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3 I Rocket Dynamics

. u+Au
From the conservation of momentum,
do _ {(m—|Am|)(u+ Au) +|Am|(u—k)} —mu
dt = At
=Y F=-mg
du dm
Y Y ) 1 m — |Am|
= -m i k o +mg (1)
Here, we take g and the exhaust speed k to be constants but
dm
= 2
o 7 <0, )
where =z — z(1) is a control of our choosing. |Am|
We want to solve the fuel efficiency problem u—k
T 2
minimize HZHiZ(o n /\‘y" / u(t) dt‘ subject to (1) and (2).
u,z ’ Jo



4+ | Solution

We discretize the fuel efficiency problem into a nonlinear program (NLP).
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So why ROL?




5 | Numerics

Composite-step trust-region solver

iter fval cnorm glnorm snorm delta nnorm tnorm #fval  #grad
0 5.333333e+03  2.027966e-13  2.666783e+00

1 5.223834e+03  2.933645e+00  3.555940e+00  1.000000e+02  2.00e+02 1.13e-14 1.00e+02 3 3

2 5.074484e+03  3.977936e+00  5.320566e+00  2.000000e+02  2.00e+02 1.06e-01 2.00e+02 5 5

3 4.936750e+03 1.929162e+00 6.883693e+00 1.657243e+02 1.16e+03 1.61e-01 1.66e+02 7 7

47 4.426957e+03 1.813330e-04 9.328418e-02 2.898613e+00 1.16e+03 7.35e-06 2.90e+00 95 95

48 4.426934e+03 6.805572e-05 4.641692e-02 1.479816e+00 1.16e+03 1.10e-05 1.48e+00 97 97

49 4.426917e+03  1.176645e-04  7.690407e-02  2.328988e+00 1.16e+03 4.24e-06 2.33e+00 99 99

50 4.426902e+03 4.457843e-05 3.584340e-02 1.192131e+00 1.16e+03 7.13e-06 1.19e+00 101 101

Composite-step trust-region solver

iter fval cnorm glnorm snorm delta nnorm tnorm #fval  #grad

0 5.333333e+03  1.570856e-15  1.803732e+02 |
1 4.976505e+03  7.464298e-01  1.380737e+02  2.175210e+01  1.00e+02 3.03e-15 2.18e+01 3 3

2 5.252000e+03  2.467093e-02  2.549998e+02  2.755372e+00  1.00e+02 2.75e+00 5.33e-02 5 5

3 4.473015e+03 7.617080e-02 2.595459e+01 7.041189e+00 1.00e+02 1.23e-01 7.04e+00 7 7

4 4.428484e+03 2.072535e-03  3.485754e+00 1.936220e+00 1.00e+02 3.08e-01 1.91e+00 9 9

5 4.426855e+03 3.830153e-06 7.137584e-01 8.183971e-02 1.00e+02 8.98e-03 8.13e-02 11 11

6 4.426841e+03 1.090076e-06 6.769629e-03  4.490118e-02 1.00e+02 1.87e-05 4.49e-02 13 13

7 4.426840e+03  8.296731e-12  5.966856e-04  1.035859e-04  1.00e+02 4.58e-06 1.03e-04 15 15

8 4.426840e+03  3.307995e-13  3.785700e-06  1.927025e-05 1.00e+02 2.37e-11 1.93e-05 17 17

Optimization Terminated with Status: Converged I



s | Custom Linear Algebra — A Feature of ROL

ROL makes it easy to tailor inner products to O+ h) = d(x) = (V| by
problems. Jim h -
For example, we can think of our control z as an — vJ|X = W*1VEJ|X
element of a Hilbert space H with the inner product
- , J(z) = fa'Wa
t.9)= [ gt — L
0 S 7| =-wx

The discretized analogue of # is a finite-dimensional
space whose inner product is weighted by a o
quadrature matrix W —i.e., {f,g) = f' Wg. : |
A gradient with respect to a vector in the I W wx
finite-dimensional space will be a function of W. .

m  Malek, Josef, and Zdenék Strako$. Preconditioning and the Conjugate Gradient 2 1 0 1 -
Method in the Context of Solving PDEs. SIAM, 2014. T



7| ROL

Trilinos package for large-scale optimization. Uses: optimal design, optimal control and inverse
problems in engineering applications; mesh optimization; image processing.

