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2l Problem Formulation

Inifinite-Dimensional Nonsmooth Optimization

Goal: Develop efficient algorithms to solve the nonsmooth optimization problem,

- His a Hilbert space;

min f(x) + ¢(x).

xeH

- ¢ : H— [—00,400] is proper, closed and convex, but may be nonsmooth;

- f : H— R has Lipschitz continuous gradients on an open set containing dom ¢;
- F:=f+ ¢is bounded below on dom ¢.
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2 PrObIem FormUIation Inifinite-Dimensional Nonsmooth Optimization

Goal: Develop efficient algorithms to solve the nonsmooth optimization problem,

min f(x) + ¢(x).

xeH

- His a Hilbert space;
- ¢ : H— [—00,400] is proper, closed and convex, but may be nonsmooth;
- f : H— R has Lipschitz continuous gradients on an open set containing dom ¢;
- F:=f+ ¢is bounded below on dom ¢.
Examples:
1. Sparse Regularization: H = [*(Q) and ¢(x) = S| |x||;1(q) with 3 > 0.
2. Convex Constraints: ¢(x) = 0if x € C and ¢(x) = 400 otherwise.
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2 PrObIem FormUIation Inifinite-Dimensional Nonsmooth Optimization

Goal: Develop efficient algorithms to solve the nonsmooth optimization problem,

min f(x) + ¢(x).

xeH

- His a Hilbert space;
- ¢ : H— [—00,400] is proper, closed and convex, but may be nonsmooth;
- f : H— R has Lipschitz continuous gradients on an open set containing dom ¢;
- F:=f+ ¢is bounded below on dom ¢.
Examples:
1. Sparse Regularization: H = [*(Q) and ¢(x) = S| |x||;1(q) with 3 > 0.
2. Convex Constraints: ¢(x) = 0if x € C and ¢(x) = 400 otherwise.

Notation: prox. ,(x) for x € Hand v > 0 is the proximity operator given by
prox.,4(x) := arg min {5 =yl + o) }-
y

In example 2, prox, 4(x) = proj¢(x) is the metric projection of x onto C.
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Motivating Application  sparse control

Goal: Determine a control z that produces a state close to w and that has small support.

Given a domain  C R, a target state w € L?(Q2), bounds a < 0 < b a.e., and penalty

parameters «, 3 > 0,

min /|S —wl(x)dx + = /|z| dx+ﬂ/|z|
z€12(Q)

subject to a<z<b a.e,

where S(z) = u € H}(R) solves
—Au+uvP=z inQ
u=0 inodQ

Challenges: Objective function is nonsmooth, nonconvex, and expensive.
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4 Sparse contrOI Existing Methods

1. Subgradient and Bundle Methods: Iterates x4 solve the optimization problem

min 2 e = 3 + sup{(y) + 609) + (VF03) + 7% — ),
X JEI

where ty > 0 and 7; € 04(y;). Typically, convergence is slow (e.g., sublinear).
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4 Sparse contrOI Existing Methods

1. Subgradient and Bundle Methods: Iterates x,, solve the optimization problem

min b = xelfh + sup{£g) + 609) + (VF05) + 7% — ),
X JEI

where ty > 0 and 7; € 04(y;). Typically, convergence is slow (e.g., sublinear).

2. Proximal Gradient Methods: Iterates X, 1 solve the optimization problem
. 1
min (V) x = Xi)u + TWHX —xdli + o) = X = proxg, (4 — wVF ().

PG methods are robust, but slow. Can use acceleration (Nesterov) or momentum (heavy balls).
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4 Sparse contrOI Existing Methods

1. Subgradient and Bundle Methods: Iterates x,, solve the optimization problem

min b = xelfh + sup{£g) + 609) + (VF05) + 7% — ),
X JEI

where ty > 0 and 7; € 04(y;). Typically, convergence is slow (e.g., sublinear).

