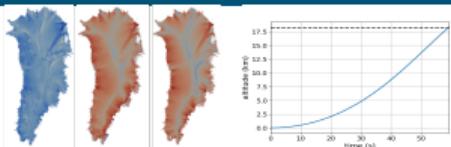


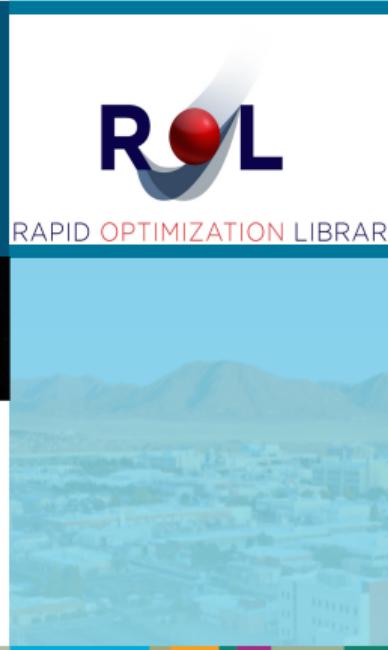
National
Laboratories

Get ROL-ing



An Introduction to Sandia's Rapid Optimization Library

Drew Kouri Denis Ridzal Greg Von Winckel **Aurya Javeed**



Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

A Motivating Example



Rocket Dynamics

From the conservation of momentum,

$$\begin{aligned}
 \frac{dp}{dt} &\approx \frac{\{(m - |\Delta m|)(u + \Delta u) + |\Delta m|(u - k)\} - mu}{\Delta t} \\
 &= \sum F = -mg \\
 \implies -m \frac{du}{dt} &= k \frac{dm}{dt} + mg. \tag{1}
 \end{aligned}$$

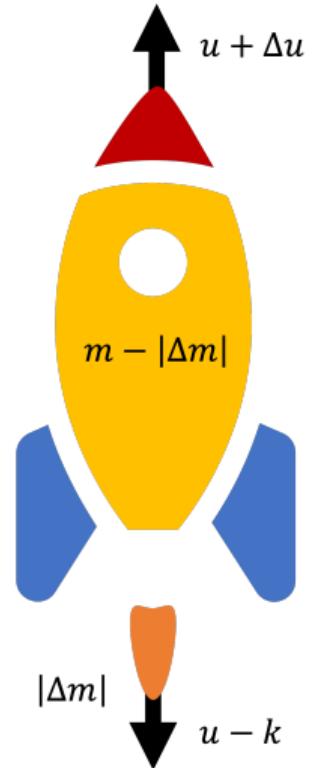
Here, we take g and the exhaust speed k to be constants but

$$\frac{dm}{dt} = -z < 0, \tag{2}$$

where $z = z(t)$ is a control of our choosing.

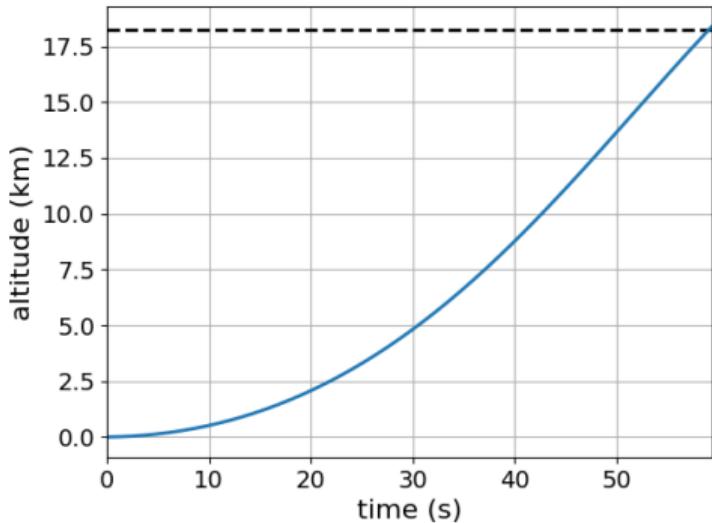
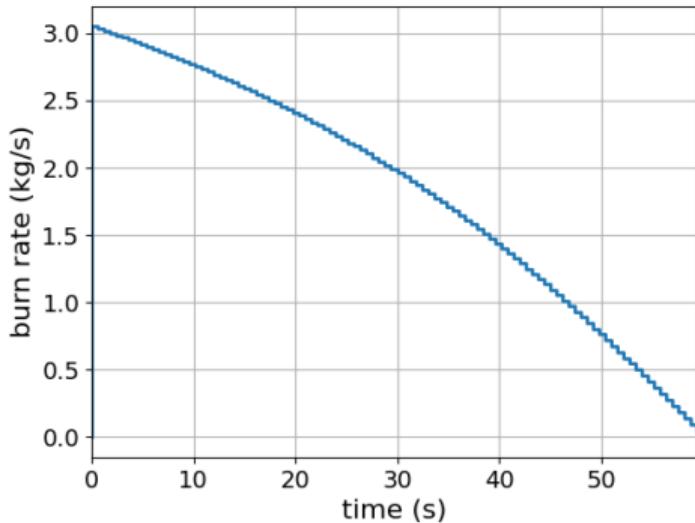
We want to solve the fuel efficiency problem

