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3 General Nonlinear Optimization I

I Nonlinear Programs (NLP):

minimizex f (x)
such that c(x) = 0

x ∈ X
(1)

I x := [x0; . . . ; xp] ∈ Rn for p blocks (n =
∑p

i=0 ni ), f : Rn → R, c : Rn → Rm, X simple
bounds.

I We assume f , c ∈ C2; f , c possibly separable.
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4 Motivating Example - Chemical Spectrum Analysis

I Find distributions of chemicals that occur in measured spectrum analysis.
I Each chemical follows a Gaussian distribution; need nonnegative combination of Gaussians

that reproduce the spectra data.
I Intensity Function as a function of wave number w and concentration c, with rank

constraint K . For m be the number of concentrations c:

Î(wi , cj ) =
K∑

k=1
Yk,j︸︷︷︸
fk (cj )

exp
(
− 1

2

(
wi−µk
σk

)2
)

︸ ︷︷ ︸
gk (wi )

(2)

I Built “image” from mean, standard deviations, and nonnegative coefficients
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Spectra data: M ∈ R1750×22, concentration (x-axis) × wavelength (y-axis) × Î (z).
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6 Splitting-ADMM History/Applications

I First utilized in Douglas and Rachford [1956], extended as method for variational problems
in Gabay and Mercier [1975], Glowinski and Marroco [1975].

I Classical ADMM takes the form of a 2-block update

min
x:=[x1,x2]

f (x) := f1(x1) + f2(x2) subject to c(x) := A1x1 + A2x2 − b = 0. (3)

I Most literature assumes c(x) = Ax − b or linear constraints, and f = f1 + f2.
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7 Direct multiblock extension
I Now x = [x1, . . . , xp],

min
x∈X

f (x) s.t. A0x0 + . . .+ Apxp = b. (4)

simple constraint sets X (e.g., bounds), multiaffine c(x) as in Gao et al. [2020].
I Block-minimize he augmented Lagrangian for (4)

Lρ(x, y) = f (x) + y T (Ax − b) + ρ

2 ‖Ax − b‖2 (5)

I The classical 2-block problem differs greatly; Chen et al. [2016] provides example p = 3
blocks f1, f2, f3 ≡ 0 where ADMM diverges for any ρ.

I Nonconvex settings Wang et al. [2018]: NMF/C, phase retrieval, concensus problems.
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8 P-block algorithm

Algorithm 1: Basic ADMM P-Block splitting for (4)

Data: functions f , matrices A, vector b, augmented Lagrangian parameter ρ > 0, and
initial x0, y0

Result: x ← arg minx f (x) s.t. Ax = b in (4)
for k = 0, 1, . . . do

for i = 1, . . . , p do
x (k+1)

i = arg minxi Lρ([x(k)
<i , x

(k)
i , x(k)

>i ], y (k))
end
y (k+1) = y (k) + ρ(Ax(k+1) − b)

end
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9 Lecture Goals

I Literature: ADMM convergence is still “somewhat” nebulous: requires a priori knowledge
of functions, ρ choice is largely open, limited choices in c(x).

I Tools:
I Augmented Lagrangian, ADMM/block-updates, Filter Methods

Problem: can we solve nonconvex, nonlinear problems (1) with block structure?
I What about nonconvex/nonlinear constraints?
I Can filters help guide convergence?
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10 Basic Lagrangian Methods I

I Lagrangian of NLP (1)
L(x, y) = f (x) + y T c(x) (6)

where y ∈ Rm is the vector of Lagrange multipliers of c(x).
I X ⊆ Rn is a simple feasible set:

proj
X

(x) ≡ arg min
y∈X

‖y − x‖ (7)

I First-order optimality & feasibility (w/ X simple bounds l ≤ x ≤ u):

proj
X

(x −∇xL(x, y))− x = 0 ⇒ min{x − l ,max{x − u,∇xL(x, y)}} = 0 (8a)

c(x) = 0 (8b)
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11 Augmented Lagrangian Methods
I Adds quadratic penalty term to (6):

Lρ(x, y) = f (x)− y T c(x)︸ ︷︷ ︸
L0(x,y)

+ 1
2ρ‖c(x)‖2 (9)

for a penalty parameter ρ.
I Bound Constrained Aug-Lag:

min
x
Lρk (x, y (k)) (10a)

such that l ≤ x ≤ u (10b)

for fixed ρk and y (k).
I Solve (10), and then

y (k+1) = y (k) − ρc(x(k+1))
I y (k) update makes dual feasible, primal feasibility in limit
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12 Augmented Lagrangian Formulations

I Backbone for solving nonlinear problems Vanaret and Leyffer [2020]:
I Interior-point methods; most used for large-scale problems
I Active-set methods; great for warm-starts
I Issues: lack warm-starts (IP) and cannot scale (AS)

Goal: Leverage different solver flexibilities for nonlinearities in f and c

I But: need scaling capabilities for independent block updates - destroyed by quadratic term
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13 Filter Methods
I Monitoring trade-off between primal feasibility and first-order convergence.
I η and ω represent infeasibility and first order error:

