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Motivation
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Stochasticity and stiffness in wide range of physical systems

Large range of time-scales in the formulation of system
governing equations

Particular interest: time integration of stiff stochastic
chemical systems

Governing system: chemical Langevin equations with
significant degree of stiffness

Focus of this talk: time integration of stiff stochastic
differential equations with fast diffusion processes
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Background: Chemical Reaction Networks

A collection of chemical reactions that involves

® aset of N “species”:
5,', /6{1,...,/\/}

® aset of M chemical reactions R;, j € {1,..., M}:

N N
R;: ZOLUS/ — Zﬁusi
i—1 i—1

Fori=1,....,N, j=1,.... M
® aj;,Bj € Z* - stoichiometry coefficients

® vij =B — ajj, vj = (vij, -, vy;) - change in molecular
population caused by one R; reaction

® V = (vjj)nxm - stoichiometry matrix.
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Model Set-up

Assumption: the system is well-stirred:
® constant volume Q
® in thermal equilibrium at some constant temperature

® positions and velocities of the individual molecules ignored

Xi(t) - the number of the species S; in the system at time t.

Goal estimate the state vector
X(t) := (X1(t), -+, Xn(t))

given that the system was in state X(ty) = Xp at initial time tp.
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Stochastic Models

® X;(t): number of species S; attimet (i=1,..., N).

® X(t) = (X1(t), ..., Xn(t))" - column-vector Markov
stochastic process.

o k=(ki,....ky)" € Zf\r’ - state of the process.

® pr(t) =P[X(t) = k, given X(to) = ko] - the probability
that, at time t, there are ky units of species Sq, k> units of
species So, ..., given X(ty) = ko.

* p;: ZY — R, - propensity function for the respective
reaction R;.

® p;(k)dt - given X(t) = k, the probability that reaction R;
takes place in the next infinitesimal time interval [t, t + dt).

® v; - the jth column of stoichiometry matrix V.

HAN, Auburn University Efficient Simulation of Stiff Stochastic Differential Equations



Chemical Langevin equation (CLE)

Chemical Langevin Difference Equation

M M
X(t+dt) = X(t)+ > _vipj(k)dt + > vjy/p(KA;(0, 1)Vdt

J=1 Jj=1

By theory of continuous Markov processes
Chemical Langevin Differential Equation

M M
dX(t) =Y vipi(X(£))dt + > vjy/pi(X(£)dW(t)
j=1 j=1

Wi;(t) - independent Gaussian white noise processes.

Previous works: time-integration strategies based on stochastic
singular perturbation
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SDE with fast diffusion

dX(t) = F(X(£)dt + > ge(X(1))dWi (1),  X(0) = xo
k=1
Assumptions:

® The diffusion coefficients {gx}x=1... m exhibit a large range
of magnitudes.

® There exists M € {1,---, m} such that
91l lgml > [gm4al, - - [gml.
® |g1],---,|gm| : fast processes

® |gml, - |gml| : slow processes
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Euler-Maruyama (EM) and modified EM

® Simplest one-step EM

m
Xp+r1 = Xp+ f(xn)At + Z gk(xn)AWk,n
k=1
AWy n = Wi(tar1) — Wi(tn)

® Requires At to be extremely small for the above SDE with
fast diffusions.

® Modified EM
m
Xn+1 = Xp + Atf(xp) + Z Ik (Xn) AW + N1
k=M-+1

Goal: develop models for 1,41 that approximates the fast
diffusion processes more accurately than zﬁ”zl Ik (xn) AW, .
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Approximation of fast diffusion processes
Given any R%valued stochastic process X(t), define
M-t
7O =3 [ GXENIMS), L€ [t trsn)
k=1"tn
Let X(t) be the solution to the diffusion only SDE
M
dX(t) = ) ge(X(E)dWi(t),  X(tn) = Xn, T € [tn, tar1)
k=1

® |dea: Approximating ZX(t) where X is the solution to the
original SDE, by 2X(t)
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Justification

Error of the approximation |2X(t) — @,’,A((t)| is

® equal to zero if gk(X),’l/’:1 are decoupled from gx (X)L /41
and f(X).