$$\underset{u,z}{\text{minimize}} \quad \|z\|_{L^2(0,T)}^2 + \lambda \left| y^* - \int_0^T u(t) dt \right|^2 \text{ subject to (1) and (2).}$$



Solution

We discretize the fuel efficiency problem into a nonlinear program (NLP).



So why ROL?

Composite-step trust-region solver

iter	fval	cnorm	gLnorm	snorm	delta	nnorm	tnorm	#fval	#grad	...
0	5.333333e+03	2.027966e-13	2.666783e+00							
1	5.223834e+03	2.933645e+00	3.555940e+00	1.000000e+02	2.00e+02	1.13e-14	1.00e+02	3	3	
2	5.074484e+03	3.977936e+00	5.320566e+00	2.000000e+02	2.00e+02	1.06e-01	2.00e+02	5	5	
3	4.936750e+03	1.929162e+00	6.883693e+00	1.657243e+02	1.16e+03	1.61e-01	1.66e+02	7	7	
...										
47	4.426957e+03	1.813330e-04	9.328418e-02	2.898613e+00	1.16e+03	7.35e-06	2.90e+00	95	95	
48	4.426934e+03	6.805572e-05	4.641692e-02	1.479816e+00	1.16e+03	1.10e-05	1.48e+00	97	97	
49	4.426917e+03	1.176645e-04	7.690407e-02	2.328988e+00	1.16e+03	4.24e-06	2.33e+00	99	99	
50	4.426902e+03	4.457843e-05	3.584340e-02	1.192131e+00	1.16e+03	7.13e-06	1.19e+00	101	101	
...										

Composite-step trust-region solver

iter	fval	cnorm	gLnorm	snorm	delta	nnorm	tnorm	#fval	#grad	...
0	5.333333e+03	1.570856e-15	1.803732e+02							
1	4.976505e+03	7.464298e-01	1.380737e+02	2.175210e+01	1.00e+02	3.03e-15	2.18e+01	3	3	
2	5.252000e+03	2.467093e-02	2.549998e+02	2.755372e+00	1.00e+02	2.75e+00	5.33e-02	5	5	
3	4.473015e+03	7.617080e-02	2.595459e+01	7.041189e+00	1.00e+02	1.23e-01	7.04e+00	7	7	
4	4.428484e+03	2.072535e-03	3.485754e+00	1.936220e+00	1.00e+02	3.08e-01	1.91e+00	9	9	
5	4.426855e+03	3.830153e-06	7.137584e-01	8.183971e-02	1.00e+02	8.98e-03	8.13e-02	11	11	
6	4.426841e+03	1.090076e-06	6.769629e-03	4.490118e-02	1.00e+02	1.87e-05	4.49e-02	13	13	
7	4.426840e+03	8.296731e-12	5.966856e-04	1.035859e-04	1.00e+02	4.58e-06	1.03e-04	15	15	
8	4.426840e+03	3.307995e-13	3.785700e-06	1.927025e-05	1.00e+02	2.37e-11	1.93e-05	17	17	

Optimization Terminated with Status: Converged

Custom Linear Algebra – A Feature of ROL

ROL makes it easy to tailor inner products to problems.

For example, we can think of our control z as an element of a Hilbert space \mathcal{H} with the inner product

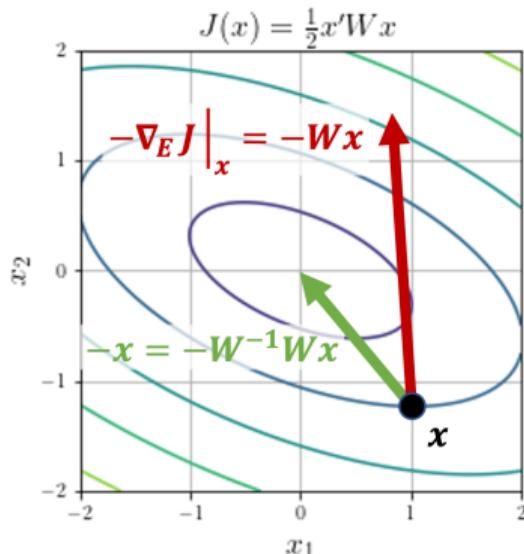
$$\langle f, g \rangle = \int_0^T f(t)g(t)dt.$$

The discretized analogue of \mathcal{H} is a finite-dimensional space whose inner product is weighted by a quadrature matrix W – i.e., $\langle f, g \rangle = f' W g$.