η(x) := ‖c(x)‖ (11a)
ω(x , y) := ‖ proj

X
(x −∇xL(x, y))− x‖ (11b)

I Keep track of (ω0, η) pairs, update y (k) when reach acceptable point or ρk if not feasible
enough

Definition (Augmented Lagrangian Filter and Acceptance)
A filter F is a list of pairs (ηl , ωl ) := (η(x(l)), ω0(x(l), y (l))) such that no pair
dominates another pair, i.e., there exists no pairs (ηl , ωl ), (ηk , ωk ), l 6= k such that
ηl ≤ ηk and ωl ≤ ωk . A point (x(k), y (k)) is acceptable to the filter F iff

ηk := η(x(k)) ≤ βηl or ωk := ω0(x(k), y (k)) ≤ ωl − γη(x(k)) (12)

∀ (ηl , ωl ) ∈ F where 0 < γ, β < 1.
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14 Filter Example

(a) Filter is blue; U is upper bound (η(x) ≤ U :=
max(ωmin/γ, βηmin)). Values in the blue are not
acceptable; shaded purple triggers restoration.
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15 Filter Methods: Algorithm

I Monitors dual infeasibility error of the original problem while solving the augmented
Lagrangian.

I Restoration conditions

η(x) = η(x(j+1)) ≥ βU (13a)
ωρk (x(j+1), y (k)) ≤ ε and η(x(j+1)) ≥ βηmin. (13b)

I Optimal stopping criteria: relative first order error ωρk (11b)

‖ projX (x −∇xL0(x(k), y (k)))− x‖
‖ projX (x −∇xL0(x(0), y (0)))− x‖

= ω0(xk , yk )
ω0(x0, y0) ≤ ε (14)

where x(0) is the initial iterate.

Robert Baraldi Sandia National Laboratories ADMM/Filters



16 ADMM Filter Algorithm

Algorithm 2: Outline of ADMM-F for (1)
while (x(k), y(k)) not optimal (14) do

while (η(j), ω(j)) not acceptable to Fk do
while ! Satisfied do

for i = 1, . . . , p with p blocks do
if j == 0 then

x(j+1)
i ← projXi (x(j)

i − αi∇iLρk ([x(j+1)
<i , x(j)

i , x(j)
>i ], y(k))) // Block coordinate steepest descent

else
x(j+1)
i ← arg minxi∈Xi Lρk ([x(j+1)

<i , xi , x(j)
>i ], y(k))

end
end
if Restoration condition (13) holds then

Find x(j+1) s.t. (η(j+1), ω(j+1)) ∈ Fk , or x(j+1) ← arg minx∈X ‖c(x)‖2;
// exits Filter/j-loop

else
Compute ωρk (x(j), y(k)), η(x(j), y(k));

end
if η(k) > 0 then

Add (η(k), ω(k)) to Fk
Update: (η(k), ω(k)) ← (ωρk (x(k+1), y(k+1)), η(x(k+1), y(k+1)));

if Entered Restoration then
Increase Penalty ρk+1 ← max(ρk , ξρk );

end
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Assumption (Differentiability & Set compactness)
Consider (1), and assume that f and c are continuously differentiable. In addition, the
constraint norm satisfies ‖c(x)‖ → ∞ as ‖x‖ → ∞.
Assumption 1 implies that our iterates remain in a compact set, replaced with finite bounds
l ≤ x ≤ u. Assumption 1 implies that f , c, and their derivatives are bounded for all iterates.
Algorithm 2 has three distinct outcomes:

1. There exists an infinite sequence of restoration phase iterates xkl , indexed by
R := {k1, k2, . . .}, whose limit point x∗ := lim xkl minimizes the constraint violation,
satisfying η(x∗) > 0.

2. There exists an infinite sequence of successful major iterates xkl , indexed by
S := {k1, k2, . . .}, and the linear independence constraint qualification (LICQ) fails to hold
at the limit x∗ := lim xkl , which is a Fritz-John (FJ) point of (1).

3. There exists an infinite sequence of successful major iterates xkl , indexed by
S := {kl , k2, . . .} and LICQ holds at the limit x∗ := lim xkl , which is a KKT point of (1).
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18 Convergence of Algorithm 2

Theorem
Under Assumption 1, either Algorithm 2 terminates afer a finite number of iterations at
a KKT point: for some k, x(k) is a first-order stationary point with η(x(k)) = 0 and
ω(x(k)) = 0, or there exists an infinite seuqnce of iterates x(k) and any limit point
x(k) → x∗ that satisfy one of the following:

1. The penalty parameter is updated finitely often, and x∗ is a KKT point;
2. There exists an infinite sequence of restoration steps at which the penalty

parameter is updated. If x∗ satisfies the LICQ, it is a KKT point; otherwise, it is
an FJ point;

3. The restoration phase converges to a minimum of the constraint violation.
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19 BCD Sufficient Decrease
I We establish a generalized Cauchy point with projected gradient descent Beck and

Tetruashvili [2013, Lemma 3.3].

