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2 Problem Formulation Inifinite-Dimensional Nonsmooth Optimization

Goal: Develop efficient algorithms to solve the nonsmooth optimization problem,
min
x∈H

f(x) + φ(x).

– H is a Hilbert space;
– φ : H→ [−∞,+∞] is proper, closed and convex, but may be nonsmooth;
– f : H→ R has Lipschitz continuous gradients on an open set containing domφ;
– F := f + φ is bounded below on domφ.

Examples:

1. Sparse Regularization: H = L2(Ω) and φ(x) = β‖x‖L1(Ω) with β > 0.
2. Convex Constraints: φ(x) = 0 if x ∈ C and φ(x) = +∞ otherwise.
Notation: proxγφ(x) for x ∈ H and γ > 0 is the proximity operator given by

proxγφ(x) := arg min
y∈H

{ 12γ ‖x − y‖2H + φ(y)
}
.

In example 2, proxγφ(x) = projC(x) is themetric projection of x onto C.
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3 Motivating Application Sparse Control

Goal: Determine a control z that produces a state close to w and that has small support.
Given a domain Ω ⊂ Rd, a target state w ∈ L2(Ω), bounds a ≤ 0 ≤ b a.e., and penaltyparameters α, β ≥ 0,

min
z∈L2(Ω)

∫
Ω

|S(z)− w|2(x)dx +
α

2
∫

Ω

|z|2(x)dx + β

∫
Ω

|z|(x)dx

subject to a ≤ z ≤ b a. e.,

where S(z) = u ∈ H10(Ω) solves
−∆u + u3 = z in Ω

u = 0 in ∂Ω

Challenges: Objective function is nonsmooth, nonconvex, and expensive.
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4 Sparse Control Existing Methods

1. Subgradient and Bundle Methods: Iterates xk+1 solve the optimization problem
min
x∈H

tk
2 ‖x − xk‖2H + sup

j∈Ik
{f(yj) + φ(yj) + (∇f(yj) + ηj, x − yj)H},

where tk ≥ 0 and ηj ∈ ∂φ(yj). Typically, convergence is slow (e.g., sublinear).

2. Proximal Gradient Methods: Iterates xk+1 solve the optimization problem
min
x∈H

(∇f(xk), x − xk)H +
1
2γk ‖x − xk‖2H + φ(x) ⇐⇒ xk+1 = proxγkφ(xk − γk∇f(xk)).

PG methods are robust, but slow. Can use acceleration (Nesterov) or momentum (heavy balls).
3. Proximal Newton-Type Methods: Iterates xk+1 solve the optimization problem

min
x∈H

(∇f(xk), x − xk)H +
1
2 (Bk(x − xk), x − xk)H + φ(x),

where Bk ∈ L(X) approximates the Hessian of f . PN methods require positive definite Bk(e.g., convexity) and nonstandard/nontrivial prox computations.
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5 Motivating Application Elastic Topology Optimization

Goal: Determine a binary ρ that is maximally stiff and that satisfies the volume constraint.

  

u=0

K(ρ):εn=T

Given a domain Ω ⊂ Rd and a volume fraction v ∈ (0, 1),
min

ρ∈L2(Ω)

∫
Γt
T(x) · [S(ρ)](x)dx

subject to

∫
Ω

ρ(x)dx ≤ v|Ω|, 0 ≤ ρ ≤ 1 a.e.,

where S(ρ) = u ∈ (H1(Ω))d solves
−∇ · (K(ρ) : ε) = 0, ε = 12 (∇u +∇u>) in Ω

K(ρ) : εn = T on Γt
u = 0 on Γd

Challenges: Objective function is expensive and highly nonconvex due to material models likethe Solid IsotropicMaterial with Penalization (SIMP).
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6 Elastic Topology Optimization Existing Methods

1. Optimality Criterion Method: A heuristic fixed-point iteration that is related to a projectedgradient method.
Bendsøe & Kikuchi, Generating optimal topologies in structural design using a homogenization method, CMAME, 1988.