A gradient with respect to a vector in the finite-dimensional space will be a function of W .

$$\lim_{h \rightarrow 0} \frac{|J(x + h) - J(x) - \langle \nabla J|_x, h \rangle|}{h} = 0$$

$$\implies \nabla J|_x = W^{-1} \nabla_E J|_x$$



Trilinos package for **large-scale optimization**. Uses: optimal design, optimal control and inverse problems in engineering applications; mesh optimization; image processing.

RAPID OPTIMIZATION LIBRARY

*Numerical optimization made practical:
Any application, any hardware, any problem size.*

- **Modern optimization algorithms.**
- **Maximum HPC hardware utilization.**
- **Special programming interfaces for simulation-based optimization.**
- **Optimization under uncertainty.**

- Hardened, production-ready algorithms for **unconstrained, equality-constrained, inequality-constrained and nonsmooth optimization**.
- Novel algorithms for **optimization under uncertainty** and **risk-averse optimization**.
- Unique capabilities for optimization-guided **inexact and adaptive computations**.
- Geared toward **maximizing HPC hardware utilization** through direct use of application data structures, memory spaces, linear solvers and nonlinear solvers.
- Special interfaces for **engineering applications**, for streamlined and efficient use.
- Rigorous **implementation verification**: finite difference and linear algebra checks.
- **Hierarchical and custom** (user-defined) algorithms and stopping criteria.

Formalism and Algorithms



ROL solves (smooth) nonlinear optimization problems numerically

$$\underset{x}{\text{minimize}} \quad J(x) \quad \text{subject to} \quad \begin{cases} c(x) = 0 \\ \ell \leq x \leq u \\ Ax = b. \end{cases} \quad (G)$$

Here, x belongs to a Banach space \mathcal{X} and

$$J : \mathcal{X} \rightarrow \mathbb{R}, \quad c : \mathcal{X} \rightarrow \mathcal{C}, \quad \text{and} \quad A : \mathcal{X} \rightarrow \mathcal{D},$$

where \mathcal{C} and \mathcal{D} are Banach spaces as well.

All three of these maps are Fréchet differentiable. In addition, A is linear.

The bounds $\ell \leq x \leq u$ apply pointwise.

Type U**"Unconstrained"**

$$\underset{x}{\text{minimize}} \quad J(x)$$

$$\text{subject to} \quad \begin{cases} Ax = b \end{cases}$$

Methods:

- trust region and line search globalization
- gradient descent, quasi and inexact Newton, nonlinear conjugate gradient.

Type B**"Bound Constrained"**

$$\underset{x}{\text{minimize}} \quad J(x)$$

$$\text{subject to} \quad \begin{cases} \ell \leq x \leq u \\ Ax = b \end{cases}$$

Methods:

- projected gradient and projected Newton, primal-dual active set.

Type E**"Equality Constrained"**

$$\underset{x}{\text{minimize}} \quad J(x)$$

$$\text{subject to} \quad \begin{cases} c(x) = 0 \\ Ax = b \end{cases}$$

Methods:

- composite step SQP and ...

Type G**"General Constraints"**

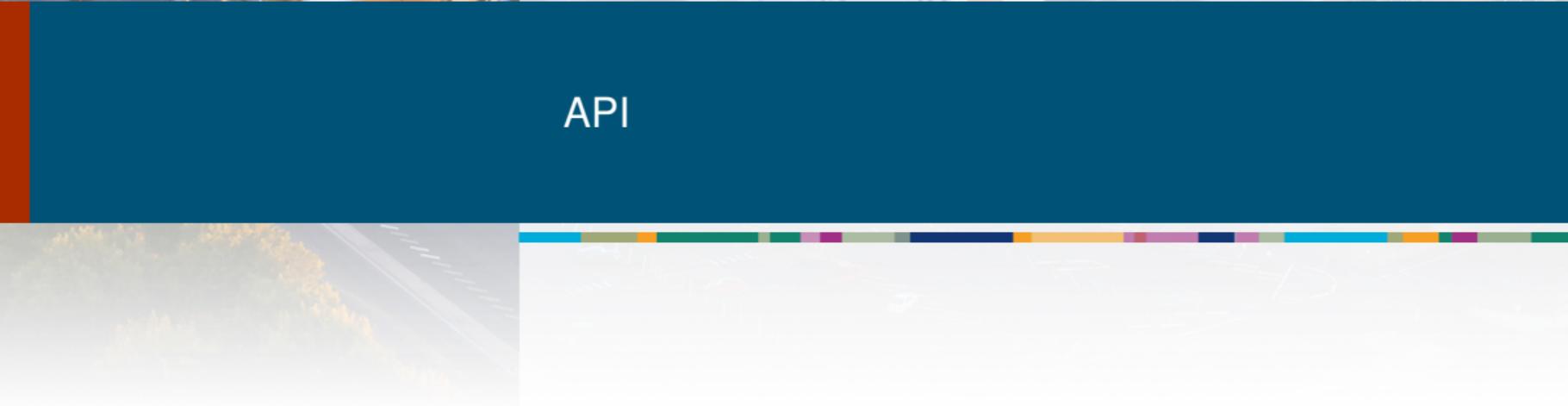
$$\underset{x}{\text{minimize}} \quad J(x)$$

