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Motivation

• Stochasticity and stiffness in wide range of physical systems
• Large range of time-scales in the formulation of system
governing equations

• Particular interest: time integration of stiff stochastic
chemical systems

• Governing system: chemical Langevin equations with
significant degree of stiffness

• Focus of this talk: time integration of stiff stochastic
differential equations with fast diffusion processes
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Background: Chemical Reaction Networks

A collection of chemical reactions that involves

• a set of N “species”:

Si , i ∈ {1, . . . , N}

• a set of M chemical reactions Rj , j ∈ {1, . . . ,M}:

Rj :
NX
i=1

αi jSi →
NX
i=1

βi jSi

For i = 1, . . . , N, j = 1, . . . ,M

• αi j , βi j ∈ Z+ - stoichiometry coefficients
• vi j = βi j − αi j , vj := (v1j , · · · , vNj) - change in molecular
population caused by one Rj reaction
• V = (vi j)N×M - stoichiometry matrix.
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Model Set-up

Assumption: the system is well-stirred:

• constant volume Ω
• in thermal equilibrium at some constant temperature
• positions and velocities of the individual molecules ignored

Xi(t) - the number of the species Si in the system at time t.

Goal estimate the state vector

X(t) := (X1(t), · · · , XN(t))

given that the system was in state X(t0) = x0 at initial time t0.
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Stochastic Models

• Xi(t): number of species Si at time t (i = 1, . . . , N).
• X(t) = (X1(t), . . . , XN(t))T - column-vector Markov
stochastic process.

• k = (k1, . . . , kN)T ∈ ZN+ - state of the process.
• pk(t) = P[X(t) = k , given X(t0) = k0] - the probability
that, at time t, there are k1 units of species S1, k2 units of

species S2, ..., given X(t0) = k0.

• ρj : ZN+ → R+ - propensity function for the respective
reaction Rj .
• ρj(k)dt - given X(t) = k , the probability that reaction Rj
takes place in the next infinitesimal time interval [t, t + dt).

• vj - the jth column of stoichiometry matrix V .
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Chemical Langevin equation (CLE)

Chemical Langevin Difference Equation

X(t + dt) = X(t) +

MX
j=1

vjρj(k)dt +

MX
j=1

vj
»
ρj(k)Nj(0, 1)

√
dt

By theory of continuous Markov processes

Chemical Langevin Differential Equation

dX(t) =

MX
j=1

vjρj(X(t))dt +

MX
j=1

vj
»
ρj(X(t))dWj(t)

Wj(t) - independent Gaussian white noise processes.

Previous works: time-integration strategies based on stochastic

singular perturbation
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SDE with fast diffusion

dX(t) = f (X(t))dt +

mX
k=1

gk(X(t))dWk(t), X(0) = x0

Assumptions:

• The diffusion coefficients {gk}k=1,··· ,m exhibit a large range
of magnitudes.

• There exists M ∈ {1, · · · , m} such that

|g1|, · · · , |gM | ≫ |gM+1|, · · · |gm|.

• |g1|, · · · , |gM | : fast processes
• |gM+1|, · · · |gm| : slow processes
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Euler-Maruyama (EM) and modified EM

• Simplest one-step EM

xn+1 = xn + f (xn)∆t +

mX
k=1

gk(xn)∆Wk,n

∆Wk,n = Wk(tn+1)−Wk(tn)

• Requires ∆t to be extremely small for the above SDE with
fast diffusions.

• Modified EM

xn+1 = xn + ∆tf (xn) +

mX
k=M+1

gk(xn)∆Wk,n + ηn+1

Goal: develop models for ηn+1 that approximates the fast

diffusion processes more accurately than
PM
k=1 gk(xn)∆Wk,n.

HAN, Auburn University Efficient Simulation of Stiff Stochastic Differential Equations 8/29



Approximation of fast diffusion processes

Given any Rd -valued stochastic process X(t), define

DXn (t) =
MX
k=1

Z t
tn

gk(X(s))dWk(s), t ∈ [tn, tn+1).

Let X̂(t) be the solution to the diffusion only SDE

dX̂(t) =

MX
k=1

gk(X̂(t))dWk(t), X̂(tn) = xn, t ∈ [tn, tn+1)

• Idea: Approximating DXn (t) where X is the solution to the

original SDE, by D X̂n (t)
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Justification

Error of the approximation |DXn (t)−D X̂n (t)| is
• equal to zero if gk(X)Mk=1 are decoupled from gk(X)

m
k=M+1

and f (X).

• relatively small compared to the error of the EM scheme
applied to the slow diffusion processes (in the context of

chemical reaction systems when the magnitudes of

g1, . . . , gM are much larger than gM+1, . . . gm which indicates

the evolution of X̂(t) is only weakly coupled with X(t))

First step: approximating

D X̂n (t) =
MX
k=1

Z t
tn

gk(X̂(s))dWk(s), t ∈ [tn, tn+1),

where X̂ is the solution to the fast diffusion only SDE.
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I. Linear approximation at pathwise initial state

• Set Yn(t) = X̂(t)− xn for t ∈ [tn, tn+1).
• Notice Yn(tn+1) = D X̂n (tn+1).

