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Background

• Research question: how do we track insider 
threat potential?

• The traditional (criminology) approach to 
ITDM focuses on the determinants of 
observed insider acts

• Key inputs: motive and opportunity

The policies that flow from this logic are the 
familiar preventive and protective measures 



Developing a new ITDM Monitoring Method

•We argue that the criminology model should be 
reconceptualized

• The key output:  Insider Threat Potential (not an 
insider act)

• The key input: Manipulated Work Activities 

This implies a policy shift towards measuring and 
analyzing (Expected) Workplace Activities
• To measure expected activity (and deviations) 
we turn to artificial neural networks (ANNs) 



Equipment Installation

•Workers who belong to a specific 
class or role collectively define the 
expected work activities for 
individuals within that group:

• Graduate students in a research 
reactor arrive at specific time and 
do research data in specific 
locations 



Equipment Installation & Data Collection

Courtesy: University of Texas 

ITDM 
Category

Sensor Type Data Type Representative Organizational 
Activity

Access 
Control

 Badge reader
 NETL entry
 Security control panel
 Limited area
 Reactor control room

 Badge readers:
 # authorized attempts
 # unauthorized attempts 
(false negative + false 
positives)

 Time of access attempts

 Personnel arrival to facility
 Researchers approaching the 
reactor

 Reactor operator arriving for shift

Intrusion 
Detection

 Balanced magnetic 
switch 
 Limited area
 Security control panel
 Reactor control room

 Area motion sensor 
 Reactor bay
 Fuel storage 
surveillance

 Balanced magnetic switches:
# times switch opened
Time at which switch 
opened
 
 

 Area motion sensors:
# times change in physical 
phenomena registered
Time at which change in 
physical phenomena 
registered

 Researchers approaching the 
reactor

 Maintenance of security control 
panel

 Reactor operator arriving for shift
  
 Custodial services around the 
reactor

 Transfer of fresh/used fuel 
into/out of NETL



Example Results

Personnel-Type Access 
Analysis

Clear bounds on the normal 
time of first entry create profiles 
of expected workplace activities 
at the group level 
―Still individual variation within each 
type

• ANN is capable of identifying 
deviations within each group 
at the individual level



Phase 2 Activities: Summary Results

• Conclusions:
― Obvious patterns of life for most personnel 
― Established  bounds for the facility operation rhythms 

• Therefore, potential detection of insider attempts through deviations from these bounds is feasible

Scenario Name [#] Test Description Phase I Results* Phase II Results
Security Closet Access (1) Unauthorized Access Attempt (1A) Detected & Denied in ALL Cases [SAP]

 
Detected & Denied in ALL Cases [SAP]
 

Authorized Access Credentials Used by 
Unauthorized Individual Who Entered Building 
Using Their Own Credentials (1B)
 

Detected & Denied in MOST Cases 
[SAP; TSMAP]
 

Detected & Denied in MOST Cases 
[SAP; TSMAP]
 

Authorized Access Credentials Used by 
Unauthorized Individual Who Entered Building 
Using Authorized Individual’s Credentials (1C)
 

Detected & Denies in NO Cases 
[TSMAP]

Detected & Denies in NO Cases 
[TSMAP]

Reactor Bay Access (2) Unauthorized Access to Reactor Bay (2A) Detected & Denied in ALL Cases 
[TSMAP]
 

Detected & Denied in ALL Cases 
[TSMAP]
 

Early Detection by Motion Sensor (2B)
 

Not Tested Detected in MOST Cases

Fuel Storage Surveillance (3) Insider Surveillance (3A) Difficult to Detect Without Additional 
Sensing Input [TSMAP]
 

Difficult to Detect Without Additional 
Sensing Input [TSMAP]
 

Insider Alarm Testing (3B)
 

Not Tested Difficult to Detect Without Additional 
Sensing Input [TSMAP]
 

*SAP = single-access-point operational patterns; TSMAP = time-sequenced, multiple-access-point operational patterns



Example Experiments and Broad Conclusions

• Individual access with a stolen credential in a badge reader while the victim was 
not present on site: ANN caught it 

• Various tests using motion detectors in particular pathways: ANN caught various 
permutations 

• Surveillance of spent fuel storage by an authorized individual: ANN struggled 
• Various tests on the timing of credential use by groups w/ highly regularized 
patterns (operations): ANN caught all deviations 

• Various tests with groups who are NOT highly regularized (undergraduate 
students): ANN struggled 



Current (and) Next Steps

• Design and carry out more complex experiments 
•What experiments should we run?
―Badge readers are currently easier to experiment with than motion sensors

• Characterize deviations from expected work activities
―Magnitude: scope or scale of deviation from expected work activity, where large deviations from 
expected work register as higher magnitude events
• Duration, sensitivity, timing of the event 

―Frequency: how often similar deviations occur during a period of time
―This could lead to a possible typology (e.g. high magnitude-low frequency events) 

• Outline appropriate responses to deviations: doing nothing, unobtrusive analysis, 
human-guided analysis, etc.


