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Objective: Develop printable thermoset resins with a range of chemistries and performance properties "lappelh@sandia.gov

and a fundamental understanding of structure-property-performance to enable rational design of AM materials.
Dual-cure Epoxy/Acrylate Systems PhotoROMP DIW pDCPD

Dual-cure systems®3 use a rapidly curing component to maintain structure during printing in combination with a second The majority of approaches for DIW of thermosets utilizing in situ cure use photoinitiated radical or cationic
component that is cured post-print to impart the final properties. Dual-cure systems form interpenetrating polymer  polymerizations. In order to extend DIW printing to a broader range of resins we investigated photoinitiated ring-opening
networks (IPNs) which can produce unique thermomechanical properties. Our system uses a photopolymerized metathesis polymerization (photoROMP) for DIW, inspired by the development of numerous photolatent ROMP catalysts*®

dimethacrylate as the rapid-curing component with a thermally cured homopolymerized epoxy. and the demonstration of DIW printing via thermally initiated frontal ROMP (FROMP).’-8
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UV rheology and UV FTIR are used to determine correlation between Pulsed exposure profiles mimic in situ exposures for 2
acrylate conversion and development of modulus. different print paths, showing extensive dark cure. A printing formulation was developed with 10wt% fumed silica as a rheology modifier. Printing requires optimization for
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Final properties of thermally cured parts can be tuned by composition and are comparable to other common
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engineering materials. IPN phase separation is observed in 50 wt% acrylate formulations. UV Honeycombs and lattices of varying designs. Thinner
Glass transition Torsional Modulus vs Acrylate Wt% Flexural Modulus (GPa) Flexural Strength (MPa) prints sometimes warp during thermal cure.
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