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General Nonlinear Optimization |

» Nonlinear Programs (NLP):

minimize,  f(x)
such that ¢(x) =0 (1)
xec X

> x:=[x0:...:Xp] € R" for p blocks (n = Zf:o n), f:R" = R, c:R" = R™ X simple
bounds.

» We assume f,c € C?; f, c possibly separable.
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Motivating Example - Chemical Spectrum Analysis

» Find distributions of chemicals that occur in measured spectrum analysis.

» Each chemical follows a Gaussian distribution; need nonnegative combination of Gaussians
that reproduce the spectra data.

» Intensity Function as a function of wave number w and concentration ¢, with rank
constraint K. For m be the number of concentrations c:

I(wi, ;) ZYkJexp< § (e )2> 2)

fk(cj)

gr(wi)

» Built “image” from mean, standard deviations, and nonnegative coefficients
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2000

Spectra data: M € RY7°°%22 concentration (x-axis) x wavelength (y-axis) x I (z).
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sl Splitting-ADMM History/Applications

» First utilized in Douglas and Rachford [1956], extended as method for variational problems
in Gabay and Mercier [1975], Glowinski and Marroco [1975].

» Classical ADMM takes the form of a 2-block update

min f(x) = fi(x1) + fa(x2) subject to c¢(x) = Aix; + Axxo — b=0. (3)

x:=[x1,x2]

> Most literature assumes c(x) = Ax — b or linear constraints, and f = f; + £.
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Direct multiblock extension

> Now x = [x1,...,Xp],

néi/@ f(x) st Aoxo+ ...+ Apx, =b. (4)

simple constraint sets X’ (e.g., bounds), multiaffine c(x) as in Gao et al. [2020].

» Block-minimize he augmented Lagrangian for (4)

Ly(x.y) = f(x) +y" (Ax = b) + £ | Ax — b|] ] (5)

» The classical 2-block problem differs greatly; Chen et al. [2016] provides example p = 3
blocks f1, f, f3 = 0 where ADMM diverges for any p.

» Nonconvex settings Wang et al. [2018]: NMF/C, phase retrieval, concensus problems.
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8! P-block algorithm

Algorithm 1: Basic ADMM P-Block splitting for (4)

Data: functions f, matrices A, vector b, augmented Lagrangian parameter p > 0, and
initial xq, yo
Result: x < arg min, f(x)s.t. Ax =b in (4)
for k=0,1,... do
fori=1,...,pdo

D = arg min,, £,([x), <1, X)), y ()
end
y(k+l) — y(k) + p(Ax(k+l) — b)

end
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of Lecture Goals

» Literature: ADMM convergence is still “somewhat” nebulous: requires a priori knowledge

of functions, p choice is largely open, limited choices in ¢(x).
» Tools:
» Augmented Lagrangian, ADMM /block-updates, Filter Methods

Problem: can we solve nonconvex, nonlinear problems (1) with block structure?
» What about nonconvex/nonlinear constraints?

» Can filters help guide convergence?
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10

Basic Lagrangian Methods |

» Lagrangian of NLP (1)
L(x,y) = f(x)+y c(x) (6)

where y € R™ is the vector of Lagrange multipliers of ¢(x).
> X C R"is a simple feasible set:

proj(x) = arg min [ly — x| (7)
X yeXx

» First-order optimality & feasibility (w/ X" simple bounds / < x < u):
proj(x — ViL(x,y)) —x=0 = min{x —[,max{x — u, V,L(x,y)}} =0 (8a)
X

c(x)=0 (8b)
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Augmented Lagrangian Methods

> Adds quadratic penalty term to (6):
Lo(x,y) = F(x) =y c(x) +3pllc(x)|I? (9)
—_————
Lo(x,y)

for a penalty parameter p.

» Bound Constrained Aug-Lag:

min L, (x,y") (10a)

such that /< x<u (10b)

for fixed px and y(9.