2. Proximal Gradient Methods: Iterates X, 1 solve the optimization problem
. 1
min (V) x = Xi)u + TWHX —xdli + o) = X = proxg, (4 — wVF ().

PG methods are robust, but slow. Can use acceleration (Nesterov) or momentum (heavy balls).
3. Proximal Newton-Type Methods: Iterates x, solve the optimization problem
. 1
min (Vf(xk)s x — xi)u + E(Bk(x = Xk), X — Xk)u + ¢(X),

where By € L(X) approximates the Hessian of f. PN methods require positive definite By
(e.g., convexity) and nonstandard/nontrivial prox computations.
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5 Motivati ng Appl ication Elastic Topology Optimization

Goal: Determine a binary p that is maximally stiff and that satisfies the volume constraint.

Given a domain Q C R? and a volume fraction v € (0, 1),

w0 min / T(x) - [S(p)](x) dx

per2(@) Jr,

subject to / p(x)dx <v|Q|, 0<p<1 ae,
Q

Kpren=T  where S(p) = u € (H'(Q))? solves

—V - (K(p):€) =0, e=3(Vu+Vu") in Q
K(p):en=T onl,
u=20 only

Challenges: Objective function is expensive and highly nonconvex due to material models like
the Solid Isotropic Material with Penalization (SIMP).
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sl Elastic Topology Optimization cuisting Methods

1. Optimality Criterion Method: A heuristic fixed-point iteration that is related to a projected
gradient method.

Bendsge & Kikuchi, Generating optimal topologies in structural design using a homogenization method, CMAME, 1988.
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sl Elastic Topology Optimization cuisting Methods

1. Optimality Criterion Method: A heuristic fixed-point iteration that is related to a projected
gradient method.

Bendsge & Kikuchi, Generating optimal topologies in structural design using a homogenization method, CMAME, 1988.

2. Method of Moving Asymptotes: A sequential convex optimization approach that uses rational
approximations of the objective and constraints. The dual subproblem is commonly solved
using nonlinear CG. This method is inherently finite dimensional.

Svanberg, The method of moving asymptotes—A new method for structural optimization, JNME, 1987.
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sl Elastic Topology Optimization cuisting Methods

1. Optimality Criterion Method: A heuristic fixed-point iteration that is related to a projected
gradient method.

Bendsge & Kikuchi, Generating optimal topologies in structural design using a homogenization method, CMAME, 1988.

2. Method of Moving Asymptotes: A sequential convex optimization approach that uses rational
approximations of the objective and constraints. The dual subproblem is commonly solved
using nonlinear CG. This method is inherently finite dimensional.

Svanberg, The method of moving asymptotes—A new method for structural optimization, JNME, 1987.

3. Augmented Lagrangian: Robust, yet minimizing the penalty function at each iteration can be
expensive.
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sl Elastic Topology Optimization cuisting Methods

1. Optimality Criterion Method: A heuristic fixed-point iteration that is related to a projected
gradient method.

Bendsge & Kikuchi, Generating optimal topologies in structural design using a homogenization method, CMAME, 1988.

2. Method of Moving Asymptotes: A sequential convex optimization approach that uses rational
approximations of the objective and constraints. The dual subproblem is commonly solved
using nonlinear CG. This method is inherently finite dimensional.

Svanberg, The method of moving asymptotes—A new method for structural optimization, JNME, 1987.

3. Augmented Lagrangian: Robust, yet minimizing the penalty function at each iteration can be
expensive.

4. Interior Points: Primal-dual line-search methods have been used succesfully. However,
nonconvexity can lead to expensive inertia correction.
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sl Elastic Topology Optimization cuisting Methods

1. Optimality Criterion Method: A heuristic fixed-point iteration that is related to a projected
gradient method.

Bendsge & Kikuchi, Generating optimal topologies in structural design using a homogenization method, CMAME, 1988.

2. Method of Moving Asymptotes: A sequential convex optimization approach that uses rational
approximations of the objective and constraints. The dual subproblem is commonly solved
using nonlinear CG. This method is inherently finite dimensional.