Any application, any hardware, any problem size.

m Modern optimization algorithms.

m m Maximum HPC hardware utilization.
m Special programming interfaces for
RAPID OPTIMIZATION LIBRARY simulation-based optimization.

Numerical optimization made practical: = Optimiz ation under uncertainty.

Hardened, production-ready algorithms for

Novel algorithms for and

Unique capabilities for optimization-guided .

Geared toward through direct use of application data

structures, memory spaces, linear solvers and nonlinear solvers.

Special interfaces for , for streamlined and efficient use.

Rigorous : finite difference and linear algebra checks.
(user-defined) algorithms and stopping criteria.

o







9 I Mathematical Formalism

ROL solves (smooth) nonlinear optimization problems numerically

Here, x belongs to a Banach space X and

J:X—>R, c:X—C, and A:X =D,

where C and D are Banach spaces as well.

All three of these maps are Fréchet differentiable. In addition, A is linear.

The bounds ¢ < x < u apply pointwise.



1o| Algorithms
Type U Type B Type E Type G
"Unconstrained" "Bound Constrained" "Equality Constrained" "General Constraints"

minimize J(x) mini)r('nize J(x) minimize J(x) mini)[nize J(x)
X X
c(x)=0 c(x) =
subject to subjectto ¢ /< x<u subject to subjectto < /< x<u
Ax=>b Ax=>b Ax=b>b Ax=b
Methods: Methods: Methods: Methods:
m trust region and m projected gradient B composite step ® augmented
line search and projected SQP and ... Lagrangian, interior |
globalization Newton, point,
: imal-dual active Moreau-Yosida
m gradient descent, prima ¢ ’
quasi and inexact set. stabilized LCL.
Newton, nonlinear
conjugate gradient.







121 ROL::0bjective

c(x)=0
minimize J(x) subjectto (/< x<u
¥ Ax=0b m We do not need to specify linear
- operators with matrices — their action on
vectors is enough.
B value - J(x) m ROL works best with analytic

derivatives. Without them, ROL defaults
to finite difference approximations.

gradient - g = VJ(x)
B hessVec - Hv = [V2J(X)]v

m Tools: checkGradient, checkHessVec,
B update - modify member data checkHessSym.

invHessVec - H'v = [V3J(x)] v

precond - approximate H='v

B dirDeriv - %J(X + tv)|t=0

( pure virtual virtual optional )



13 1 ROL::0bjective 9w,2) = |22 0.7y + >

.
y* —/ u(t)dt|2
0

C(X) = 0 class RocketObjective : public ROL::Objective<double>
P . {
minimize J(x) subjectto (/< x<u
X
AX — b public:

Objective(double targetHeight_, double lambda_,
Mem ber Fu nCtionS const std::vector<double>& w_,) :
targetHeight(targetHeight_), lambda(lambda_), w(w_)

{
B value - J(X) Nl
[} gradient - g — VJ(X) ?ouble value(const ROL::Vector<double>& x, double& tol)
const std::vector<double>& z = getControl(x);
| hessVec - Hv — [VzJ(X)]V const std::vector<double>& u = getState(x);
. int i;
B update - modify member data
double zIntegral = 0;
. — _ for (i =0; i < Nj ++i)
[ | anHeSSVeC = H 1 VvV = [VZJ(X)] 1 74 zIntegral += wlil*z[il*z[i];
. — double uIntegral = 0;
m precond - approximate H='v for (1207 1 <N +41)
uIntegral += wlil*ulil;
| dereer - EJ(X + tv)|t=0 return zIntegral + lambdaxstd::pow(uIntegral - targetHeight, 2);
i
( pure virtual virtual optional )
b



