
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Future work on MARZ

New simulation tools:
e Radiation transport in GORGON (Jerry Chittenden)
* Advanced X-ray post-processing such as Doppler shift (Aidan Crilly)

New diagnostics:

* Laser imaging (David Yager-Elorriaga)

* Thomson scattering (Jacob Banasek)

e X-pinch backlighting (Matt Gomez)

* Fe L-shell spectroscopy (Patricia Cho)

* UV spectroscopy, fiber coupled (Mark Johnston)

jdhare@mit.edu, ZFSW 2022
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Conclusions

MARZ 23697 Current & Emission

| Total current (1.07 * BCAVE)
X-ray emission (SiD + 2 pm Mylar)

Reconnection X + Central
Layer Conductor

2750 2800 2850 2900 2950 3000 3050 3100 3150 3200
Time [ns]

* Key signature of reconnection; modifies energy partition; leads to collapse

Strong radiative cooling important in extreme astrophysical environments:

* High-energy-density pulsed-power experiments can reach strong radiative cooling regime

2D MHD simulations show rich physics: plasmoid formation, layer collapse

* Preliminary experimental results from the Z machine show viability of platform for
radiatively cooled reconnection studies: more shots later this year!
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