Svanberg, The method of moving asymptotes—A new method for structural optimization, JNME, 1987.

3. Augmented Lagrangian: Robust, yet minimizing the penalty function at each iteration can be
expensive.

4. Interior Points: Primal-dual line-search methods have been used succesfully. However,
nonconvexity can lead to expensive inertia correction.

It can be extremely difficult to incorporate inexactness in these methods!
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71 Nonsmooth Trust Regions  sasic aigorithm

Require: An initial guess xo, initial trust-region radius Ay > 0,0 <1, <7, < 1and
0<y <% <1
1. fork=1,2,...do
2:  Model Selection: Choose a subproblem model f; of f near x
3:  Step Computation: Compute x41 that approximately solves

min {mi(x) == fi(x) + ()} subjectto  x—xilly < Ay

4. Evaluate Objective: Compute the actual reduction aredy := F(xx) — F(Xx+1)

5.  Step Acceptance: Compute the ratio of actual and predicted reduction:
aredy < = X X
Pk = m k+1 k
My (X)) — Mi(Xe1)

[v1 Dk, V2 4] i e < 1

6. Update Trust-Region Radius: Ay € < [v244, Ak if px € [171,72)
[Ak, 00) if px > 12

7: end for

Drew Kouri Inexact Nonsmooth Trust Regions



sl Nonsmooth Trust Regions  subprobiem

Trust-Region Subproblem: At each iteration, we approximately solve
min {mi(x) == fu(x) + (x)}  subjectto  |x —xcllw < Ay,

where Ay > 0is the radius and f; : H — R is a model of the f near the iterate x.

Example: Perhaps the most common model f is the quadratic Taylor model
1
fe(x) = (8, x —xi) + E(Bk(x — Xk), X = Xk )H,

where gy ~ Vf(x¢) and By encapsulates curvature information, e.g., By = V2f(x¢) or an
approximation thereof (e.g., quasi-Newton).
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9 Nonsmooth Trust Regions Approximate Subproblem Solution

Recall: The Cauchy point is used to determine if iterate x441 has produced sufficient reduction
of the model my — Need a generalization for nonsmooth problems!
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9 Nonsmooth Trust Regions Approximate Subproblem Solution

Recall: The Cauchy point is used to determine if iterate x441 has produced sufficient reduction
of the model my — Need a generalization for nonsmooth problems!

The generalized Cauchy point is a point along the proximal gradient path

xP =pi(te)  where  p(t) == prox,(x — tg)
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9 Nonsmooth Trust Regions Approximate Subproblem Solution

Recall: The Cauchy point is used to determine if iterate x441 has produced sufficient reduction
of the model my — Need a generalization for nonsmooth problems!

The generalized Cauchy point is a point along the proximal gradient path

xP =pi(te)  where  p(t) == prox,(x — tg)

that satisfies both
1. Trust-Region Feasibility: [|x,” — ||y < 1144

2. Sufficient Decrease: mi(x.?) — me(xi) < pal(gr, Xy —

and at least one of the following conditions:
ty > Vzl’,/( or ty > v,
where t; satisfies

mi(pr(t)) — mi(xe) > p2l(8ks pr(te) — X + A (px(te)) — D(xi)]

Drew Kouri

Xw + o(x") — ¢(xc)]

or ok(te) — Xillw > valii.
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10 Nonsmooth Trust Regions Generalized Cauchy Point

Require: An initial step length v > 0 and positive parameters 0 < Bgec < 1 < Sinc

1:

10:

2
3
A
5
6:
7
8: else
9

if Kk = 1 then
Sett =~
. else
Sett =ty
: end if

if (1) and (2) are satisfied at ty = t then
Compute the largest ¢ € N such that t, = ?,Bi‘;c satisfies (1) and (2)

