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/" Outline

How to verify a scientific spiking neuromorphic algorithm?
Our answer: Make it an inverse problem and use ML

Our inverse problem: OU process simulated on Loihi

Our ML method: Apply CNNs to image-like data

Concluding thoughts




/" Expanding Neuromorphic Workloads
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Spiking neuromorphic systems are being used in more
and more domains.

» Real-time sensor processing
» Robotics control
 Scientific and numerical workloads
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/" Evaluating performance
3

4 Ways to know if a scientific spiking neuromorphic algorithm is

working:
» (lassifier - Accuracy
« Regression - Absolute error

« Stochastic - ?
* Quantity of Interest (QOI). You can compute what you care about
« Statistical: You are close in distribution

« Parameter Recovery: You can determine underlying system (Inverse
Problem)




P Random Walks On Neuromorphic Systems

Previously, we developed spiking
neuromorphic algorithms for random

walks' "
, . - .
«  Two main formulations:
* Agroup of neurons represents a walker
* Activity represents position
« A group of neurons represents a location
(Density Method) g &
*  Activity represents walkers e

Example Density Circuit Simple diffusion on Loihi
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P Density Based Method et o
. @ Loihi

’ + CPU Multi-Core
Nodes can be connected in arbitrary =GP
graphs and with arbitrary transition

probabilities (depending on hardware)

sy
m
[=]
[==]

Walker Updates per Joule
O

«  Walkers scale efficiently 06 -

1.E+05 1.E+06 1.E+07 1.E+08 1.E+09 1.E+10

» Requires discretization of underlying Walker Updates per Second
system

QOI Error Decreasing with Runtime

* Energy efficient solutions to a large family T e
of SDES' 7T o e e

=Analytic Solution

- o o
T T T

* Applied to a steady state heat equation
on IBM TrueNorth and Intel Loihi?

«  Several examples of good QOI estimation o
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L
T

Position

1 Smith, Nat. Elec., 2022
2 Smith, ICONS, 2020




KL Divergence
Data Source
Conventional Loihi

/" Density Based Method Generates Statistically Similar Samples
74
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One way to validate the method is
characterize the distribution of 80%
generated samples’ 0%
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* Various statistical distances exist 0% 3=

+ Log Likelihood Ratio 40% SR

« KL Divergence o% _

80% S 8

« Some of the Loihi samples deviate from s N8

expected 0%

. . 80% SE

 Vast majority are pretty close o, 2§
* |s there another way to verify that the 0%
samples are useful? 80%
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Data

1T Aimone, ICRC, 2021




P Inverse problem means recovering underlying parameters

* Inverse problems are finding underlying parameters from observations
« Applications in many experimental domains
* Solving an inverse problem from simulated data means the data is ‘useful’




/" Our inverse problem
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4 We focus on a 1D Ornstein-Uhlenbeck (OU) process:

X(1) =X(0)—k/(;lt (X(u) — z) du + V2DW(¢)

Our goal will be to recover the parameters k, D, and z.

This OU process has applications in molecular motor motion, stock prices, thermal diffusive
particle in a harmonic well, epidemiological processes, and more.
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Setup Overview

Data Generation (Loihi)

Learn @ and [.

d2(0) = 2(0(D), BdE+ B(8(D), BdE (B

pproximate SDE

*xouddy OW1Q

Gather Sample
Observations

a only

o

05

Time

Implement on Loihi

We may sample paths of an SDE by
simulating them through an
approximating DTMC. The DTMC is
well suited for implementation on
Loihi, where sample observations
can be generated. We aim to use
machine learning to help solve the

, finding @ and
when only sample observations are
available.

Training

Inference

Network Training (GPU)

General Stochastic Process
dX(£) = —k(X(£) — z)dt + VZDdW (t)

Observed Experimental Trajectories

Simulated Training Data

_| Trained

Learn Parameterization
from Trajectories

Parameterized Stochastic Process

k

e

dX(t) = =3(X(t) = 5)dt + v17.4dW(t)

D
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Examples from generated data (Brighter = More Walkers)
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Dataset Overview
Figure 2: Process for generating DTMC on Loihi.
Randomly select the core

parameters z, k, and D.

* (Generate data and section into two datasets: 1) = 1o selected 5.2 unifoemn randam
° “Base” 25,874 Samp|ES . ngmber i'n [-7.7]. '
(2) k is a uniform random number in [1,5].
° ”Expanded" 37,554 Samples (3) D is a uniform random number in
[0.001,0.2].

-« Validation set 3697 samples
« MATLAB generated “Conventional” data, 4163 Generate a Markov chain and implement

on Loihi, recording data output for 40, 000

Sam p | es neural time steps according to the following
randomly selected "viewing’ conditions.

« Spatial x Time means data is image-like

(1) Randomly select L, to be between 2
and 5 whole units below z and Ly, to
be between 2 and 5 whole units above z.

(2) Randomly select the number of walkers
M to be an integer between 30 and 200. |

(3) Randomly select an integer between 1
and 100, then set At to be equal to this
integer divided by 1000.

(4) Randomly select an integer between 5
and 20, then set As to be equal to this
integer divided by 100.

(5) Randomly select a starting location to be
any x; on the mesh defined by Lyjp,
Lmax. and As as constructed above.

Repeat 4 Times




/ Setup Overview

» Studied 3 off-the-shelf
CNNSs:
 ResNet50

e DenseNet121
« VGG16

« TPE hyperparameter
optimization using Optuna

« Zero padding
* Squared Error for loss

*  Mean Absolute Error (MAE)
as reported metric

Gradient Descent
Repeat epochs times

*  No domain knowledge used

TPE Optimization
Repeat frials times




Results (Validation)

Best Mean Absolute Error
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Evaluation on MATLAB Test Set

MAE for Matlab-Generated Data
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Loss During Training

Losses for Overall Best Trials
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Loss During Training

Losses for Overall Best Trials
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Training losses (especially for VGG) are pretty good.




Loss During Training

Losses for Overall Best Trials
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Validation dropoff suggests more data needed.




P Conclusion and Next Steps

Solving an inverse problem is neat
« Generating simulation data to feed GPU-based training (Heterogeneous workload)

« Method to validate a spiking neuromorphic algorithm
« Losses are low (though could be improved)

«  Off-the-self CNNs worked fine (though could be overparameterized)

« Implication: Energy efficient generation of simulation data
« Scientific deep learning (and really all of deep learning) needs many samples

* In many applications, that data is generated in simulators
*  Moving the simulation to neuromorphic could mean an energy savings

« Suggestion: First step for a fully neuromorphic approach
« Simulations and learning on-neuromorphic

« Use learning as a constraint/regularizer
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Loihi Deployments at Neural Exploration and Research

Lab (NERL) 128M

1M Neurons Neurons

« FY19 . FY22

8 Loihi Chips « 2nd Gen Arch

1B Neurons

e FY23
 2nd Gen Arch

50M Neurons

« FY20
» 384 Loihi Chips