• Use Yn(tn+1) to approximate DXn (tn+1).

• Model the random variable ηn+1 by Yn(tn+1).
Given X̂(tn) = xn, approximate gk(X̂) by

gk(X̂(t)) ≈ bk,n + Jk,n(X̂(t)− xn), t ∈ [tn, tn+1),

where Jk,n is the Jacobian of gk evaluated at xn and

bk,n = gk(xn). Then Yn satisfies

dYn(t) =

MX
k=1

(
bk,n+Jk,nYn(t)

�
dWk(t), Yn(tn) = 0, t ∈ [tn, tn+1)

HAN, Auburn University Efficient Simulation of Stiff Stochastic Differential Equations 11/29



Exact solution Yn(t)

Yn(t) = Φn(t)

 
−
Z t
tn

Φ−1n (s)

MX
k=1

Jk,nbk,nds

+

Z t
tn

Φ−1n (s)

MX
k=1

bk,ndWk(s)

!

dΦn(t) =

MX
k=1

Jk,nΦn(t)dWk(t), t ∈ [tn, tn+1), Φn(tn) = Id

ηn+1 = Yn(tn+1)

Φn(t) ≈ Id +

MX
k=1

Jk,n(Wk(t)−Wk(tn)).
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II. Linear approximation at the mean initial state

• The previous method evaluate Jk,n for each sample path.
• Reduce computational cost by approximating of gk(X(t)) at
the path independent mean state x̄n := E[xn(ω)]:

gk(X(t)) ≈ b̄k,n + J̄k,n(X(t)− x̄n), t ∈ [tn, tn+1),

J̄k,n is the Jacobian of gk evaluated at x̄n and b̄k,n = gk(x̄n).

• Yn(t) satisfies the approximating SDE

dYn(t) =

MX
k=1

(
J̄k,nYn(t) + ck,n

�
dWk(t), t ∈ [tn, tn+1),

where ck,n = b̄k,n + J̄k,n(xn − x̄n).
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Exact solution Yn(t)

Yn(t) = Φ̄n(t)

 
−
Z t
tn

Φ̄−1n (s)

MX
k=1

J̄k,nck,nds

+

Z t
tn

Φ̄−1n (s)

MX
k=1

ck,ndWk(s)

!
,

Φ̄n(t) = exp

(
−
1

2

MX
k=1

J̄2k,n(t − tn) +
MX
k=1

J̄k,n(Wk(t)−Wk(tn))

)
ηn+1 = Yn(tn+1)

Φ̄n(t) ≈ Id +

MX
k=1

J̄k,n(Wk(t)−Wk(tn))
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III. Moment approximations

• Model ηn+1 in distribution by computing the moments for
Yn(tn+1).

• The mean µn(t) = E[Yn(t)] and second moment
Pn(t) = E[Yn(t)Y Tn (t)] of Yn(t) satisfy

dµn(t)

dt
= 0,

dPn(t)

dt
=

MX
k=1

Ä
Jk,nPnJ

T
k,n + Jk,nµnb

T
k,n + bk,nµ

T
n J
T
k,n + bk,nb

T
k,n

ä
.
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Solutions to the moment system

• µn(t) ≡ 0 on [tn, tn+1).
• Covariance matrix Cn(t) = E[Yn(t)Y Tn (t)] satisfies

dCn(t)

dt
=

MX
k=1

Jk,nCn(t)J
T
k,n +

MX
k=1

bk,nb
T
k,n, t ∈ [tn, tn+1).

• Model ηn+1 as the d-variate normal distribution
ηn+1 ∼ N (0, Cn(tn+1)) , with

Cn(tn+1) ≈ ∆t
MX
k=1

bk,nb
T
k,n.
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Numerical algorithms

For n = 0, · · · , N:
xn+1 = xn + ∆tf (xn) +

Pm
k=M+1 gk(xn)∆Wk,n + ηn+1 with

[FPM-LP] ηn+1 =
Ä
Id +

PM
k=1 Jk,n∆Wk,n

äPM
k=1 (−Jk,nbk,n∆t + bk,n∆Wk,n)