Compute the smallest ¢ € N such that t, = fﬁgec satisfies (1) and (2)
end if

o (t) — Xicllw < 1 )

mi(pk(tc)) — mi(xk) < pal(gk, pu(t) — xi)m + AP (te)) — d(xc)] )
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1" Nonsmooth Trust Regions General Step Requirements

s A
Consequence of GCP: There exists an iterate x4 that satisfies

IXk+1 — Xkll# < Vrad Dk, Vead > 4
mi(xi) — Mi(Xir) > pa[mic(x) — me(6”)], 0 < ps <1

Proof: Take x11 = x,fp, computed using previous algorithm.
\ y,
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1" Nonsmooth Trust Regions General Step Requirements

s A
Consequence of GCP: There exists an iterate x4 that satisfies

IXk+1 — Xkll# < Vrad Dk, Vead > 4
mi(xi) — Mi(Xir) > pa[mic(xc) — me(x )], 0 < pz <1

Proof: Take x11 = x,fp, computed using previous algorithm.
\ y,

The GCP computation requires repeated evaluation of the proximity operator!

Can avoid GCP computation by computing steps that satisfy

IXet1 — Xl |# < Vrad Dk

{0 — ) = el (FCD)
k\ Ak k\Ak+1) = Rfcdllk 1+wkvka

where hy := ||pk(ro) — x«||n/ro for fixed ro > 0 and wy > 0 measures the curvature of f;.
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12 Nonsmooth Trust Regions Inexactness Conditions

In infinite-dimensional optimization, the objective function and its gradient are often im-
possible to compute without discretization, leading to inexactness.
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12 Nonsmooth Trust Regions Inexactness Conditions

In infinite-dimensional optimization, the objective function and its gradient are often im-
possible to compute without discretization, leading to inexactness.

When evaluating the of reduction of the objective function, we approximate

credy ~ aredy := (f(xk) + (X)) — (f(Xe+1) — d(Xir1)),

where credy satsifies:

Jkobj >0, ¢>1, n<min{m,1—n}, and 6 \,0 suchthat

| aredk — credk | < Kobj [’l’} min{mk(xk) — mk(ka), 6‘k}]C Vk.
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12 Nonsmooth Trust Regions Inexactness Conditions

In infinite-dimensional optimization, the objective function and its gradient are often im-
possible to compute without discretization, leading to inexactness.

When evaluating the of reduction of the objective function, we approximate

credy ~ aredy := (f(xk) + (X)) — (f(Xe+1) — d(Xir1)),

where credy satsifies:

Jkobj >0, ¢>1, n<min{m,1—n}, and 6 \,0 suchthat

| aredk — credk | < Kobj [’l’] min{mk(xk) — mk(ka), 6‘k}]C Vk.

We also require that the model gradient gx must satisfy:

[ El/‘?grad >0 such that HVf(Xk) *gk”H < Kgrad min{hk, Ak} Vk. ]
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13 Nonsmooth Trust Regions Inexact Algorithm

Require: An initial guess Xy, initial trust-region radius Ag > 0,0 <1, <7, < 1and
0<ym <<
1. fork=1,2,...do
Model Selection: Choose a subproblem model fy of f nearx,..................... Inexact!
Step Computation: Compute a trial step x4 that satisfies (FCD)
Evaluate Objective: Evaluate the computed reduction credy ~ aredy ............. Inexact!
Step Acceptance: Compute the ratio of computed and predicted reduction:

credy

Pk =

= < — Xk4+1 < Xk
mk(Xk) - mk(Xk+1) n !