$$\text{subject to} \quad \begin{cases} c(x) = 0 \\ \ell \leq x \leq u \\ Ax = b \end{cases}$$

Methods:

- augmented Lagrangian, interior point, Moreau-Yosida, stabilized LCL.

API



ROL::Objective

$$\underset{x}{\text{minimize}} \ J(x) \ \text{subject to} \ \begin{cases} c(x) = 0 \\ l \leq x \leq u \\ Ax = b \end{cases}$$

Member Functions

- `value` - $J(x)$
- `gradient` - $g = \nabla J(x)$
- `hessVec` - $Hv = [\nabla^2 J(x)]v$
- `update` - modify member data
- `invHessVec` - $H^{-1}v = [\nabla^2 J(x)]^{-1}v$
- `precond` - approximate $H^{-1}v$
- `dirDeriv` - $\frac{d}{dt} J(x + tv)|_{t=0}$

(`pure virtual` `virtual` `optional`)

- We do not need to specify linear operators with matrices – their action on vectors is enough.
- ROL works best with analytic derivatives. Without them, ROL defaults to finite difference approximations.
- Tools: `checkGradient`, `checkHessVec`, `checkHessSym`.

ROL::Objective

minimize $J(x)$ subject to

$$\begin{cases} c(x) = 0 \\ \ell \leq x \leq u \\ Ax = b \end{cases}$$

Member Functions

- **value** - $J(x)$
- **gradient** - $g = \nabla J(x)$
- **hessVec** - $Hv = [\nabla^2 J(x)]v$
- **update** - modify member data
- **invHessVec** - $H^{-1}v = [\nabla^2 J(x)]^{-1}v$
- **precond** - approximate $H^{-1}v$
- **dirDeriv** - $\frac{d}{dt}J(x + tv)|_{t=0}$

(pure virtual virtual optional)

$$J(u, z) = \|z\|_{L^2(0, T)}^2 + \lambda |y^* - \int_0^T u(t) dt|^2$$

```
class RocketObjective : public ROL::Objective<double>
{
...
public:
    Objective(double targetHeight_, double lambda_,
              const std::vector<double>& w_) :
        targetHeight(targetHeight_), lambda(lambda_), w(w_)
    {
        N = w.size();
    }

    double value(const ROL::Vector<double>& x, double& tol)
    {
        const std::vector<double>& z = getControl(x);
        const std::vector<double>& u = getState(x);

        int i;

        double zIntegral = 0;
        for (i = 0; i < N; ++i)
            zIntegral += w[i]*z[i]*z[i];

        double uIntegral = 0;
        for (i = 0; i < N; ++i)
            uIntegral += w[i]*u[i];

        return zIntegral + lambda*std::pow(uIntegral - targetHeight, 2);
    }
...
}
```


ROL::Constraint

$$\text{minimize}_x \ J(x) \text{ subject to} \begin{cases} c(x) = 0 \\ \ell \leq x \leq u \\ Ax = b \end{cases}$$

Member Functions

- `value` - $c(x)$
- `applyJacobian` - $[c'(x)]v$
- `applyAdjointJacobian` - $[c'(x)]^*v$
- `applyAdjointHessian` - $[c''(x)](v, \cdot)^*u$
- `update` - modify member data
- `applyPreconditioner`
- `solveAugmentedSystem`

ROL::BoundConstraint implements $\ell \leq x \leq u$.