» Solve (10), and then
YD — (0 (ki)

» y(k) update makes dual feasible, primal feasibility in limit
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12l Augmented Lagrangian Formulations

» Backbone for solving nonlinear problems Vanaret and Leyffer [2020]:
> Interior-point methods; most used for large-scale problems
> Active-set methods; great for warm-starts
> Issues: lack warm-starts (IP) and cannot scale (AS)

Goal: Leverage different solver flexibilities for nonlinearities in f and ¢

» But: need scaling capabilities for independent block updates - destroyed by quadratic term
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131 Filter Methods

» Monitoring trade-off between primal feasibility and first-order convergence.
» 7 and w represent infeasibility and first order error:

n(x) = lle(x)| (11a)
wix,y) = |l P;?j(x = ViL(x,y)) — x| (11b)

> Keep track of (wg,n) pairs, update y(K) when reach acceptable point or py if not feasible
enough

Definition (Augmented Lagrangian Filter and Acceptance)

A filter F is a list of pairs (1, w;) := (n(x\1), wo(x(, y()) such that no pair
dominates another pair, i.e., there exists no pairs (1, w;), (7, wk), | # k such that
m <k and w; < wk. A point (x(¥) y(k)) is acceptable to the filter F iff

ik = n(x*) < By or wic := wo(x*), y¥) < wy — yn(xH) (12)

Y (ni,w;) € F where 0 < 7,8 < 1.
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14l Filter Example

Wmin =<

/3 TImin U

(a) Filter is blue; U is upper bound (n(x) < U :=
max(wmin/7, BMmin)). Values in the blue are not
acceptable; shaded purple triggers restoration.
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Filter Methods: Algorithm

» Monitors dual infeasibility error of the original problem while solving the augmented

Lagrangian.

» Restoration conditions

n(x) = n(xVt) > gu
w (xUHD ) < and  p(xUtD) > Brjmin.

» Optimal stopping criteria: relative first order error w,, (11b)

[ Proja (x — VxLo(x®), y™)) —x|| _ wo(xk, yx)
I proj (x — ViLo(x(©, y©)) — x||  wo(xo, ¥0)

<e

where x(® is the initial iterate.
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16| ADMM Filter Algorithm

Algorithm 2: Outline of ADMM-F for (1)

while (x(K) | y(K)Y not optimal (14) do

while (n(J), wU)) not acceptable to F . do

while ! Satisfied do

., p with p blocks do

j == 0 then

‘ X/.(,H'l)

else
[

<~ proni(xl_U) - D‘iviﬂpk([x(itl) s x/,(’i), x(i)/,], y(k))) // Block coordinate steepest descent

< arg minX,'GX,‘ ka([x(itl) s Xis x(;)l_], y(k))

end

end

if Restoration condition (13) holds then

Find xUt1) st (nU), w0ty € 7y, or xUHD) — arg ming e x llc(x) 1%
// exits Filter/j-loop

else
‘ Compute wpk(x(j), Y0y, n(x)

Ly,
end
if n(K) > 0 then
Add (n(K) | w(K)y 1o 7
Update: (n(K) | w(k)y (@py (kD) | (k1)) (kD) | (k1))
if Entered Restoration then
Increase Penalty py 1 < max(py, £py);
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Assumption (Differentiability & Set compactness)

Consider (1), and assume that f and c are continuously differentiable. In addition, the
constraint norm satisfies ||c(x)|| — oo as ||x|| — oo.

Assumption 1 implies that our iterates remain in a compact set, replaced with finite bounds
| < x < u. Assumption 1 implies that f, ¢, and their derivatives are bounded for all iterates.
Algorithm 2 has three distinct outcomes:

1. There exists an infinite sequence of restoration phase iterates x indexed by
:= {ky, ka, ...}, whose limit point x* := lim x¥ minimizes the constraint violation,
satisfying n(x*) > 0.
2. There exists an infinite sequence of successful major iterates x*/, indexed by
S = {ki, k2,. .}, and the linear independence constraint qualification (LICQ) fails to hold
at the limit x* := lim x¥, which is a Fritz-John (FJ) point of ( )-

3. There exists an infinite sequence of successful major iterates x*/, indexed by
S = {kj, ko, ...} and LICQ holds at the limit x* := lim x* which is a KKT point of (1).
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181 Convergence of Algorithm 2

Theorem
Under Assumption 1, either Algorithm 2 terminates afer a finite number of iterations at
a KKT point: for some k, xX) is a first-order stationary point with n(x(k)) =0 and
w(x¥)) =0, or there exists an infinite seugnce of iterates x*) and any limit point
x(K) — x* that satisfy one of the following:

1. The penalty parameter is updated finitely often, and x* is a KKT point;

2. There exists an infinite sequence of restoration steps at which the penalty
parameter is updated. If x* satisfies the LICQ, it is a KKT point; otherwise, it is
an FJ point;

3. The restoration phase converges to a minimum of the constraint violation.
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19

BCD Sufficient Decrease

» We establish a generalized Cauchy point with projected gradient descent Beck and
Tetruashvili [2013, Lemma 3.3].