14 I ROL: :Constraint %+kdkjm+g:0 and %’:’:_z

C(X) =0 class RocketConstraint : public ROL::Constraint<double>

mini)r(nize J(x) subjectto ¢ ¢ < x {

u private:

void computeMass(const std::vector<double>& z)

{

. mass[0] = initialMass - dtxz[0];
Member Function for (int 12 33 4 % 1)
mass[i] = mass[i - 1] - dtxz[i];

B value - ¢(X) }

public:

] i -
applyJaCOblan [C’ (X)] V void update(const ROL::Vector<Real> &x, UpdateType type, int iter = -1)
{
™ applyAdJ ointJacobian - [C’(X)]* v EZE;:tz;:;;rs::andouble)& 2 = getControl(x);
A . /! g
. applyAdJ oj_ntHeSSIan [C (X)](V, ) u void value(ROL::Vector<double>& c, const ROL::Vector<double>& x, double& tol)
{
u update - m0d|fy member data std:ivector<double>& cstd = getVector(c);
const std::vector<double>& z = getControl(x);
] applypreconditioner const std::vector<double>& u = getState(x);
cstd[0] = ul@] + kkstd::log(mass[@]/mInitial) + g*dt;
for(int i = 1; i < Nj ++i)
. SO:LveAugrnentedSyStem cstd[i] = uli] - u[i-1] + kkstd::log(mass[il/mass[i - 1]) + g*dt;
¥

ROL: :BoundConstraint implements £ < x < u. !



15 I AMPL-Solver Interface Library (ASL)

ROL can be a backend for algebraic modeling languages. We have an interface to AMPL.

Algebraic Modeling Language ASL j

— e - - - _I ROL: :Objective

OB =D

ROL: :Constraint

- | ]

ROL: :BoundConstraint

m Note: Our current interface is matrix free, i.e., we do not yet precondition with the
matrix information from ASL.




16 | The SimOpt Interface @i

Our rocket example — and optimal control in general — is what we call a
simulation-constrained optimization problem.

Full Space Formulation Reduced Space Formulation

The problem is explicitly constrained: The problem is implicitly constrained:
minimize J(u, z) minimize J(S(2), z),
(u,2)eUxZ zeZ
subjectto c(u,z) =0 where u = S(z) solves c(u,z) = 0.

m Z = the vector being optimized (often a control or set of parameters)
m U = a state resulting from ¢ (the simulation)

In engineering applications, c is often a differential equation.

ROLs sim0Opt interface is "middleware":
m u and z are separated out of the optimization vector x

m converting full space formulations to reduced space ones (and vice-versa) is trivial.



17 I The SimOpt Interface

ROL: :0Objective_SimOpt ROL: :Constraint_SimOpt

B value(u,z) value (u,z)
B gradient_1(g,u,z) applyJacobian_1(jv,v,u,z)
m gradient_2(g,u,z) applyJacobian_2(jv,v,u,z)
B hessVec_11(hv,v,u,z) applyInverseJacobian_1(ijv,v,u,z)
applyAdjointJacobian_1(ajv,v,u,z)
W hessVec_12(hv,v,u,z)
applyAdjointJacobian_2(ajv,v,u,z)
W hessVec_21(hv,v,u,z)

applyInverseAdjointJacobian_1(iajv,v,u,z)
W hessVec_22(hv,v,u,2) applyAdjointHessian_11(ahwv,w,v,u,z)
A mnemonic: applyAdjointHessian_12(ahwv,w,v,u,z)

. applyAdjointHessian_21(ahwv,w,v,u,z)
m1="sim"=u
applyAdjointHessian_22(ahwv,w,v,u,z)

m2="opt"=_2z
P solve(u,z)



18 | Stochastic Optimization @i

ROL also has middleware for stochastic The set C can include both stochastic
problems: (e.9., £ < R(Gx) < u) and deterministic
miningize R(f(x,£)). constraints.
xXe

Here, x is a deterministic decision but ¢ is a set of ROL solves these problems in the usual
random parameters, i.e., £ = {(w). way:

For each x, f(x, &) is a random variable Fy(w). For example, we might

R is a functional on these random variables that take
quantifies risk. R could be — for instance — N
B an expectation: R(Fy) := E[F], E[F(x ~ N Z X, &),
k=1

m a quantile (the value at risk),

where the & are independent and

m a distributionally robust model , , k&
identically distributed samples of .