$$\frac{du}{dt} + k \frac{d \log m}{dt} + g = 0 \quad \text{and} \quad \frac{dm}{dt} = -z$$

```
class RocketConstraint : public ROL::Constraint<double>
{
private:
    ...

    void computeMass(const std::vector<double>& z)
    {
        mass[0] = initialMass - dt*z[0];
        for (int i = 1; i < N; ++i)
            mass[i] = mass[i - 1] - dt*z[i];
    }

public:
    ...

    void update(const ROL::Vector<Real> &x, UpdateType type, int iter = -1)
    {
        const std::vector<double>& z = getControl(x);
        computeMass(z);
    }

    void value(ROL::Vector<double>& c, const ROL::Vector<double>& x, double& tol)
    {
        std::vector<double>& cstd = getVector(c);

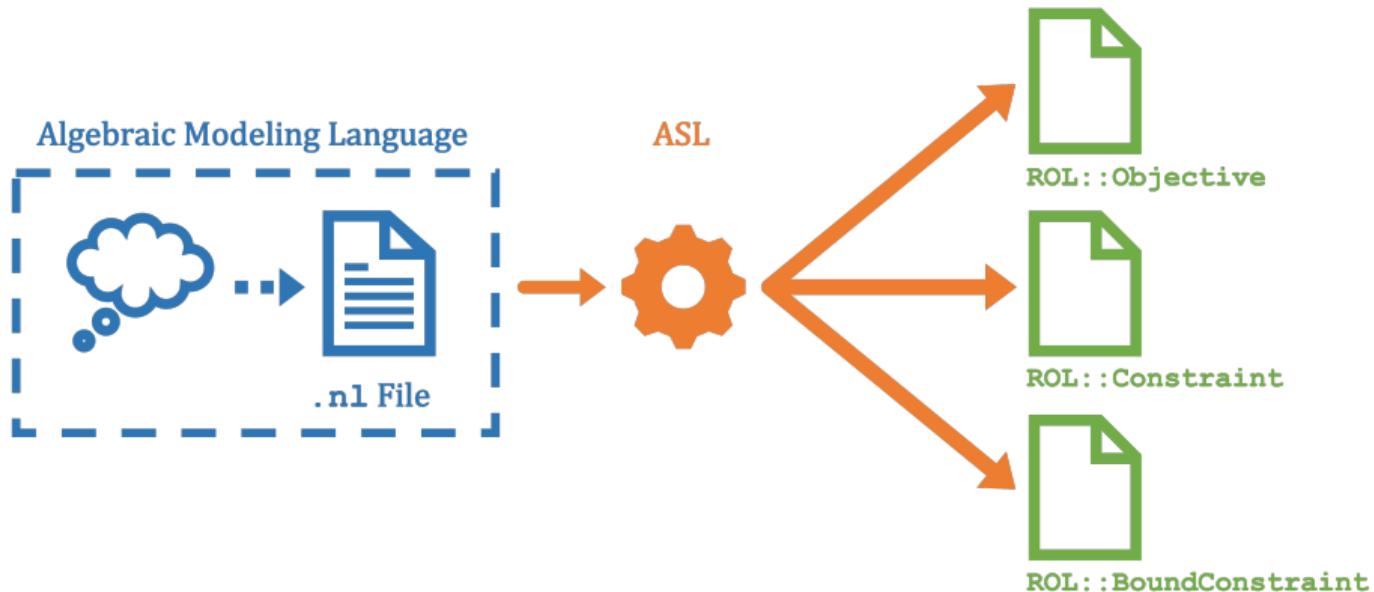
        const std::vector<double>& z = getControl(x);
        const std::vector<double>& u = getState(x);

        cstd[0] = u[0] + k*std::log(mass[0]/mInitial) + g*dt;
        for(int i = 1; i < N; ++i)
            cstd[i] = u[i] - u[i-1] + k*std::log(mass[i]/mass[i - 1]) + g*dt;
    }

    ...
}
```


AMPL-Solver Interface Library (ASL)

ROL can be a backend for algebraic modeling languages. We have an interface to AMPL.



- Note: Our current interface is matrix free, i.e., we do not yet precondition with the matrix information from ASL.

The SimOpt Interface

Our rocket example – and optimal control in general – is what we call a **simulation-constrained** optimization problem.

Full Space Formulation

The problem is *explicitly* constrained:

$$\underset{(u,z) \in \mathcal{U} \times \mathcal{Z}}{\text{minimize}} \quad J(u, z)$$

$$\text{subject to } c(u, z) = 0$$

Reduced Space Formulation

The problem is *implicitly* constrained:

$$\underset{z \in \mathcal{Z}}{\text{minimize}} \quad J(S(z), z),$$

where $u = S(z)$ solves $c(u, z) = 0$.

- z = the vector being optimized (often a control or set of parameters)
- u = a state resulting from c (the simulation)

In engineering applications, c is often a differential equation.