[FPM-LM] ηn+1 =
Ä
Id +

PM
k=1 J̄k,n∆Wk,n

äPM
k=1

(
−J̄k,nck,n∆t + ck,n∆Wk,n

�
[FPM-MM] ηn+1 ∼ N

Ä
0,∆t

PM
k=1 bk,nb

T
k,n

ä
where

x̄n = E[xn], bk,n = gk(xn), ck,n = gk(x̄n) + J̄k,n(xn − x̄n),
Jk,n =

Ä
∂gk
∂X1
, · · · , ∂gk

∂Xd

ä ���
X=xn

, J̄k,n =
Ä
∂gk
∂X1
, · · · , ∂gk

∂Xd

ä ���
X=x̄n

.
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Convergence experiments

• Example system of stiff SDE in R2, with m = 3 Brownian
motions, and order-p polynomial drift and diffusion terms

f (X(t)) = (AX(t))◦p ; gk(X(t)) = (BkX(t))
◦p , k = 1, · · · , m

where the operation ()◦p denotes the Hadamard power.
• Sample matrices

A = α

ï
1 2

3 −4

ò
, B1 = β1

ï
−1 2

3 −6

ò
, B2 = β2

ï
3 −2
−3 8

ò
, B3 = β3

ï
1 4

6 −9

ò
• Scaling coefficients α = 0.1, β = (0.05, 0.05, 5× 10−7) for
the linear (p = 1) case, and (0.04, 0.04, 5× 10−4) for the
quadratic (p = 2) case.
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Sample paths computed by FPM-LP

0.0 0.1 0.2 0.3 0.4 0.5
time

1.00
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X 1

0.0 0.1 0.2 0.3 0.4 0.5
time

0.96

0.98

1.00

1.02

1.04

1.06

1.08

X 2
Figure: Illustrated sample paths computed with FPM-LP for X1 (left)

and X2 (right), quadratic SDE.
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Convergence of FPM-LP
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time step
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Figure: Convergence of FPM-LP vs the exact solution for the linear

SDE system. Results highlight the expected 1/2-order strong

convergence, and first order weak convergence.
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Convergence of FPM-LM
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Figure: Convergence of FPM-LM vs the exact solution for the linear

SDE
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Convergence of FPM-MM
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Figure: Convergence of FPM-MM vs the exact solution for the linear

SDE system. Results show the expected absence of strong

convergence, and the first order weak convergence.
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Self convergence for the quadratic SDE system
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Convergence for the quadratic system vs EMf
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Convergence analysis

Estimating

1 strong error Es := maxn=1,··· ,N E[|X(tn)− xn|]
2 weak error Ew :=

��E[ψ(xN)]− E[ψ(X(T ))]��
• xn is computed using FPM-LP
• the piecewise continuous interpolation process of FPM-LP
for t ∈ [tn, tn+1)

x(t) = xn + (t − tn)f (xn) +
mX

k=M+1

gk(xn)(Wk(t)−Wk(tn)) + η(t),

where

η(t) = φn(t)

MX
k=1

�
bk,n (−ak,n(t − tn) + (Wk(t)−Wk(tn)))

�
.
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Strong convergence

Recall

1 η(t) is an approximation for Yn(t) on t ∈ [tn, tn+1)
2 Yn(t) satisfies the linear diffusion only SDE

3 define

y(t) = x0+

Z t
0

f (x̃(s))ds+

mX
k=M+1

Z t
0

gk(x̃(s))dWk(s)+Y (t).

4 piecewise constant process x̃(t) ≡ xn for t ∈ [tn, tn+1)
5 x(t) = y(t) + η(t)− Y (t)

Es ≤ sup
0≤t≤T

E [|X(t)− x(t)|]

≤ sup
0≤t≤T

E [|X(t)− y(t)|] + sup
0≤t≤T

E [|η(t)− Y (t)|] .
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Strong convergence
Theorem. The FPM-LP scheme has a strong convergence order

of 1/2, i.e., there exists CT independent of ∆t such that

Es = max
n=1,··· ,N

E [|X(tn)− xn|] ≤ CT∆t1/2,

where xn is computed according to FPM-LP.
Techniques: The term E [|X(t)− x(t)|] is split into 3 partsÇ
sup
0≤t≤T

E [|X(t)− y(t)|]
å2
≤ 3
Ç
E
ñ
sup
0≤t≤T

E21 (t)
ô
+ E
ñ
sup
0≤t≤T

E22 (t)
ô
+ E
ñ
sup
0≤t≤T

E23 (t)
ôå

E21 (t) =

����Z t
0

(
f (X(s))− f (x̃(s))

�
ds

����2 ,
E22 (t) =

������
mX

k=M+1

Z t

0

(
gk(X(s)− gk(x̃(s))

�
dWk(s)

������
2

,

E23 (t) =

������
MX
k=1

Z t
0

�
gk(X(s))− gk(x̃(s))− g′k(x̃(s))(X̂(s)− x̃(s))

�
dWk(s)

������
2

.
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Weak Convergence

Theorem. The FPM-LP scheme has a weak convergence order of

1, i.e., there exists CT independent of ∆t such that

Ew ≤ CT∆t.

Techniques: the Feynman-Kac formula. The weak discretization error is split into 4

parts.
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