X’_(J'+1) <+ proj (Xi(j) _ (l/L,-)V,-[:(XEj))) . d; (X,(j)) _ Xi(j+1) ) (15)
X

1
i

Lemma

[Block Coordinate Descent Sufficient Decrease] Let {xU)};o be the sequence
generated by taking one sequence of projected gradient steps (15) in each block
i=1,...,p. Then

L(xD) — £(x0+1)) > Fmin d (x|’ (16)
2[1+(P_1)<L:in)2:| H ( >H

for L the Lipschitz constant of L(-), Lmin = minieq1,..py Li, for L; block Lipschitz
constants, and Omin = Min;e(1,...p} Ti-

=

J
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200 Algorithm Discussion

» ADMM/BCD - solves multiblock problems, parallelizable
» Requires BCD satisfies a sufficient decrease condition.

» Filter - maintains feasibility, can handle nonlinear constraints, update px when needed

» Now - applying to bilinear NMF and extensions
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211 Bilinear NMF Problem Formulation

» Extract from a data matrix M € RV*Q two nonnegative factors X € RV*K Y ¢ RKxQ
m|n LIxy — M|z
(17)
such that X>0,Y>0

» ADMM Formulation

Jmin 112 — M

such that X >0,Y >0,Z = XY
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2| Bilinear NMF Results with ADMM-F |

NMF recapitulation of Sylvester and Filter progression through “acceptable” iterations. M € R?%%225
XER?%% FO:le — 5.
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23l Filter Movement
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25| Algorithm Comparison
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261 Bilinear NMFC Problem Formulation

» Data matrix M € RV*Q now contains missing values

» Need two nonnegative factors X € RNXK 'y € RK*Q that also match observed data (via
selection operator proj )

: - 2
min 1l p;é)](XY — M)||&,such that X >0,Y >0 (19)

» ADMM Formulation

- 2
i 3112 = Wi
such that X >0,Y >0 (20)

Z = XY, proj(W —-M)=0
X
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Bilinear NMFC Results with ADMM-F |

a) True b) Data: 50% missing data
g
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281 Bilinear NMFC Results with ADMM-F 1|1
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30

Chemical Spectrum - Recap

» Find distributions of chemicals that occur in measured spectrum analysis - optimize over
w,o,Y.

» Each chemical follows a Gaussian distribution; need nonnegative combination of Gaussians
that reproduce the spectra data.

» Intensity Function as a function of wave number w and concentration ¢, with rank
constraint K. For m be the number of concentrations c:

I(wi, ;) Z ey (— (W')2> (21)

( 7)

gr(wi)

» Cost Function:

min ¥ (M;; —2)* st. Y,0>0,Z=X(p,0)Y (22)

Robert Baraldi Sandia National Laboratories ADMM /Filters



31| NMF Spectra Results with ADMM-F |
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(c) Absolute Difference

Spectra data and recapitulation through “acceptable” iterations. M € R17%0%22 X ¢ R%2x22
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321 Distribution of Spectra

12

11}

10t

N
FAVERR RWR)) R

\ /<

‘< ARl < |\ 7 :/\ N/
; N TN AVAWIS
L NN S L"_“_‘_---_»_._zﬁ;: N

6 1 |
0 500 1000 1500 2000

(a) Gaussians, with mean (before ":'/after ') and signal.

/.

Robert Baraldi Sandia National Laboratories ADMM /Filters



33| Descent Stats
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351 Conclusions & Future Directions

» Conclusions
> Able to prove convergence through Filter framework
> Filter seems able to select correct p values

» Theoretical - Future Directions
> Prove Convergence w/e nonsmooth regularizers

» BCD - already have drafted
> Filter convergence adjustment
> Accelerations

» Practical

» Write real package that generalizes to nonlinear problems
» Incorporate into existing code?
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Thank you!

» Questions?
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