ROL's SimOpt interface is "middleware":

- u and z are separated out of the optimization vector x
- converting full space formulations to reduced space ones (and vice-versa) is trivial.

The SimOpt Interface

ROL::Objective_SimOpt

- `value(u,z)`
- `gradient_1(g,u,z)`
- `gradient_2(g,u,z)`
- `hessVec_11(hv,v,u,z)`
- `hessVec_12(hv,v,u,z)`
- `hessVec_21(hv,v,u,z)`
- `hessVec_22(hv,v,u,z)`

A mnemonic:

- $1 = \text{"sim"} = u$
- $2 = \text{"opt"} = z$

ROL::Constraint_SimOpt

- `value(u,z)`
- `applyJacobian_1(jv,v,u,z)`
- `applyJacobian_2(jv,v,u,z)`
- `applyInverseJacobian_1(ijv,v,u,z)`
- `applyAdjointJacobian_1(ajv,v,u,z)`
- `applyAdjointJacobian_2(ajv,v,u,z)`
- `applyInverseAdjointJacobian_1(iajv,v,u,z)`
- `applyAdjointHessian_11(ahwv,w,v,u,z)`
- `applyAdjointHessian_12(ahwv,w,v,u,z)`
- `applyAdjointHessian_21(ahwv,w,v,u,z)`
- `applyAdjointHessian_22(ahwv,w,v,u,z)`
- `solve(u,z)`

Stochastic Optimization

ROL also has middleware for stochastic problems:

$$\underset{x \in C}{\text{minimize}} \quad \mathcal{R}(f(x, \xi)).$$

Here, x is a deterministic decision but ξ is a set of random parameters, i.e., $\xi = \xi(\omega)$.

For each x , $f(x, \xi)$ is a random variable $F_x(\omega)$.

\mathcal{R} is a functional on these random variables that quantifies risk. \mathcal{R} could be – for instance –

- an expectation: $\mathcal{R}(F_x) := \mathbb{E}[F_x]$,
- a quantile (the value at risk),
- a distributionally robust model

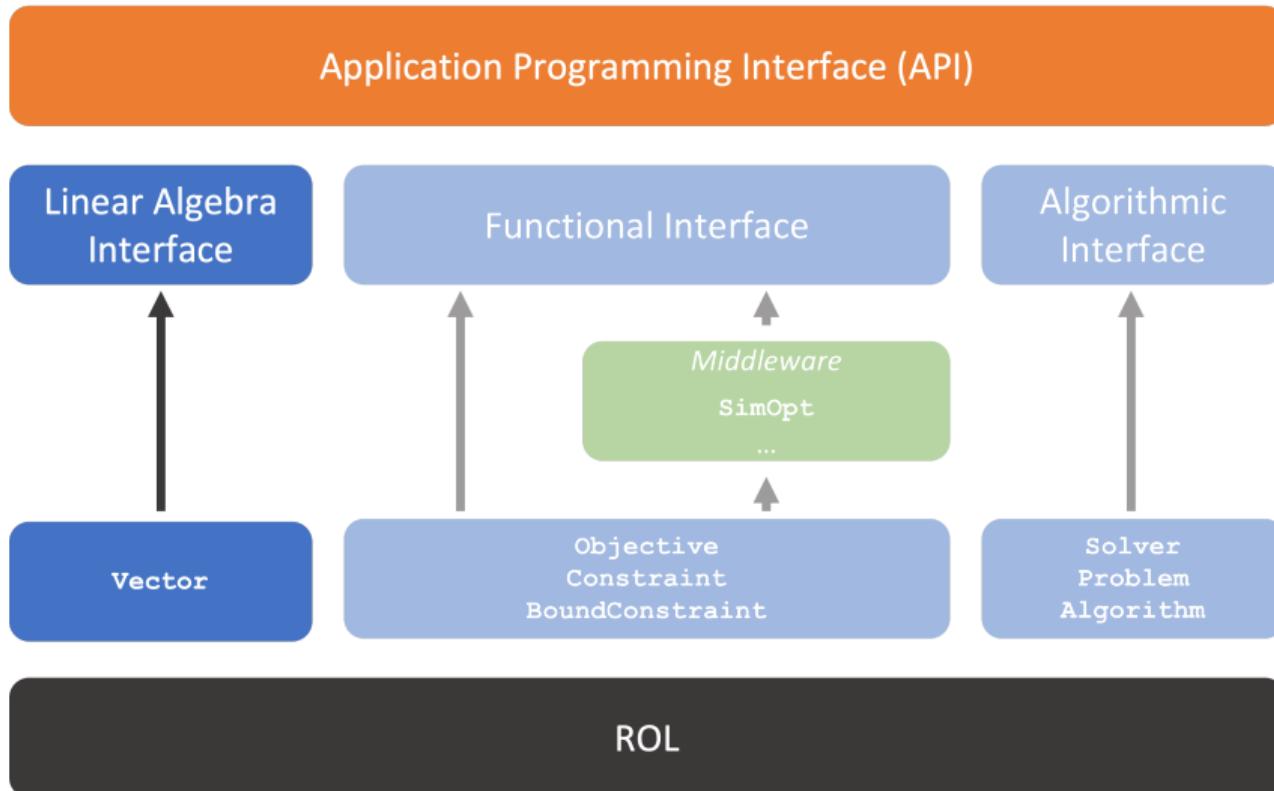
$$\mathcal{R}(F_x) = \sup_{P \in \mathcal{U}} \mathbb{E}_P[F_x].$$