® relatively small compared to the error of the EM scheme
applied to the slow diffusion processes (in the context of
chemical reaction systems when the magnitudes of
di, ..., 9pm are much larger than gp41, - - . gm Which indicates
the evolution of X(t) is only weakly coupled with X(t))

First step: approximating

X(t) = Z/ gk(X(s))dWi(s), t € [tn, tat1),
where X is the solution to the fast diffusion only SDE.
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|. Linear approximation at pathwise initial state

® Set Y, (t) = X(t) — x, for t € [tn, ths1).

e Notice Yy(tpi1) = ZX(tasr).

® Use Y, (ty+1) to approximate ZX(tp.1).

® Model the random variable m,+1 by Yn(tht1).
Given X(t,) = x,, approximate gx(X) by

Gk (X(1)) = bn + Jn(X(£) = Xn), € € [tn, try1),

where Jy , is the Jacobian of gx evaluated at x, and
bk n = 9gk(xn). Then Y, satisfies

M
dYo(t) = > (bt JinYa())dWi(t),  Ya(tn) =0, t € [tn, thy1)
k=1
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Exact solution Y;(t)

Ya(t)
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Q

" M
ch(t) <_/ q);l(s)z-jk,nbk,nds
tn k=1

" M
+ / d>;1(s>Zbk,nde(s>>
th 1

ijn £)dWi(t), t € [ty tns1),

Yn(tn+l)
M

/d + Z Jk,n(Wk(t) - Wk(tn))-
k=1
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dp(ty) =1
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[l. Linear approximation at the mean initial state

® The previous method evaluate Ji , for each sample path.

® Reduce computational cost by approximating of gx(X(t)) at
the path independent mean state X, := E[x,(w)]:

gk(X(t)) ~ Bk,n + J_k,n(X(t) - )_(n)x te [tny tn+1):

Jk.n is the Jacobian of gk evaluated at X, and by , = gx(Xn).
® Y, (t) satisfies the approximating SDE

M
dY(t) =) (JknYa(t) + cin)dWi(t),  t € [t thta),
k=1

where cx.n = bk + Ji.n(Xn — Xp).
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Exact solution Y,(t)

¢ M
Yo(t) = ®u(t) (— / ®,1(5) Y JnCh,nds
tn k=1

+ M
+ / O ck,ndvvk(s)> .
tn k=1

M M
Bo(t) = exp {—iZJi,n(r— tn) + 3 Jen(Wi(D) - vvk(tn»}
k=1 k=1

Nn+1 = Yn(tn+1)
M

CTDn(t) ~ /d+zjk,n(Wk(t)_Wk(tn))
k=1
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[1l. Moment approximations

® Model 1,41 in distribution by computing the moments for
Yn(tn+1).

® The mean u,(t) = E[Y,(t)] and second moment
Pa(t) = E[Y, ()Y, (t)] of Y,(t) satisfy

dun(t)

T
dPy(1) M
= kz_jl (JnPri o + Jknbinbf o + bicntih I, + benbf )
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Solutions to the moment system

° /J'n(t) =0on [tn: tn-i-l)-
e Covariance matrix C,(t) = E[Y,(t)Y,] (t)] satisfies

dC (t)

Z-jk nCn t)Jkn+Zbk nbkn te [tnythrl)-
k=1

® Model 1,41 as the d-variate normal distribution
Nn+1 ~ N (0, Cp(tht1)), with

M
Cn(thr]_) ~ Atz bk'nbz—'n
k=1
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Numerical algorithms

Forn=20,---,N:
Xot1 = Xn + Atf(xn) + Soppri1 Ik (Xn) AWi  + Mg with

[FPM-LP]  mnp1 = (lg + Sk JknBWien) Sk (—Jnbin At + by n AW )
[FPM-LM]  mng1 = (lg + Sk TenBWion) Skly (—JknCinDt + CnAWy )
[FPM-MM]  mog1 ~ N (0, At M, byenb] )

%0 =E[xal,  brn = gk(xn),  Chkn = gk(Xn) 4 Jn(Xn — Rn),

— (%9 ... M) 7. _(M... %)
Jk,n - (3)(1: " Xy X:Xn’ Jk,n = \ax;’ e X:)_(n.

where
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Convergence experiments

e Example system of stiff SDE in R?, with m = 3 Brownian
motions, and order-p polynomial drift and diffusion terms

FX(1) = (AX(0)": gu(X(1)) = (BkX(t))™", k=1,---.m

where the operation ()°P denotes the Hadamard power.
® Sample matrices
Bi=h {731 —26} . Be=he [—33 782} - Ba=hs [é —49}

Aza[l 2]