x (j+1)
i ← proj

Xi

(
x (j)

i − (1/Li )∇iL(x(j)
i )
)
, di

(
x(j)

i

)
= x (j+1)

i − x (j)
i (15)

Lemma
[Block Coordinate Descent Sufficient Decrease] Let {x(j)}j≥0 be the sequence
generated by taking one sequence of projected gradient steps (15) in each block
i = 1, . . . , p. Then

L(x(j))− L(x(j+1)) ≥ σmin

2
[

1 + (p − 1)
(

L
Lmin

)2
] ∥∥∥d

(
x(j)
)∥∥∥2

. (16)

for L the Lipschitz constant of L(·), Lmin = mini∈{1,...p} Li , for Li block Lipschitz
constants, and σmin = mini∈{1,...p} σi .
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20 Algorithm Discussion

I ADMM/BCD - solves multiblock problems, parallelizable
I Requires BCD satisfies a sufficient decrease condition.

I Filter - maintains feasibility, can handle nonlinear constraints, update ρk when needed
I Now - applying to bilinear NMF and extensions
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21 Bilinear NMF Problem Formulation

I Extract from a data matrix M ∈ RN×Q two nonnegative factors X ∈ RN×K , Y ∈ RK×Q

min
X ,Y

1
2‖XY −M‖2

F

such that X ≥ 0,Y ≥ 0
(17)

I ADMM Formulation

min
X ,Y ,Z

1
2‖Z −M‖2

F

such that X ≥ 0,Y ≥ 0,Z = XY
(18)
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22 Bilinear NMF Results with ADMM-F I

(b) Data (c) XY

NMF recapitulation of Sylvester and Filter progression through “acceptable” iterations. M ∈ R225×225,
X∈R225×45. FO:1e − 5.
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23 Filter Movement

(a) Final Filter (b) Total Filter Entries with blue earliest, yellow the
latest entries.

Descent and Filter Stats NMF for Sylvester T. Cat.
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24 ρ Tests

(a) ρ Trajectories (b) ρ - Lk descent

Convergence metrics for different ρ initializations.
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25 Algorithm Comparison

ADMM-F Comparison with Accelerated NMF Ang and Gillis [2019]
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26 Bilinear NMFC Problem Formulation

I Data matrix M ∈ RN×Q now contains missing values
I Need two nonnegative factors X ∈ RN×K , Y ∈ RK×Q that also match observed data (via

selection operator projX )

min
X ,Y

1
2‖ proj

X
(XY −M)‖2

F , such that X ≥ 0,Y ≥ 0 (19)

I ADMM Formulation

min
X ,Y ,Z ,W

1
2‖Z −W ‖2

F

such that X ≥ 0,Y ≥ 0
Z = XY , proj

X
(W −M) = 0

(20)
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27 Bilinear NMFC Results with ADMM-F I

(a) True (b) Data: 50% missing data (c) XY
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28 Bilinear NMFC Results with ADMM-F II

(d) Total Filter Entries: early (blue);
final (yellow)

NMFC recapitulation of Sylverster and Filter progression through “acceptable” iterations.
M ∈ R225×225, X ∈ R225×45. FO:1e − 5.

Robert Baraldi Sandia National Laboratories ADMM/Filters



(a) ρ Trajectories (b) ρ - Lk descent

Convergence metrics for different ρ initializations.
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30 Chemical Spectrum - Recap

I Find distributions of chemicals that occur in measured spectrum analysis - optimize over
µ, σ,Y .

I Each chemical follows a Gaussian distribution; need nonnegative combination of Gaussians
that reproduce the spectra data.

I Intensity Function as a function of wave number w and concentration c, with rank
constraint K . For m be the number of concentrations c:

Î(wi , cj ) =
K∑

k=1
hk,j︸︷︷︸
fk (cj )

exp
(
− 1

2

(
wi−µk
σk

)2
)

︸ ︷︷ ︸
gk (wi )

(21)

I Cost Function:

min
µ,σ,Y

∑
i,j

(Mi,j − Z )2 s.t. Y , σ ≥ 0,Z = X (µ, σ)Y (22)
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31 NMF Spectra Results with ADMM-F I

(a) Data (b) XY (c) Absolute Difference

Spectra data and recapitulation through “acceptable” iterations. M ∈ R1750×22, X ∈ R22×22
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32 Distribution of Spectra

(a) Gaussians, with mean (before ’:’/after –’) and signal.
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33 Descent Stats

(b) Final Filter (c) Total Filter Entries

Descent and Filter Stats for spectra inversion with 22 Gaussians.
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(22) value per number of Gaussians; training & test data.
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35 Conclusions & Future Directions

I Conclusions
I Able to prove convergence through Filter framework
I Filter seems able to select correct ρ values

I Theoretical - Future Directions
I Prove Convergence w/e nonsmooth regularizers

I BCD - already have drafted
I Filter convergence adjustment
I Accelerations

I Practical
I Write real package that generalizes to nonlinear problems
I Incorporate into existing code?
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36 Thank you!

I Questions?
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