The set C can include both stochastic (e.g., $\ell \leq \tilde{\mathcal{R}}(G_x) \leq u$) and deterministic constraints.

ROL solves these problems in the usual way: **$\mathcal{R}(F_x)$ and the stochastic constraints in C are replaced with approximations**. For example, we might take

$$\mathbb{E}[F(x)] \approx \frac{1}{N} \sum_{k=1}^N f(x, \xi_k),$$

where the ξ_k are independent and identically distributed samples of ξ .



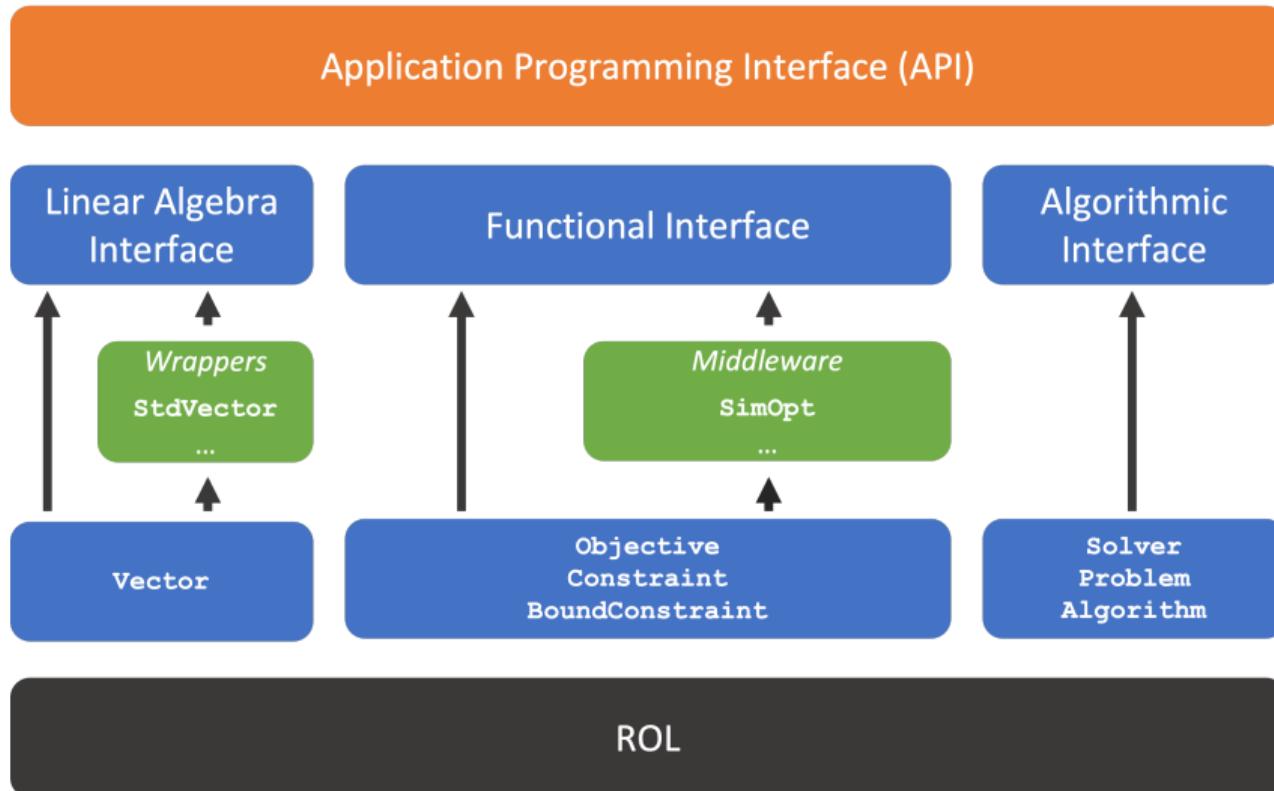
ROL::Vector – A Linear Algebra Interface

Optimization algorithms manipulate vectors. But the *implementation* of these vectors do not affect what the algorithms do. (For example, the number of iterations before gradient descent reaches some stopping condition will be the same whether x – the vector being optimized – is stored on a laptop or distributed over a network.)