2. Method of Moving Asymptotes: A sequential convex optimization approach that uses rationalapproximations of the objective and constraints. The dual subproblem is commonly solvedusing nonlinear CG. This method is inherently finite dimensional.
Svanberg, The method of moving asymptotes—A new method for structural optimization, IJNME, 1987.

3. Augmented Lagrangian: Robust, yet minimizing the penalty function at each iteration can beexpensive.
4. Interior Points: Primal-dual line-search methods have been used succesfully. However,nonconvexity can lead to expensive inertia correction.
It can be extremely difficult to incorporate inexactness in these methods!
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7 Nonsmooth Trust Regions Basic Algorithm

Require: An initial guess x0, initial trust-region radius∆0 > 0, 0 < η1 < η2 < 1 and0 < γ1 ≤ γ2 < 1
1: for k = 1, 2, . . . do
2: Model Selection: Choose a subproblem model fk of f near xk
3: Step Computation: Compute xk+1 that approximately solves

min
x∈H
{mk(x) := fk(x) + φ(x)} subject to ‖x − xk‖H ≤ ∆k

4: Evaluate Objective: Compute the actual reduction aredk := F(xk)− F(xk+1)
5: Step Acceptance: Compute the ratio of actual and predicted reduction:

ρk :=
aredk

mk(xk)−mk(xk+1) < η1 =⇒ xk+1 ← xk

6: Update Trust-Region Radius: ∆k+1 ∈


[γ1∆k, γ2∆k] if ρk < η1
[γ2∆k,∆k] if ρk ∈ [η1, η2)
[∆k,∞) if ρk ≥ η2

7: end for
Drew Kouri Inexact Nonsmooth Trust Regions



8 Nonsmooth Trust Regions Subproblem

Trust-Region Subproblem: At each iteration, we approximately solve
min
x∈H
{mk(x) := fk(x) + φ(x)} subject to ‖x − xk‖H ≤ ∆k,

where∆k > 0 is the radius and fk : H→ R is a model of the f near the iterate xk.

Example: Perhaps the most common model fk is the quadratic Taylor model
fk(x) = (gk, x − xk) +

1
2 (Bk(x − xk), x − xk)H,

where gk ≈ ∇f(xk) and Bk encapsulates curvature information, e.g., Bk = ∇2f(xk) or anapproximation thereof (e.g., quasi-Newton).
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9 Nonsmooth Trust Regions Approximate Subproblem Solution

Recall: The Cauchy point is used to determine if iterate xk+1 has produced sufficient reductionof the modelmk — Need a generalization for nonsmooth problems!

The generalized Cauchy point is a point along the proximal gradient path
xcpk = pk(tk) where pk(t) := proxtφ(xk − tgk)

that satisfies both
1. Trust-Region Feasibility: ‖xcpk − xk‖H ≤ ν1∆k

2. Sufficient Decrease: mk(xcpk )−mk(xk) ≤ µ1[(gk, xcpk − xk)H + φ(xcpk )− φ(xk)]

and at least one of the following conditions:
tk ≥ ν2t′k or tk ≥ ν3,

where t′k satisfies
mk(pk(t′k))−mk(xk) ≥ µ2[(gk, pk(t′k)− xk)H +φ(pk(t′k))−φ(xk)] or ‖pk(t′k)− xk‖H ≥ ν4∆k.
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10 Nonsmooth Trust Regions Generalized Cauchy Point

Require: An initial step length γ > 0 and positive parameters 0 < βdec < 1 < βinc
1: if k = 1 then
2: Set t̄ = γ
3: else
4: Set t̄ = tk−1
5: end if
6: if (1) and (2) are satisfied at tk = t̄ then
7: Compute the largest ` ∈ N such that tk = t̄β`inc satisfies (1) and (2)8: else
9: Compute the smallest ` ∈ N such that tk = t̄β`dec satisfies (1) and (2)10: end if