R(Fx) = 225 Ep[F].



19 | Design

Application Programming Interface (API)

Linear Algebra Functional Interface Algorithmic
Interface Interface
‘ | ‘
4

Objective Solver
Constraint Problem
BoundConstraint Algorithm

(o]
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ROL: :Vector — A Linear Algebra Interface

Optimization algorithms manipulate vectors. But the implementation of these vectors do

not affect what the algorithms do. (For example, the number of iterations before gradient
descent reaches some stopping condition will be the same whether x — the vector being
optimized — is stored on a laptop or distributed over a network.)

ROL similarly relegates the inner workings of vectors to users. As a result,

Member Functions

m ROL is hardware agnostic. Sandians
run ROL on personal computers (in
serial and MPI parallel), GPUs, and
supercomputers too.

m Users can easily tune the linear algebra
of a problem by inheriting from an
instance of ROL: : Vector (which we did
in the rocket example).

dot
plus
norm
scale

clone

H axpy
H dual
M zero

H set

basis

reduce
dimension
applyUnary
applyBinary




21 I Design

Application Programming Interface (API)

Linear Algebra . Algorithmic
g Functional Interface g
Interface Interface

Wrappers Middleware

StdVector SimOpt

Objective Solver
Constraint Problem
BoundConstraint Algorithm
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Related Software

m Hilbert Class Library (HCL) - Rice University
An abstract linear algebra interface.

m Trilinos - Sandia National Laboratories

Collection of linear and nonlinear solvers based
on linear algebra abstractions.

e RTOp and Thyra

Packages for an extended set of algebraic
abstractions.

¢ MOOCHO
Optimization package built on Thyra that
solves reduced space formulations.
m Rice Vector Library (RVL) - Rice University
A revamp of HCL.

m Trilinos (continued)

e Aristos

Optimization package with algebra
abstractions and full space formulations.

e Optipack
A few special-purpose optimization routines
using algebra abstractions.

m PEOQOpt - Sandia National Laboratories
Optimization packages using an alternative
implementation of algebra abstractions.

m Optizelle - OptimoJoe
Successor to PEOpt.



https://dl.acm.org/doi/10.1145/317275.317280
https://dl.acm.org/doi/10.1145/1089014.1089021
https://dl.acm.org/doi/10.1145/974781.974785
https://trilinos.github.io/moocho.html
http://www.trip.caam.rice.edu/software/trip/rvl/doc/html/index.htm
https://www.optimojoe.com/products/optizelle/

24 | Applications
Inverse Problems in Acoustics/Elasticity

Sierra/SD — structural dynamics software

. 200

— simulation
200 — experiment

0 0005 001 0015 002
Time (s)

‘? \
»
S
Aqoustic Pressure at Mic
g o

1M optimization + 1M state variables

DGM - a library of discontinuous Galerkin
methods for solving partial differential equations

500K optimization + 2M x 5K state variables

Estimating Basal Friction of Ice Sheets

Albany — a multiphysics simulator

44,

5M optimization + 20M state variables

Super-Resolution Imaging

GPU processing with ArrayFire

250K optimization variables on an NVIDIA Tesla




25 | Conclusions [ﬁ

m ROL is C++ code for solving large optimization problems.

m |t implements a variety of matrix-free algorithms and has been "battle-tested"
on problems at Sandia.

m ROL has a flexible interface that can connect with algebraic modeling
languages. And, importantly, ROL lets users implement their own vectors.
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