[v1 Dk, V2 4] if o < 11
Update Trust-Region Radius: Ay 1 € ¢ [0k, Ak]  if p € [m1,12)

o

[Ay, 00) if px > 2
7. end for
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12l Convergence Theory

Recall: hy, := rlo|| prox, , (Xk — rogk) — Xkl|n

Under the stated assumptions, the iterates produced by the TR algorithm satisfy

1
liminfhy =0 = lim inf —{| prox, ,(xx — roVf(x«)) — X«|lw = 0.
k—r o0 k—oo Ig

Note: This result permits unbounded model curvature.
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12l Convergence Theory

Recall: hy, := }OH prox, , (Xk — rogk) — Xkl|n

Under the stated assumptions, the iterates produced by the TR algorithm satisfy

1
liminfhy =0 = lim inf —{| prox, ,(xx — roVf(x«)) — X«|lw = 0.
k—o0 k—o0 Iy

Note: This result permits unbounded model curvature.

s \
Application: If the smooth objective function f has the form

«
fx) = folx) + [l — Xol[%;
where o > 0, x; € H, Vf, is completely continuous and r, > o', then any weak

accumulation point of {x,} is a critical point of f + ¢. See, e.g., sparse control.
\ J

Recall: Vf, is completely continuous if y, — y implies Vfo(vk) — Vfo(y).
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15| Spectral Proximal Gradient Subproblem Solver
Model: For the SPG subproblem solver, we employ the models

P(x) if [lx — X[l < A

) = 3Bl (gox e and o) = { SO0

[ SPG Iteration: xi o1 = X ¢ + apse where s; = proxy,, (Xk.e — NeVfk(Xk.0)) — Xk J

1. Start with x, o = xﬁp to ensure fraction of Cauchy decrease (FCD)
2. Compute the step length a,, by minimizing the quadratic upper bound

t = fi(xke + tse) + t{du(Xk.e + Se) — du(Xic.e)] + Dr(Xk r)
3. Compute the safeguarded spectral step length A\, as

A¢ = max {/\min, min {/\maX7 W}}
(BkSe—1,50—1)

Birgin, et al., Nonmonotone spectral projected gradient methods on convex sets, SIOPT, 2000.
Kouri, A matrix-free trust-region Newton algorithm for convex-constrained optimization, Opt. Letters, 2022.
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161 Spectral Proximal Gradient Subproblem Solver

Proximity Operator for ¢,: The proximity operator of ¢, applied to x € H is given by

)

_ [ proxs(x) if || prox, g, (x) — Xxkllw < Ak
ProXs, () = { ProXe.., s (Xk + t*(x — x¢)) otherwise

where t* € [0, 1] is any t € [0, 1] that satisfies

[ Yi(t) := || Proxey g (xe + t(x —xc)) — xllw — Ak = 0. ]

Here, ¢ is nondecreasing and continuous on [0, 1] with ¢4(0) < 0 and (1) > 0.

Can compute prox_, (x) by applying, e.g., Brent's method to ¢/(t).
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17 Numerical ReSUItS Sparse Control

Goals: 1. Comparison of TR method with modern nonsmooth methods.
2. Demonstration of mesh independence for TR method.

LetQ=(0,1),w=—1,a=-25b=25a=10"%and § = 1072, and consider

min, [ 152) ~wPax+ 5 [ Pt s [ G
z€2() Jq 2 Ja Q
subject to a<z<b a.e.,
where S(z) = u € H}(R2) solves
—Au+uvP=z inQ
u=0 inoQ

Discretization: P1 FEM for state variables and piecewise constant for controls.

Problem Size: 131,072 control degrees of freedom.
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12l Numerical Results

Sparse Control

method iter fval grad hess phi prox time (s) ‘ speedup”
TR 3 4 4 26 36 80 17.2037 1.0000
PG 32 92 33 0 92 125 267.5140
SPG 21 31 22 0 31 44 100.3323
R2 60 61 25 0 61 86 180.1468
nmAPG 43 86 86 0 86 88 409.1166
iPiano 60 154 61 0 61 215 477 .4582
FISTA 54 169 109 0 169 116 542.4645
PANOC 95 381 178 0 368 383 1151.7171
ZeroFPR 44 139 89 0 92 185 437.2350

Proximal Gradient Methods

Drew Kouri

Accelerated Methods

Proximal Quasi-Newton Methods

*speedup is the ratio of the wallclock time for TR divided by the times for the other methods.
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19 Numerical ReSUItS Sparse Control