‖pk(tk)− xk‖H ≤ ν1∆k

mk(pk(tk))−mk(xk) ≤ µ1[(gk, pk(tk)− xk)H + φ(pk(tk))− φ(xk)]

(1)
(2)
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11 Nonsmooth Trust Regions General Step Requirements

Consequence of GCP: There exists an iterate xk+1 that satisfies
‖xk+1 − xk‖H ≤ νrad∆k, νrad ≥ ν1

mk(xk)−mk(xk+1) ≥ µ3[mk(xk)−mk(xcpk )], 0 < µ3 ≤ 1
Proof: Take xk+1 = xcpk , computed using previous algorithm.

The GCP computation requires repeated evaluation of the proximity operator!
Can avoid GCP computation by computing steps that satisfy

‖xk+1 − xk‖H ≤ νrad∆k

mk(xk)−mk(xk+1) ≥ κfcdhk min

{ hk
1+ ωk

,∆k

}
,

(FCD)

where hk := ‖pk(r0)− xk‖H/r0 for fixed r0 > 0 and ωk ≥ 0 measures the curvature of fk.
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12 Nonsmooth Trust Regions Inexactness Conditions

In infinite-dimensional optimization, the objective function and its gradient are often im-
possible to compute without discretization, leading to inexactness.

When evaluating the of reduction of the objective function, we approximate
credk ≈ aredk := (f(xk) + φ(xk))− (f(xk+1)− φ(xk+1)),

where credk satsifies:
∃κobj > 0, ζ > 1, η < min{η1, 1− η2}, and θk ↘ 0 such that
| aredk − credk | ≤ κobj[ηmin{mk(xk)−mk(xk+1), θk}]ζ ∀ k.

We also require that the model gradient gk must satisfy:
∃κgrad > 0 such that ‖∇f(xk)− gk‖H ≤ κgrad min{hk,∆k} ∀ k.
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13 Nonsmooth Trust Regions Inexact Algorithm

Require: An initial guess x0, initial trust-region radius∆0 > 0, 0 < η1 < η2 < 1 and0 < γ1 ≤ γ2 < 1
1: for k = 1, 2, . . . do
2: Model Selection: Choose a subproblem model fk of f near xk . . . . . . . . . . . . . . . . . . . . . Inexact!
3: Step Computation: Compute a trial step xk+1 that satisfies (FCD)
4: Evaluate Objective: Evaluate the computed reduction credk ≈ aredk . . . . . . . . . . . . . Inexact!
5: Step Acceptance: Compute the ratio of computed and predicted reduction:

ρk :=
credk

mk(xk)−mk(xk+1) < η1 =⇒ xk+1 ← xk

6: Update Trust-Region Radius: ∆k+1 ∈


[γ1∆k, γ2∆k] if ρk < η1
[γ2∆k,∆k] if ρk ∈ [η1, η2)
[∆k,∞) if ρk ≥ η2

7: end for
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14 Convergence Theory

Recall: hk := 1
r0 ‖ proxr0φ(xk − r0gk)− xk‖H

Under the stated assumptions, the iterates produced by the TR algorithm satisfy
lim inf
k→∞

hk = 0 =⇒ lim inf
k→∞

1
r0 ‖ proxr0φ(xk − r0∇f(xk))− xk‖H = 0.

Note: This result permits unbounded model curvature.

Application: If the smooth objective function f has the form
f(x) = f0(x) +

α

2 ‖x − x0‖2H,

where α > 0, x0 ∈ H, ∇f0 is completely continuous and r0 ≥ α−1, then any weak
accumulation point of {xk} is a critical point of f + φ. See, e.g., sparse control.