ROL similarly relegates the inner workings of vectors to users. As a result,

- ROL is hardware agnostic. Sandians run ROL on personal computers (in serial and MPI parallel), GPUs, and supercomputers too.
- Users can easily tune the linear algebra of a problem by inheriting from an instance of `ROL::Vector` (which we did in the rocket example).

Member Functions		
<code>dot</code>	<code>axpy</code>	<code>basis</code>
<code>plus</code>	<code>dual</code>	<code>reduce</code>
<code>norm</code>	<code>zero</code>	<code>dimension</code>
<code>scale</code>	<code>set</code>	<code>applyUnary</code>
<code>clone</code>		<code>applyBinary</code>



Context

Related Software

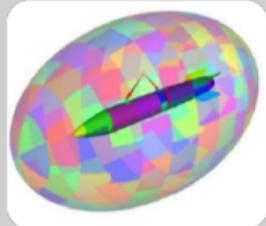
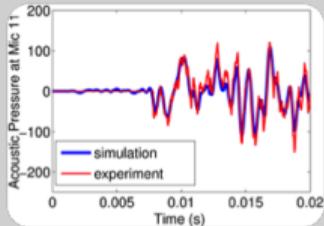
- *Hilbert Class Library (HCL)* - Rice University
An abstract linear algebra interface.
- *Trilinos* - Sandia National Laboratories
Collection of linear and nonlinear solvers based on linear algebra abstractions.
 - *RTOp and Thyra*
Packages for an extended set of algebraic abstractions.
 - *MOOCHO*
Optimization package built on Thyra that solves reduced space formulations.
- *Rice Vector Library (RVL)* - Rice University
A revamp of HCL.

- *Trilinos* (continued)
 - *Aristos*
Optimization package with algebra abstractions and full space formulations.
 - *Optipack*
A few special-purpose optimization routines using algebra abstractions.
- *PEOpt* - Sandia National Laboratories
Optimization packages using an alternative implementation of algebra abstractions.
- *Optizelle* - OptimoJoe
Successor to PEOpt.

Applications

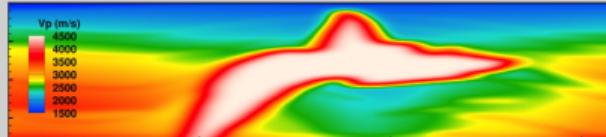
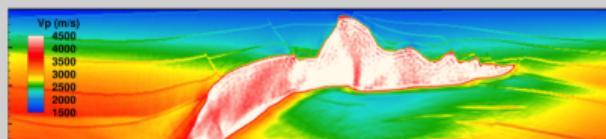
Inverse Problems in Acoustics/Elasticity

Sierra/SD – structural dynamics software



1M optimization + 1M state variables

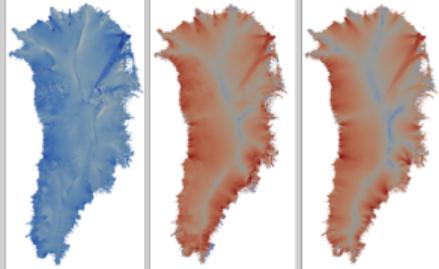
DGM – a library of discontinuous Galerkin methods for solving partial differential equations



500K optimization + $2M \times 5K$ state variables

Estimating Basal Friction of Ice Sheets

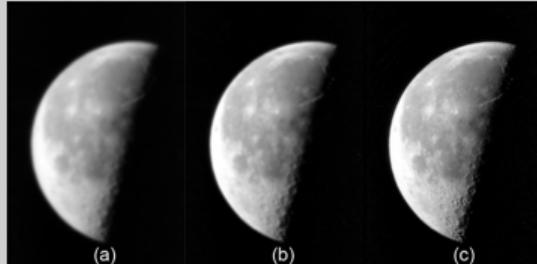
Albany – a multiphysics simulator



5M optimization + 20M state variables

Super-Resolution Imaging

GPU processing with *ArrayFire*



250K optimization variables on an NVIDIA Tesla

Conclusions

- ROL is C++ code for solving large optimization problems.
- It implements a variety of matrix-free algorithms and has been "battle-tested" on problems at Sandia.
- ROL has a flexible interface that can connect with algebraic modeling languages. And, importantly, ROL lets users implement their own vectors.