Top le-4 le-6 le-8
mesh iter npde 1lpde prox | iter npde 1lpde prox | iter npde 1lpde prox
64x64 3 4 56 80 5 6 108 129 7 8 186 181
128x128 3 4 54 79 4 5 79 102 6 7 129 151
256x256 3 4 56 80 5 6 108 129 6 7 133 153
512x512 3 4 54 78 5 6 102 123 6 7 127 147

Algorithm demonstrates mesh independences with respect to the number of iterations and the
number of PDE solves!
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201 Numerical Results ciastic Topology optimization

Goals: 1. Comparison of TR method with modern projected and AL methods.
2. Demonstration of TR inexactness control for 3D problems.

LetQ = (0,2) x (0,1)% d = 1,2, and v = 0.4, and consider

min /r T(x) - [S(0)](x) dx

PEl?(€)

subject to / p(x)dx=v|Q|, 0<p<1 ae.,
Q

L where S(p) = u € (H'(2))?*" solves

-V -(K(p):e)=0 inQ
€= %(VU-I—VUT) inQ
K(p):en=T onT;
u=20 only
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211 Numerical Results

2D Elastic Topology Optimization

Formulation: SIMP power p = 3 with Helmholtz filtering (radius= 0.1).

Discretization: Q1 FEM for displacement variables and piecewise constant for density.

Problem Size: 26,880 density degrees of freedom.

method iter fval grad hess proj time(s) ‘ speedup*
TR 9 10 10 236 1200 16.49 1.0000
LMTR 33 34 31 418 391 32.42
PQN 126 235 127 0 4972  164.49
SPG 84 90 85 0 170 52.36
AL-TR 9 52 51 1153 0 61.98
AL-LMTR 11 276 263 4368 0 280.77

Projected Newton-Type Methods

Spectral Projected Gradient AL Methods

*speedup is the ratio of the wallclock time for TR divided by the times for the other methods.

Drew Kouri
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221 Numerical Results :oeiastic Topology optimization
Formulation: SIMP power p = 3 with Helmholtz filtering (radius= 0.1).
Discretization: Q1 FEM for displacement variables and piecewise constant for density.
Problem Size: 221,184 density degrees of freedom.

Inexact Solves: Solve using CG with AMG preconditioning.
- Helmholtz Filter: Requires ~8 iterations to achieve the relative error of ~ 10712
—> Considered to be exact.

- Elasticity Equations: Trust-region algorithm controls accuracy of linear solver.

k F(xk) he  |IXk — Xk—1]| Ay fval grad hess proj obj tol grad tol
0 1.0000 4.017e-2 - 20 1 1 0 4 1.000e-2 1.000e-2
1 0.7156 1.771e-2 2.000e1 50 2 2 28 96 1.000e-2 1.000e-2
2 0.4393 6.788e-3 5.000el 50 3 3 55 204 1.000e-2 1.000e-2
3 0.3168 2.853e-3 5.000e1l 125 4 4 82 405 1.000e-2 1.000e-2
4 0.1654 8.805e-4 1.250e2 125 5 5 109 639 1.000e-2 8.802e-3
5 0.1255 2.066e-5 1.250e2 125 6 6 143 707 1.000e-2 2.066e-4
6 0.1247 2.713e-6 6.272el 312.5 7 7 171 765 1.461e-4 2.713e-5
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Numerical Results eiastic Topology optimization

Filtered Density: 0.9 Countour
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24

Conclusions:

- Numerical solution of infinite-dimensional problems requires expensive approximations
- Often, the objective function and its gradient can only be computed inexactly

- Nonsmooth trust region is provably convergent even with inexact computations

- We can efficiently compute a trial step using the spectral proximal gradient method

- SPG trust-region subproblem solver is matrix free, but may require many prox computations
Future: Can we incorporate inexact prox computations? Can we handle nonconvex ¢?

- Nonsmooth trust-region method outperforms existing nonsmooth methods!
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