Recall: ∇f0 is completely continuous if yk ⇀ y implies∇f0(yk)→ ∇f0(y).
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15 Spectral Proximal Gradient Subproblem Solver

Model: For the SPG subproblem solver, we employ the models
fk(x) = 12 (Bk(x − xk), x − xk)H + (gk, x − xk)H and φk(x) =

{
φ(x) if ‖x − xk‖H ≤ ∆k
+∞ otherwise

SPG Iteration: xk,`+1 = xk,` + α`s` where s` = proxλ`φk(xk,` − λ`∇fk(xk,`))− xk,`

1. Start with xk,0 = xcpk to ensure fraction of Cauchy decrease (FCD)
2. Compute the step length α` by minimizing the quadratic upper bound

t 7→ fk(xk,` + ts`) + t[φk(xk,` + s`)− φk(xk,`)] + φk(xk,`)
3. Compute the safeguarded spectral step length λ` as

λ` := max

{
λmin,min

{
λmax,

(s`−1, s`−1)
(Bks`−1, s`−1)

}}
Birgin, et al., Nonmonotone spectral projected gradient methods on convex sets, SIOPT, 2000.
Kouri, A matrix-free trust-region Newton algorithm for convex-constrained optimization, Opt. Letters, 2022.
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16 Spectral Proximal Gradient Subproblem Solver

Proximity Operator for φk: The proximity operator of φk applied to x ∈ H is given by

proxγφk(x) =

{
proxγφ(x) if ‖ proxγφ(x)− xk‖H ≤ ∆k
proxt?γφ(xk + t?(x − xk)) otherwise ,

where t? ∈ [0, 1] is any t ∈ [0, 1] that satisfies

ψk(t) := ‖ proxtγφ(xk + t(x − xk))− xk‖H −∆k = 0.

Here, ψk is nondecreasing and continuous on [0, 1] with ψk(0) < 0 and ψk(1) > 0.
Can compute proxγφk(x) by applying, e.g., Brent’s method to ψk(t).
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17 Numerical Results Sparse Control

Goals: 1. Comparison of TR method with modern nonsmooth methods.

2. Demonstration of mesh independence for TR method.

Let Ω = (0, 1)2, w ≡ −1, a ≡ −25, b ≡ 25, α = 10−4 and β = 10−2, and consider
min

z∈L2(Ω)

∫
Ω

|S(z)− w|2(x)dx +
α

2
∫

Ω

|z|2(x)dx + β

∫
Ω

|z|(x)dx

subject to a ≤ z ≤ b a. e.,

where S(z) = u ∈ H10(Ω) solves
−∆u + u3 = z in Ω

u = 0 in ∂Ω

Discretization: P1 FEM for state variables and piecewise constant for controls.
Problem Size: 131,072 control degrees of freedom.
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18 Numerical Results Sparse Control

method iter fval grad hess phi prox time (s) speedup?

TR 3 4 4 26 36 80 17.2037 1.0000

PG 32 92 33 0 92 125 267.5140 15.5498

SPG 21 31 22 0 31 44 100.3323 5.8320

R2 60 61 25 0 61 86 180.1468 10.4714

nmAPG 43 86 86 0 86 88 409.1166 23.7807

iPiano 60 154 61 0 61 215 477.4582 27.7532

FISTA 54 169 109 0 169 116 542.4645 31.5319

PANOC 95 381 178 0 368 383 1151.7171 66.9459

ZeroFPR 44 139 89 0 92 185 437.2350 25.4152

Proximal Gradient Methods Accelerated Methods Proximal Quasi-Newton Methods

?speedup is the ratio of the wallclock time for TR divided by the times for the other methods.
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19 Numerical Results Sparse Control

τop 1e-4 1e-6 1e-8

mesh iter npde lpde prox iter npde lpde prox iter npde lpde prox

64x64 3 4 56 80 5 6 108 129 7 8 186 181

128x128 3 4 54 79 4 5 79 102 6 7 129 151

256x256 3 4 56 80 5 6 108 129 6 7 133 153

512x512 3 4 54 78 5 6 102 123 6 7 127 147

Algorithm demonstratesmesh independences with respect to the number of iterations and thenumber of PDE solves!
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20 Numerical Results Elastic Topology Optimization

Goals: 1. Comparison of TR method with modern projected and AL methods.

