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Outline
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• How to verify a scientific spiking neuromorphic algorithm?

• Our answer: Make it an inverse problem and use ML

• Our inverse problem:  OU process simulated on Loihi

• Our ML method: Apply CNNs to image-like data

• Concluding thoughts



Expanding Neuromorphic Workloads
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Spiking neuromorphic systems are being used in more 
and more domains.

• Real-time sensor processing
• Robotics control

• Scientific and numerical workloads



Expanding Neuromorphic Workloads

4

Spiking neuromorphic systems are being used in more 
and more domains.

• Real-time sensor processing
• Robotics control

• Scientific and numerical workloads



Evaluating performance
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Ways to know if a scientific spiking neuromorphic algorithm is 
working:
• Classifier – Accuracy
• Regression – Absolute error
• Stochastic –  ? 

• Quantity of Interest (QOI):   You can compute what you care about
• Statistical: You are close in distribution
• Parameter Recovery: You can determine underlying system (Inverse 

Problem)



Random Walks On Neuromorphic Systems
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• Previously, we developed spiking 
neuromorphic algorithms for random 
walks1

• Two main formulations:
• A group of neurons represents a walker

• Activity represents position
• A group of neurons represents a location 

(Density Method)
• Activity represents walkers

1 Severa, IJCNN, 2018

Simple diffusion on LoihiExample Density Circuit



Density Based Method
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• Nodes can be connected in arbitrary 
graphs and with arbitrary transition 
probabilities (depending on hardware)

• Walkers scale efficiently
• Requires discretization of underlying 

system
• Energy efficient solutions to a large family 

of SDEs1

• Applied to a steady state heat equation 
on IBM TrueNorth and Intel Loihi2

• Several examples of good QOI estimation

1 Smith, Nat. Elec., 2022
2 Smith, ICONS, 2020

QOI Error Decreasing with Runtime



Density Based Method Generates Statistically Similar Samples
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• One way to validate the method is 
characterize the distribution of 
generated samples1

• Various statistical distances exist
• Log Likelihood Ratio
• KL Divergence

• Some of the Loihi samples deviate from 
expected

• Vast majority are pretty close
• Is there another way to verify that the 

samples are useful?

1 Aimone, ICRC, 2021



Inverse problem means recovering underlying parameters
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• Inverse problems are finding underlying parameters from observations
• Applications in many experimental domains
• Solving an inverse problem from simulated data means the data is ‘useful’



Our inverse problem
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Setup Overview
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Data Generation (Loihi) Network Training (GPU)



Examples from generated data (Brighter = More Walkers)
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Dataset Overview
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• Generate data and section into two datasets:
• “Base” 25,874 samples
• “Expanded” 37,554 samples

• Validation set 3697 samples
• MATLAB generated “Conventional” data, 4163 

samples
• Spatial x Time means data is image-like



Setup Overview
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• Studied 3 off-the-shelf 
CNNs:
• ResNet50
• DenseNet121
• VGG16

• TPE hyperparameter 
optimization using Optuna

• Zero padding
• Squared Error for loss
• Mean Absolute Error (MAE) 

as reported metric
• No domain knowledge used

Inverse Problem



Results (Validation)
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Evaluation on MATLAB Test Set
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Loss During Training
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Loss During Training
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Training losses (especially for VGG) are pretty good.



Loss During Training
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Validation dropoff suggests more data needed.



Conclusion and Next Steps

20

• Solving an inverse problem is neat
• Generating simulation data to feed GPU-based training (Heterogeneous workload)

• Method to validate a spiking neuromorphic algorithm
• Losses are low (though could be improved)
• Off-the-self CNNs worked fine (though could be overparameterized)

• Implication: Energy efficient generation of simulation data
• Scientific deep learning (and really all of deep learning) needs many samples
• In many applications, that data is generated in simulators
• Moving the simulation to neuromorphic could mean an energy savings 

• Suggestion: First step for a fully neuromorphic approach
• Simulations and learning on-neuromorphic
• Use learning as a constraint/regularizer
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