3 -4

e Scaling coefficients a = 0.1, 8 = (0.05,0.05,5 x 10~") for
the linear (p = 1) case, and (0.04,0.04,5 x 10~%) for the
quadratic (p = 2) case.
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Sample paths computed by FPM-LP

Figure: lllustrated sample paths computed with FPM-LP for X7 (left)
and X (right), quadratic SDE.
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Convergence of FPM-LP

Weak convergence vs exact solution Weak convergence vs. exact solution

Strong convergence vs. exact solution

i
>

Figure: Convergence of FPM-LP vs the exact solution for the linear
SDE system. Results highlight the expected 1/2-order strong
convergence, and first order weak convergence.
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Convergence of FPM-LM

Strong convergence vs. exact solution Weak convergence vs exact solution Weak convergence vs. exact solution

o
;

wmesep  umest w . mes »

Figure: Convergence of FPM-LM vs the exact solution for the linear
SDE
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Convergence of FPM-MM

Strong convergence vs. exact solution Weak convergence vs exact solution Weak convergence vs. exact solution
100

|
1B - X
(Crr=Crral

Figure: Convergence of FPM-MM vs the exact solution for the linear
SDE system. Results show the expected absence of strong
convergence, and the first order weak convergence.
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Self convergence for the quadratic SDE

Strong self convergence

‘Weak self convergence
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Convergence for the quadratic system vs EMf

Ep- X

EX- X
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Convergence analysis

Estimating
@ strong error €° ;= max,=1 ... ny E[|X(tn) — xnl]
® weak error ¢ = |E[¢(xy)] — E[$(X(T))]|
® x, is computed using FPM-LP

® the piecewise continuous interpolation process of FPM-LP

m

X(1) = xp+ (t = ta)F(xa) + > Grlxa) (Wa(t) = Wi(tn)) +n(t),
k=M+1

where

M
n() = 6a(6) D (Ben (—aea(t = ta) + (W) = Wal(2))) ).

k=1
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Strong convergence

Recall
@ 7(t) is an approximation for Y,(t) on t € [tp, th+1)
® Y, (t) satisfies the linear diffusion only SDE
© define

y(t) = s+ /0 F((s))ds+ 3 /O G (X(5))dWi(5)+Y (1)

k=M+1

O piecewise constant process X(t) = x, for t € [ty tht1)
© x(t) =y(t) +n(t) —Y(t)

GS

IN

sup_E[[X(t) —x(¢)]]
0<t<T

sup_ E[[X(t) = y(O)[] + sup_E[[n(t) = Y(t)]].
0<t<T 0<t<T

IN

HAN, Auburn University Efficient Simulation of Stiff Stochastic Differential Equations



Strong convergence
Theorem. The FPM-LP scheme has a strong convergence order
of 1/2, i.e., there exists Ct independent of At such that

€ = max E[X(tn) = xs[] < CrAtt/?,
n=1,--,

where x, is computed according to FPM-LP.
Techniques: The term E[|X(t) — x(t)]] is split into 3 parts

2
( sup E[|X(t) —y(t)|]> <3 (E{ sup Sf(t)} +E { sup 822(1')} —HE{ sup Sg(t)})
0<t<T 0<t<T 0<t<T 0<t<T

2

() = /O(f(X(s))—f(F((s)))ds .
2
80 = |2 [ (00X - a&ZN)Wis)| |
k=M+170
Mo 2
gwo = |3 /O (96(X(5)) = 9u(%(5)) = G (Z(S)(X(5) = X(5)) ) dWi(5)] -
k=1
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Weak Convergence

Theorem. The FPM-LP scheme has a weak convergence order of
1, i.e., there exists C7 independent of At such that

e" < CrAt.

Techniques: the Feynman-Kac formula. The weak discretization error is split into 4
parts.

HAN, Auburn University Efficient Simulation of Stiff Stochastic Differential Equations 28/29



Acknowledgement

This work was partially supported by the Simons Foundation (Collaboration Grants for Mathematicians No.
419717), and by the US Department of Energy (DOE), Office of Basic Energy Sciences (BES) Division of
Chemical Sciences, Geosciences, and Biosciences. Sandia National Laboratories is a multimission laboratory
managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned
subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security
Administration under contract DE-NA-0003525. This paper describes objective technical results and analysis.
Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of

the U.S. Department of Energy or the United States Government.

Thanks for your attention!

HAN, Auburn University Efficient Simulation of Stiff Stochastic Differential Equations 29/29