2. Demonstration of TR inexactness control for 3D problems.

  

Ω Γt

Γd

Let Ω = (0, 2)× (0, 1)d, d = 1, 2, and v = 0.4, and consider
min

ρ∈L2(Ω)

∫
Γt
T(x) · [S(ρ)](x)dx

subject to

∫
Ω

ρ(x)dx = v|Ω|, 0 ≤ ρ ≤ 1 a.e.,

where S(ρ) = u ∈ (H1(Ω))d+1 solves
−∇ · (K(ρ) : ε) = 0 in Ω

ε =
1
2 (∇u +∇u>) in Ω

K(ρ) : εn = T on Γt
u = 0 on Γd
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21 Numerical Results 2D Elastic Topology Optimization

Formulation: SIMP power p = 3 with Helmholtz filtering (radius= 0.1).
Discretization: Q1 FEM for displacement variables and piecewise constant for density.
Problem Size: 26,880 density degrees of freedom.

method iter fval grad hess proj time(s) speedup?

TR 9 10 10 236 1200 16.49 1.0000

LMTR 33 34 31 418 391 32.42 1.9660

PQN 126 235 127 0 4972 164.49 9.9751

SPG 84 90 85 0 170 52.36 3.1753

AL-TR 9 52 51 1153 0 61.98 3.7586

AL-LMTR 11 276 263 4368 0 280.77 17.0267

Projected Newton-Type Methods Spectral Projected Gradient AL Methods

?speedup is the ratio of the wallclock time for TR divided by the times for the other methods.
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22 Numerical Results 3D Elastic Topology Optimization

Formulation: SIMP power p = 3 with Helmholtz filtering (radius= 0.1).
Discretization: Q1 FEM for displacement variables and piecewise constant for density.
Problem Size: 221,184 density degrees of freedom.
Inexact Solves: Solve using CG with AMG preconditioning.
– Helmholtz Filter: Requires∼8 iterations to achieve the relative error of∼ 10−12

=⇒ Considered to be exact.
– Elasticity Equations: Trust-region algorithm controls accuracy of linear solver.
k F(xk) hk ‖xk − xk−1‖ ∆k fval grad hess proj obj tol grad tol

0 1.0000 4.017e-2 --- 20 1 1 0 4 1.000e-2 1.000e-2

1 0.7156 1.771e-2 2.000e1 50 2 2 28 96 1.000e-2 1.000e-2

2 0.4393 6.788e-3 5.000e1 50 3 3 55 204 1.000e-2 1.000e-2

3 0.3168 2.853e-3 5.000e1 125 4 4 82 405 1.000e-2 1.000e-2

4 0.1654 8.805e-4 1.250e2 125 5 5 109 639 1.000e-2 8.802e-3

5 0.1255 2.066e-5 1.250e2 125 6 6 143 707 1.000e-2 2.066e-4

6 0.1247 2.713e-6 6.272e1 312.5 7 7 171 765 1.461e-4 2.713e-5
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23 Numerical Results Elastic Topology Optimization

Filtered Density: 0.9 Countour
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Conclusions:

– Numerical solution of infinite-dimensional problems requires expensive approximations
– Often, the objective function and its gradient can only be computed inexactly
– Nonsmooth trust region is provably convergent even with inexact computations
– We can efficiently compute a trial step using the spectral proximal gradient method

– SPG trust-region subproblem solver ismatrix free, but may requiremany prox computations
Future: Can we incorporate inexact prox computations? Can we handle nonconvex φ?

– Nonsmooth trust-region method outperforms existing nonsmooth methods!
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